首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lumbrokinase (LK) is an important fibrinolytic enzyme derived from earthworm. The capsules of the extracts of LK have been widely used. Unfortunately, the life cycle of earthworm is long, and extraction of lumbrokinases is generally a labor intensive and time-consuming activity. Also the extract is easily contaminated by multiple components. The successful expression of the recombinant LK provides a way to obtain single component with fibrinolytic activity. Meanwhile, it was reported that LK could be orally administered. Therefore, we have been attempting to produce recombinant LK using a safe and cost-effective production system. In this stduy, LK gene placed under the seed-specific promoter, napA, was expressed in the Helianthus annuus L. The SDS-PAGE and Western blot analysis confirmed the expression of recombinant LK (rLK). The yield of rLK was about 5.1 g/kg sunflower seeds as determined by ELISA. Fibrin plate assays revealed that the crude extraction of rLK from sunflower seed kernel contained a high level of fibrinolytic activity. Following oral administration of T1 generation of transgenic sunflower seed kernel, the prothrombin time (PT), the activated partial thromboplastin time (APTT), the thrombin time (TT) and the carrageenin-induced thrombosis were evaluated, using Balb/c mice as the thrombosis model. It was demonstrated that the oral treatment of mice with transgenic sunflower seed kernel had a significant anti-thrombotic effect. The finding provides a way for low-cost and seed kernel edible delivery of human therapeutic proteins.  相似文献   

2.
Dengue is the fastest growing mosquito-borne disease worldwide, causing nearly 400 million infections annually. A universally applicable dengue virus vaccine is required to arrest its spread. Here, we generated an edible dengue vaccine by expressing the dengue fusion protein in tomatoes, which is a desirable expression system owing to the inherent adjuvanticity of alpha tomatine and immunogenicity of the tomato lectin/microbial antigen complex. The B subunit of Vibrio cholera toxin (CTB) was genetically fused to dengue envelope antigen for improved delivery to antigen-presenting cells and enhanced immunogenicity, while avoiding immunological tolerance. We utilized domain III of the dengue envelope protein (EDIII), as it has been shown to induce serotype-specific neutralizing antibodies. The CTB–EDIII fusion gene construct containing an endoplasmic reticulum target sequence was introduced into tomato plants by Agrobacterium tumefaciens-mediated gene transformation, and the expression of CTB–EDIII in transgenic plants was confirmed by DNA, RNA and protein analyses. Accumulated fusion protein accounted for up to 0.015 % of total soluble protein, and it assembled into fully functional pentamers as demonstrated by binding to GM1 ganglioside. Future work will involve testing of transgenic tomatoes for immunogenicity in mice following oral delivery.  相似文献   

3.
Glucagon‐like peptide (GLP‐1) increases insulin secretion but is rapidly degraded (half‐life: 2 min in circulation). GLP‐1 analogue, exenatide (Byetta) has a longer half‐life (3.3–4 h) with potent insulinotropic effects but requires cold storage, daily abdominal injections with short shelf life. Because patients with diabetes take >60 000 injections in their life time, alternative delivery methods are highly desired. Exenatide is ideal for oral delivery because insulinotropism is glucose dependent, with reduced risk of hypoglycaemia even at higher doses. Therefore, exendin‐4 (EX4) was expressed as a cholera toxin B subunit (CTB)–fusion protein in tobacco chloroplasts to facilitate bioencapsulation within plant cells and transmucosal delivery in the gut via GM1 receptors present in the intestinal epithelium. The transgene integration was confirmed by PCR and Southern blot analysis. Expression level of CTB‐EX4 reached up to 14.3% of total leaf protein (TLP). Lyophilization of leaf material increased therapeutic protein concentration by 12‐ to 24‐fold, extended their shelf life up to 15 months when stored at room temperature and eliminated microbes present in fresh leaves. The pentameric structure, disulphide bonds and functionality of CTB‐EX4 were well preserved in lyophilized materials. Chloroplast‐derived CTB‐EX4 showed increased insulin secretion similar to the commercial EX4 in beta‐TC6, a mouse pancreatic cell line. Even when 5000‐fold excess dose of CTB‐EX4 was orally delivered, it stimulated insulin secretion similar to the intraperitoneal injection of commercial EX4 but did not cause hypoglycaemia in mice. Oral delivery of the bioencapsulated EX4 should eliminate injections, increase patient compliance/convenience and significantly lower their cost.  相似文献   

4.
High manufacturing costs and oral delivery are the constraints in clinical application of calcitonin. We selected surface‐displayed Saccharomyces cerevisiae as a low‐cost and safe carrier for oral delivery of salmon calcitonin (sCT). The sCT DNA fragment, optimized according to the codon preference of S. cerevisiae, was synthesized and cloned into the plasmid M‐pYD1 to yield recombinant yAGA2‐sCT, which was induced to express sCT by galactose for 0, 12, and 24 h. sCT expression was detected on the cell surface by indirect immunofluorescence and peaked at 12 h. About 65% recombinants expressed sCT on flow cytometry. The in vivo and in vitro activity of recombinant sCT was determined by detecting bioactivity of antiosteoclastic absorption on bone wafers and orally administering yAGA2‐sCT to Wistar rats, respectively. For safety assessment of yAGA2‐sCT, we observed abnormalities, morbidity, and mortality and determined body weight, serum chemistry parameters, hematological parameters, and organ weight. In vitro bioactivity of the recombinant sCT was similar to that of commercial sCT, Miacalcic; oral administration of 5 g/kg yAGA2‐sCT induced a long‐term hypocalcemic effect in Wistar rats and no adverse effects. This study demonstrates that yAGA2‐sCT anchoring sCT protein on a S. cerevisiae surface has potential for low‐cost and safe oral delivery of sCT. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
The B subunits of enterotoxigenic Escherichia coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are candidate vaccine antigens. Integration of an unmodified CTB-coding sequence into chloroplast genomes (up to 10,000 copies per cell), resulted in the accumulation of up to 4.1 % of total soluble tobacco leaf protein as functional oligomers (410-fold higher expression levels than that of the unmodified LTB gene expressed via the nuclear genome). However, expression levels reported are an underestimation of actual accumulation of CTB in transgenic chloroplasts, due to aggregation of the oligomeric forms in unboiled samples similar to the aggregation observed for purified bacterial antigen. PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that the chloroplast- synthesized CTB assembled into oligomers and were antigenically identical with purified native CTB. Also, binding assays confirmed that chloroplast-synthesized CTB binds to the intestinal membrane GM1-ganglioside receptor, indicating correct folding and disulfide bond formation of CTB pentamers within transgenic chloroplasts. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed in chloroplasts. Introduced genes were inherited stably in subsequent generations, as confirmed by PCR and Southern blot analyses. Increased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant-based oral vaccines and fusion proteins with CTB needing oral administration commercially feasible. Successful expression of foreign genes in transgenic chromoplasts and availability of marker-free chloroplast transformation techniques augurs well for development of vaccines in edible parts of transgenic plants. Furthermore, since the quaternary structure of many proteins is essential for their function, this investigation demonstrates the potential for other foreign multimeric proteins to be properly expressed and assembled in transgenic chloroplasts.  相似文献   

6.
A DNA construct containing the cholera toxin B subunit (CTB) gene genetically fused to a nucleotide sequence encoding three copies of tandemly repeated diabetes-associated autoantigen, the B chain of human insulin, was produced and transferred into low-nicotine tobaccos by Agrobacterium. Integration of the fusion gene into the plant genome was confirmed by polymerase chain reaction (PCR). The results of immunoblot analysis verified the synthesis and assembly of the fusion protein into pentamers in transgenic tobacco. GM1–ELISA showed that the plant-derived fusion protein retained GM1–ganglioside receptor binding specificity. The fusion protein accounted for 0.11% of the total leaf protein. The production of transgenic plants expressing CTB–InsB3 offers a new opportunity to test plant-based oral antigen therapy against autoimmune diabetes by inducing oral tolerance.  相似文献   

7.
Rheumatoid arthritis (RA) is an autoimmune disease associated with the recognition of self proteins secluded in arthritic joints. We previously reported that altered peptide ligands (APLs) of type II collagen (CII256‐271) suppress the development of collagen‐induced arthritis (CIA). In this study, we generated transgenic rice expressing CII256‐271 and APL6 contained in fusion proteins with the rice storage protein glutelin in the seed endosperm. These transgene products successfully and stably accumulated at high levels (7–24 mg/g seeds) in protein storage vacuoles (PB‐II) of mature seeds. We examined the efficacy of these transgenic rice seeds by performing oral administration of the seeds to CIA model mice that had been immunized with CII. Treatment with APL6 transgenic rice for 14 days significantly inhibited the development of arthritis (based on clinical score) and delayed disease onset during the early phase of arthritis. These effects were mediated by the induction of IL‐10 from CD4CD25? T cells against CII antigen in splenocytes and inguinal lymph nodes (iLNs), and treatment of APL had no effect on the production of IFN‐γ, IL‐17, IL‐2 or Foxp3+ Treg cells. These findings suggest that abnormal immune suppressive mechanisms are involved in the therapeutic effect of rice‐based oral vaccine expressing high levels of APLs of type II collagen on the autoimmune disease CIA, suggesting that the seed‐based mucosal vaccine against CIA functions via a unique mechanism.  相似文献   

8.
Xie T  Qiu Q  Zhang W  Ning T  Yang W  Zheng C  Wang C  Zhu Y  Yang D 《Peptides》2008,29(11):1862-1870
Human insulin-like growth factor 1(hIGF-1) is essential for cell proliferation and used therapeutically in treating various diseases including diabetes mellitus. Here, we present that a recombinant hIGF-1(rhIGF-1) was expressed fused with the C-terminus of a rice luminal binding protein and accumulated highly in rice seeds, reaching 6.8+/-0.5% of total seed protein. The rhIGF-1 fusion was demonstrated to possess biological activity to stimulate cell proliferation. Importantly, the unprocessed transgenic seeds could significantly increase plasma rhIGF-1 level and reduce blood glucose of diabetic mice via oral delivery. Further studies suggested that transgenic seeds reduced blood glucose of diabetic mice by enhancing islet cells survival and increasing insulin secretion rather than increasing insulin sensitivity. These results indicated the potential of the novel fusion expression system in production and oral delivery of biologically active small peptides for diseases.  相似文献   

9.
10.
Human serum transferrin (hTf) is the major iron‐binding protein in human plasma, having a vital role in iron transport. Additionally, hTf has many other uses including antimicrobial functions and growth factor effects on mammalian cell proliferation and differentiation. The multitask nature of hTf makes it highly valuable for different therapeutic and commercial applications. However, the success of hTf in these applications is critically dependent on the availability of high‐quality hTf in large amounts. In this study, we have developed plants as a novel platform for the production of recombinant (r)hTf. We show here that transgenic plants are an efficient system for rhTf production, with a maximum accumulation of 0.25% total soluble protein (TSP) (or up to 33.5 μg/g fresh leaf weight). Furthermore, plant‐derived rhTf retains many of the biological activities synonymous with native hTf. In particular, rhTf reversibly binds iron in vitro, exhibits bacteriostatic activity, supports cell proliferation in serum‐free medium and can be internalized into mammalian cells in vitro. The success of this study validates the future application of plant rhTf in a variety of fields. Of particular interest is the use of plant rhTf as a novel carrier for cell‐specific or oral delivery of protein/peptide drugs for the treatment of human diseases such as diabetes. To demonstrate this hypothesis, we have additionally expressed an hTf fusion protein containing glucagon‐like peptide 1 (GLP‐1) or its derivative in plants. Here, we show that plant‐derived hTf‐GLP‐1 fusion proteins retain the ability to be internalized by mammalian cells when added to culture medium in vitro.  相似文献   

11.
Yang L  Tada Y  Yamamoto MP  Zhao H  Yoshikawa M  Takaiwa F 《FEBS letters》2006,580(13):3315-3320
RPLKPW is a potent anti-hypertensive peptide designed according to the structure of ovokinin(2-7) (RADHPF). In this study, we generated transgenic rice plants that accumulate the RPLKPW peptide as a fusion protein with the rice storage protein glutelin. The engineered peptide is expressed under the control of endosperm-specific glutelin promoters and specifically accumulates in seeds. Oral administration of either the RPLKPW-glutelin fraction or transgenic rice seeds to spontaneously hypertensive rats (SHRs) significantly reduced systolic blood pressures. These results suggest the possible application of transgenic rice seed as a nutraceutical delivery system and specifically for administration of active peptides in hypertension.  相似文献   

12.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a persistent threat of economically significant influence to the swine industry worldwide. Recombinant DNA technology coupled with tissue culture technology is a viable alternative for the inexpensive production of heterologous proteins in planta. Embryogenic cells of banana cv. ‘Pei chiao’ (AAA) have been transformed with the ORF5 gene of PRRSV envelope glycoprotein (GP5) using Agrobacterium‐mediated transformation and have been confirmed. Recombinant GP5 protein levels in the transgenic banana leaves were detected and ranged from 0.021%–0.037% of total soluble protein. Pigs were immunized with recombinant GP5 protein by orally feeding transgenic banana leaves for three consecutive doses at a 2‐week interval and challenged with PRRSV at 7 weeks postinitial immunization. A vaccination‐dependent gradational increase in the elicitation of serum and saliva anti‐PRRSV IgG and IgA was observed. Furthermore, significantly lower viraemia and tissue viral load were recorded when compared with the pigs fed with untransformed banana leaves. The results suggest that transgenic banana leaves expressing recombinant GP5 protein can be an effective strategy for oral delivery of recombinant subunit vaccines in pigs and can open new avenues for the production of vaccines against PRRSV.  相似文献   

13.
To prevent vaccine‐associated paralytic poliomyelitis, WHO recommended withdrawal of Oral Polio Vaccine (Serotype‐2) and a single dose of Inactivated Poliovirus Vaccine (IPV). IPV however is expensive, requires cold chain, injections and offers limited intestinal mucosal immunity, essential to prevent polio reinfection in countries with open sewer system. To date, there is no virus‐free and cold chain‐free polio vaccine capable of inducing robust mucosal immunity. We report here a novel low‐cost, cold chain/poliovirus‐free, booster vaccine using poliovirus capsid protein (VP1, conserved in all serotypes) fused with cholera non‐toxic B subunit (CTB) expressed in lettuce chloroplasts. PCR using unique primer sets confirmed site‐specific integration of CTB‐VP1 transgene cassettes. Absence of the native chloroplast genome in Southern blots confirmed homoplasmy. Codon optimization of the VP1 coding sequence enhanced its expression 9–15‐fold in chloroplasts. GM1‐ganglioside receptor‐binding ELISA confirmed pentamer assembly of CTB‐VP1 fusion protein, fulfilling a key requirement for oral antigen delivery through gut epithelium. Transmission Electron Microscope images and hydrodynamic radius analysis confirmed VP1‐VLPs of 22.3 nm size. Mice primed with IPV and boosted three times with lyophilized plant cells expressing CTB‐VP1co, formulated with plant‐derived oral adjuvants, enhanced VP1‐specific IgG1, VP1‐IgA titres and neutralization (80%–100% seropositivity of Sabin‐1, 2, 3). In contrast, IPV single dose resulted in <50% VP1‐IgG1 and negligible VP1‐IgA titres, poor neutralization and seropositivity (<20%, <40% Sabin 1,2). Mice orally boosted with CTB‐VP1co, without IPV priming, failed to produce any protective neutralizing antibody. Because global population is receiving IPV single dose, booster vaccine free of poliovirus or cold chain offers a timely low‐cost solution to eradicate polio.  相似文献   

14.
The oral administration of disease-specific autoantigens can induce oral immune tolerance and prevent or delay the onset of autoimmune disease symptoms. Here, we describe the construction of an edible vaccine consisting of a fusion protein composed of cholera toxin B subunit (CTB) and insulin that is produced in silkworm larvae at levels of up to 0.3 mg/ml of hemolymph. The silkworm bioreactor produced this fusion protein vaccine as the pentameric CTB-insulin form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB and insulin. Non-obese diabetic mice fed hemolymph containing microgram quantities of the CTB-insulin fusion protein showed a prominent reduction in pancreatic islet inflammation and a delay in the development of symptoms of clinical diabetes. These results demonstrate that the silkworm bioreactor is a feasible production and delivery system for an oral protein vaccine designed to develop immunological tolerance against T-cell-mediated autoimmune diabetes by regulatory T-cell induction.  相似文献   

15.
Novokinin (Arg-Pro-Leu-Lys-Pro-Trp, RPLKPW) is a new potent antihypertensive peptide based on the sequence of ovokinin (2-7) derived from ovalbumin. We previously generated transgenic rice seeds in which eight novokinin were fused to storage protein glutelins (GluA2 and GluC) for expression. Oral administration of these seeds to spontaneously hypertensive rats (SHRs) reduced systolic blood pressures at a dose of 1 g seed/kg of SHR. Here, 10- or 18-tandem repeats of novokinin with an endoplasmic reticulum (ER) retention signal (Lys-Asp-Glu-Leu, KDEL) at the C terminus were directly expressed in rice under the control of the glutelin promoter containing its signal peptide. Only small amounts of the 18-repeat novokinin accumulated, and it was unexpectedly deposited in the nucleolus. This abnormal intracellular localization was explained by an endogenous signal for nuclear localization. The GFP reporter protein fused to this sequence targeted to nuclei by a transient assay using onion epidermal cells. Transgenic seed expressing the 18-repeat novokinin exhibited significantly higher antihypertensive activity after a single oral dose to SHR even at one-quarter the amount (0.25 g/kg) of the transgenic rice seed expressing the fusion construct; though, its novokinin content was much lower (1/5). Furthermore, in a long-term administration for 5 weeks, even a smaller dose (0.0625 g/kg) of transgenic seeds could confer antihypertensive activity. This high antihypertensive activity may be attributed to differences in digestibility of expressed products by gastrointestinal enzymes and the unique intracellular localization. These results indicate that accumulation of novokinin as a tandemly repeated structure in transgenic rice is more effective than as a fusion-type structure.  相似文献   

16.
Human granulocyte-macrophage colony stimulating factor (GM-CSF), a cytokine with many applications in clinical medicine, was produced specifically in the seeds of transgenic tobacco plants. Two rice endosperm-specific glutelin promoters of different size and sequence, Gt1 and Gt3, were used to direct expression. Also in the Gt3 construct, the GM-CSF coding region was in fusion with the first 24 nucleotides of the mature rice glutelin sequence at its 5' end. With the Gt1 construct plants, seed extracts contained the recombinant human GM-CSF protein up to a level of 0.03% of total soluble protein. Transgenic seed extracts actively stimulated the growth of human TF-1 cells suggesting that the seed-produced GM-CSF alone and in fusion with the rice glutelin peptide was stable and biologically active. Furthermore, native tobacco seed extracts inhibited the activity of E. coli-derived GM-CSF in this cytokine-dependent cell line. The seeds of F1 generation plants retained the biological activity of human GM-CSF protein indicating that the human coding sequence was stably inherited. The feasibility of oral delivery of such stable seed-produced cytokines is discussed.  相似文献   

17.
Magainin‐2 (MAG2) is a polycationic antimicrobial peptide isolated from the skin of the African clawed frog Xenopus laevis. It has a wide spectrum of antimicrobial activities against gram‐positive and gram‐negative bacteria, fungi, and induces osmotic lysis of protozoa. MAG2 also possesses antiviral and antitumoral properties. These activities make this peptide a promising candidate for therapeutic applications. Recombinant expression systems are necessary for the affordable production of large amounts of the biologically active peptide. In this work, MAG2 has been cloned to the N‐terminal of a family III carbohydrate‐binding module fused to the linker sequence (LK‐CBM3) from Clostridium thermocellum; a formic acid recognition site was introduced between the two modules for chemical cleavage of the peptide. The recombinant protein MAG2‐LK‐CBM3 was expressed in Escherichia coli BL21 (DE3) and MAG2 was successfully cleaved and purified from the fusion partner LK‐CBM3. Its functionality was confirmed by testing its activity against gram‐negative bacteria. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

18.
Atherosclerosis is a pathology leading to cardiovascular diseases with high epidemiologic impact; thus, new therapies are required to fight this global health issue. Immunotherapy is a feasible approach to treat atherosclerosis and given that genetically engineered plants are attractive hosts for vaccine development; we previously proved that the plant cell is able to synthesize a chimeric protein called CTB:p210:CETPe, which is composed of the cholera toxin B subunit (CTB) as immunogenic carrier and target epitopes from the cholesteryl ester transfer protein (CETP461–476) and apolipoprotein B100 (p210). Since CTB:p210:CETPe was expressed in tobacco at sufficient levels to evoke humoral responses in mice, its expression in carrot was explored in the present study looking to develop a vaccine in a safe host amenable for oral delivery; avoiding the purification requirement. Carrot cell lines expressing CTB:p210:CETPe were developed, showing accumulation levels up to 6.1 µg/g dry weight. An immunoblot analysis revealed that the carrot-made protein is antigenic and an oral mice immunization scheme led to evidence on the immunogenic activity of this protein; revealing its capability of inducing serum IgG responses against p210 and CETP epitopes. This study represents a step forward in the development of an attractive oral low-cost vaccine to treat atherosclerosis.  相似文献   

19.
We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.  相似文献   

20.
The recent widespread application of Cre/loxP technology has resulted in a new generation of conditional animal models that can better recapitulate many salient features of human disease. These models benefit from the ability to monitor the expression and functionality of Cre protein. We have generated a conditional (Cre/loxP dependent) LacZ reporter rat (termed the LacZ541 rat) to monitor Cre in transgenic rats. When LacZ541 rats were bred with another transgenic rat line expressing Cre recombinase under the control of the CAG promoter, LacZ/Cre double transgenic embryos displayed ubiquitous expression of LacZ, and when LacZ541 rats were bred with transgenic rats expressing Cre/loxP‐dependent oncogenic H‐ or K‐ras, LacZ was expressed in the lesions resulting from the activation of the oncogene. The LacZ541 rat enables evaluation of the performance of Cre‐expressing systems which are based upon transgenic rats or somatic gene transfer vectors and provides efficient and simple lineage marking. genesis 51:268–274. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号