首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Cathepsins have been found to have important physiological roles. The implication of cathepsin L in various types of cancers is well established. In a search for selective cathepsin L inhibitors as anticancer agents, a series of 2-cyanoprrolidine peptidomimetics, carrying a nitrile group as warhead, were designed. Two series of compounds, one with a benzyl moiety and a second with an isobutyl moiety at P(2) position of the enzyme were synthesized. The synthesized compounds were evaluated for inhibitory activity against human cathepsin L and cathepsin B. Although, none of the compounds showed promising inhibitory activity, (E)N-{(S)1-[(S)2-cyano-1-pyrrolidinecarbonyl]-3-methylbutyl}-2,3-diphenylacrylamide (24) with an isobutyl moiety at P(2) was found to show selectivity as a cathepsin L inhibitor (Ki 5.3 microM for cathepsin L and Ki > 100 microM for cathepsin B). This compound could act as a new lead for the further development of improved inhibitors within this inhibitor type.  相似文献   

2.
Cathepsins have been found to have important physiological roles. The implication of cathepsin L in various types of cancers is well established. In a search for selective cathepsin L inhibitors as anticancer agents, a series of 2-cyanoprrolidine peptidomimetics, carrying a nitrile group as warhead, were designed. Two series of compounds, one with a benzyl moiety and a second with an isobutyl moiety at P2 position of the enzyme were synthesized. The synthesized compounds were evaluated for inhibitory activity against human cathepsin L and cathepsin B. Although, none of the compounds showed promising inhibitory activity, (E)N-{(S)1-[(S)2-cyano-1-pyrrolidinecarbonyl]-3-methylbutyl}-2,3-diphenylacrylamide (24) with an isobutyl moiety at P2 was found to show selectivity as a cathepsin L inhibitor (Ki 5.3 μM for cathepsin L and Ki > 100 μM for cathepsin B). This compound could act as a new lead for the further development of improved inhibitors within this inhibitor type.  相似文献   

3.
A series of thiosemicarbazone analogs based on the benzophenone, thiophene, pyridine, and fluorene molecular frameworks has been prepared by chemical synthesis and evaluated as small-molecule inhibitors of the cysteine proteases cathepsin L and cathepsin B. The two most potent inhibitors of cathepsin L in this series (IC(50)<135 nM) are brominated-benzophenone thiosemicarbazone analogs that are further functionalized with a phenolic moiety (2 and 6). In addition, a bromo-benzophenone thiosemicarbazone acetyl derivative (3) is also strongly inhibitory against cathepsin L (IC(50)=150.8 nM). Bromine substitution in the thiophene series results in compounds that demonstrate only moderate inhibition of cathepsin L. The two most active analogs in the benzophenone thiosemicarbazone series are highly selective for their inhibition of cathepsin L versus cathepsin B.  相似文献   

4.
Cathepsins have emerged as promising molecular targets in a number of diseases such as Alzeimer’s, inflammation and cancer. Elevated cathepsin’s levels and decreased cellular inhibitor concentrations have emphasized the search for novel inhibitors of cathepsins. The present work is focused on the design and synthesis of some acetophenone phenylhydrazone based pyrazole derivatives as novel non peptidyl inhibitors of cathepsins B, H and L. The synthesized compounds after characterization have been explored for their inhibitory potency against cathepsins B, H and L. The results show that some of the synthesized compounds exhibit anti-catheptic activity with Ki value of the order of 10−10 M. Differential inhibitory effects have been observed for cathepsins B, H and L. Cathepsin L is inhibited more pronounced than cathepsin B and cathepsin H in that order.  相似文献   

5.
Cathepsin L is a cysteine protease that is upregulated in a variety of malignant tumors and plays a significant role in cancer cell invasion and migration. It is an attractive target for the development of small-molecule inhibitors, which may prove beneficial as treatment agents to limit or arrest cancer metastasis. We have previously identified a structurally diverse series of thiosemicarbazone-based inhibitors that incorporate the benzophenone and thiochromanone molecular scaffolds. Herein we report an important extension of this work designed to explore fused aryl–alkyl ring molecular systems that feature nitrogen atom incorporation (dihydroquinoline-based) and carbon atom exclusivity (tetrahydronaphthalene-based). In addition, analogues that contain oxygen (chromanone-based), sulfur (thiochroman-based), sulfoxide, and sulfone functionalization have been prepared in order to further investigate the structure–activity relationship aspects associated with these compounds and their ability to inhibit cathepsins L and B. From this small-library of 30 compounds, five were found to be strongly inhibitory (IC50 <500 nM) against cathepsin L with the most active compound (7-bromodihydroquinoline thiosemicarbazone 48) demonstrating an IC50 = 164 nM. All of the compounds evaluated were inactive (IC50 >10,000 nM) as inhibitors of cathepsin B, thus establishing a high degree (>20-fold) of selectivity (cathepsin L vs. cathepsin B) for the most active cathepsin L inhibitors in this series.  相似文献   

6.
Cathepsin S is a potential target of autoimmune disease. A series of proline derived compounds were synthesized and evaluated as cathepsin S inhibitors. We discovered potent cathepsin S inhibitors through structure–activity relationship studies of proline analogues. In particular, compound 19-(S) showed promising in vitro/vivo pharmacological activities and properties as a selective cathepsin S inhibitor.  相似文献   

7.
 During a differential display-based screen for developmentally regulated genes in zebrafish, we have isolated a cDNA for zebrafish cathepsin L, termed catL. The gene shows abundant expression in the anteriormost cells of the head process which give rise to the polster and later to the hatching gland. Expression of catL persists in these tissues until hatching. catL thus provides a useful marker for very anterior mesendodermal structures in zebrafish. Received: 23 September 1996/Accepted: 29 October 1996  相似文献   

8.
A series of our previously described BH3 peptide mimetics derived from Bim-BH3 domain core region were found to exhibit weak to potent PTP1B binding affinity and inhibitory activities via target-based drug screening. Among these compounds, a 12-aa Bim-BH3 core sequence peptide conjugated to palmitic acid (SM-6) displayed good PTP1B binding affinity (KD?=?8.38?nmol/L), inhibitory activity (IC50?=?1.20?μmol/L) and selectivity against other PTPs (TCPTP, LAR, SHP-1 and SHP-2). Furthermore, SM-6 promoted HepG2 cell glucose uptake and inhibited the expression of PTP1B, indicating that SM-6 could improve the insulin resistance effect in the insulin-resistant HepG2 cell model. These results may indicate a new direction for the application of BH3 peptide mimetics and promising PTP1B peptide inhibitors could be designed and developed based on SM-6.  相似文献   

9.
A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K i) in the low micromolar range (3–60 µM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4–80 µM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol−1 atom−1 (compound Nequimed176) is highlighted as a novel non-peptidic, non-covalent cruzain inhibitor as a trypanocidal agent candidate for optimization.  相似文献   

10.
A small library of peptide amides was designed to profile the cathepsin L active site. Within the cathepsin family of cysteine proteases, the first round of selection was on cathepsin L and cathepsin B, and then selected hits were further evaluated for binding to cathepsin K and cathepsin S. Five highly selective sequences with submicromolar affinities towards cathepsin L were identified. An acyloxymethyl ketone warhead was then attached to these sequences. Although these original irreversible inhibitors inactivate cathepsin L, it appears that the nature of the warhead drastically impact the selectivity profile of the resulting covalent inhibitors.  相似文献   

11.
Human cathepsin B is a cysteine protease with many house-keeping functions, such as intracellular proteolysis within lysosomes. Its increased activity and expression have been strongly associated with many pathological processes, including cancers. We present here the design and synthesis of novel derivatives of nitroxoline as inhibitors of cathepsin B. These were prepared either by omitting the pyridine part, or by modifying positions 2, 7, and 8 of nitroxoline. All compounds were evaluated for their ability to inhibit endopeptidase and exopeptidase activities of cathepsin B. For the most promising inhibitors, the ability to reduce extracellular and intracellular collagen IV degradation was determined, followed by their evaluation in cell-based in vitro models of tumor invasion. The presented data show that we have further defined the structural requirements for cathepsin B inhibition by nitroxoline derivatives and provided additional knowledge that could lead to non-peptidic compounds with usefulness against tumor progression.  相似文献   

12.
Two new triterpenoids, 3β‐hydroxyoleana‐11,13(18)‐diene‐28,30‐dioic acid ( 1 ) and 3‐oxooleana‐11,13(18)‐diene‐28,30‐dioic acid ( 2 ), one novel triterpenoid glycoside, 3βO‐(6′‐O‐methyl‐β‐d‐ glucuronopyranosyl)oleana‐11,13(18)‐dien‐28‐oic acid ( 3 ) along with six known compounds ( 4  –  9 ) were isolated from the stem bark of Aralia armata (Wall .) Seem . Their structures were elucidated through extensive spectroscopic methods. The herbicidal activities of these compounds against Bidens pilosa L., an invasive weed in P. R. China, were evaluated. Compounds 3 , 5, and 6 exhibited more significant herbicidal activities on B. pilosa than the positive‐control pendimethalin. Their possible use as herbicidal chemicals or model compounds deserved more attention. The effects of compounds 1  –  9 on Spodoptera litura cultured cell line Sl‐1 cell proliferation and its morphology were also evaluated. The results indicated that compounds 1  –  5 affected Sl‐1 cell proliferation. Compound 3 showed more obvious proliferation inhibition activities on Sl‐1 cell than the positive‐control rotenone. With regard to the effect on morphology, compound 2 significantly changed Sl‐1 cell, resulting in cell blebbing and vacuole forming. Triterpenoids aremedicinally and agriculturally important, and cytotoxicity of the three new compounds 1  –  3 deserved further studies.  相似文献   

13.
1. Two cysteine proteinase inhibitors, I-T (Mr = 29,000) and I-S (Mr = 10,700), were isolated from rabbit skeletal muscle by means of succesive extraction with a neutral buffer solution, precipitation at pH 3.7, acetone fractionation and gel permeation on Sephadex G-75. 2. I-T is a formed trimer of a monomeric inhibitor, I-M (Mr = 10,500), through disulfide bonds. 3. I-S is almost completely stable between pH 3 and 8, while I-M is unstable in the same pH range. 4. I-M acts most effectively towards cathepsins H and L, showing moderate activity towards cathepsin B and only weak activity towards papain. I-S acts most effectively towards cathepsin L, followed by, in decreasing order, cathepsin H, cathepsin B and papain.  相似文献   

14.
Two new triterpenoids, 30‐hydroxylup‐20(29)‐ene 3β‐caffeate ( 1 ) and 24‐nor‐friedelan‐6α,10‐dihydroxy‐1,2‐dioxo‐4,7‐dien‐29‐oic acid ( 2 ), together with eight known compounds 3 – 10 , were isolated from the roots of Celastrus stylosus. The structures of these compounds were elucidated on the basis of spectroscopic analyses. To the best of our knowledge, this represents the first study on the chemical constituents of C. stylosus. The antiproliferative activities of the triterpenoids against six human cancer cell lines (PANC‐1, A549, PC‐3, HepG2, SGC‐7901, and HCCLM3) were evaluated. Compounds 3, 4 , and 10 exhibited comparable activities against PC‐3 and HCCLM3 cell lines as the positive control taxol.  相似文献   

15.
N Marks  M J Berg  R C Makofske  W Danho 《Peptides》1990,11(4):679-682
Cystatin domains or homologous sequences were synthesized and tested as inhibitors of papain, and rat brain cathepsins B and L. These domains included: I, an enzyme substrate binding site containing a -GG- cleavage site (YGGFL); II, known cystatin consensus sequences (-QVVAG- or -QLVSG-); and III, the proposed ancillary site for binding of chicken cystatin to papain (-IPWLN-). A Domain II analog QVVAG(K-NH2) inhibited cathepsin L and papain with Ki 1-4 X 10(-4) M but was inactive towards cathepsin B. A peptide containing Domains I and II, YGGFL-QVVAG(K-NH2), inhibited papain and cathepsin B with Ki 10(-4)-10(-5) M, and cathepsin L with Ki 10(-6) M. The presence of Domain III in the analog YGGFL-QVVAG-IPWLN(K-NH2) resulted in a 10-fold increase in potency towards papain. These data demonstrated that putative cystatin domains are: 1) probably proximal in the intact cystatins; 2) can be linked directly to each other to yield smaller peptides active as inhibitors; 3) showed some specificity towards the three cysteine proteinases.  相似文献   

16.
A novel dioxo-triazine series of cathepsin K inhibitors was identified from HTS. A rapid exploratory programme led to the discovery of potent and selective cathepsin K inhibitors, typified by compound 24 which displayed IC50 values of 17 nM against catK and >10,000 nM in catL, catB and catS assays.  相似文献   

17.
A series of chalcone derivatives, 1 – 15 , were prepared by Claisen? Schmidt condensation and evaluated for their cytotoxicities on tumor cell lines and also against proteolytic enzymes such as cathepsins B and K. Of the compounds synthesized, (E)‐3‐(3,4‐dimethoxyphenyl)‐1‐phenylprop‐2‐en‐1‐one ( 12 ), (E)‐3‐(4‐chlorophenyl)‐1‐phenylprop‐2‐en‐1‐one ( 13 ), (E)‐3‐(4‐methoxyphenyl)‐1‐phenylprop‐2‐en‐1‐one ( 14 ), and (E)‐3‐(4‐nitrophenyl)‐1‐phenylprop‐2‐en‐1‐one ( 15 ) showed significant cytotoxicities. The most effective compound was 15 , which showed high cytotoxic activity with an IC50 value lower than 1 μg/ml, and no selectivity on the tumor cells evaluated. Substituents at C(4) of ring B were found to be essential for cytotoxicity. In addition, it was also demonstrated that some of these chalcones are moderate inhibitors of cathepsin K and have no activity against cathepsin B.  相似文献   

18.
The protease activity of cultured normal human skin fibroblasts was studied using the synthetic fluorigenic peptides, the modified protein 4-methylumbelliferyl-casein, the thiol inhibitors and the affinity for concanavalin A-Sepharose. The majority of the activity to N-benzyloxycarbonyl-L-phenylalanyl-L-arginyl-7-amido-4-methyl-coumarin and N-a-benzyloxycarbonyl-L-arginyl-arginyl-7-amido-4-methylcoumarin had a pH optimum of 6.0, and was thiol-dependent and inhibited by leupeptin and antipain. The activity toward N-benzyloxycarbonyl-L-phenylalanyl-L-arginyl-7-amido-4-methylcoumarin represents both cathepsin B and cathepsin L, whereas the activity towards 4-methylumbelliferyl-casein represent only cathepsin L. Cathepsin H could not be detected when assayed with L-arginine-7-amido-4-methylcoumarin substrate. Cathepsin D was present in comparatively small amounts when assayed with 4-methylumbelliferyl-casein. Activity towards 4-methylumbelliferyl-casein had pH optima at 3 and 6 and was stimulated by dithiothreitol. A proportion of the activity at pH 6.0 was not dependent on thiols and not inhibited by leupeptin, and had the general characteristics of a carboxyl proteinase. Over 70 per cent of the activity was in the lysosomal fraction and showed structure-linked latency. All the detectable protein emerged from the immobilized concanavalin A column and the fractions eluted by alpha-methyl-D-mannoside were significantly hydrolysed the synthetic peptides. Only that fraction which bound to concanavalin A was active towards 4-methylumbelliferyl-casein. Cathepsin B had no affinity for concanavalin A-Sepharose due to the absence of glycoprotein content, unlike cathepsin L which showed a strong affinity for concanavalin A-Sepharose.  相似文献   

19.
Phytochemical investigation on the barks of Betula platyphylla var. japonica (Betulaceae) was carried out, resulting in the isolation and identification of three new triterpenoids, 27‐Ocis‐caffeoylcylicodiscic acid ( 1 ), 27‐Ocis‐feruloylcylicodiscic acid ( 2 ), and 27‐Ocis‐caffeoylmyricerol ( 3 ), along with six known triterpenoids, obtusilinin ( 4 ), winchic acid ( 5 ), 27‐Otrans‐caffeoylcylicodiscic acid ( 6 ), uncarinic acid E ( 7 ), myriceric acid B ( 8 ), and 3‐Otrans‐caffeoyloleanolic acid ( 9 ). The structures of the new compounds were elucidated by extensive spectroscopic methods, including 1D‐ and 2D‐NMR, and HR‐ESI‐MS. All of the isolated compounds were evaluated for cytotoxicity against four human tumor cell lines (A549, SK‐OV‐3, SK‐MEL‐2, and Bt549). Compounds 2 , 6 , 8 , and 9 exhibited potent cytotoxicity against all of the tumor cells tested (IC50 < 10.0 μm ), while compounds 3 , 4 , 5 , and 7 showed moderate cytotoxicity against all of the tumor cells tested (IC50 < 20.0 μm ).  相似文献   

20.
Falcipains (FP) of Plasmodium falciparum are important virulence factors marked as potential targets for antimalarial drug discovery. In this study, the previously uncharacterized fp2B (PF11_0161) was shown to be highly expressed as an active enzyme during the erythrocytic stage. With three related proteases in the FP family and the existence of human homologues, it is prudent to identify clusters of residues unique to the parasite proteases that can be targeted selectively for drug design. Using bioinformatic tools, we have carefully mapped out a highly conserved and unique region constituted by I85, S149, and A151 in the plasmodial proteases that can influence the development of compounds capable of inhibiting the entire FP family. Taking drug interactions with the human homologues into consideration, these residues in FP2B were replaced with the cognate residues found in human cathepsin L (catL) for evaluation. Despite the high sequence similarity between the FP2 isozymes (97.5%), FP2B is found to be more tolerant to amino acid substitution at position 149 than FP2A. This structural disparity implied that residues mediating peptide substrate interactions are not fully conserved across the FP family and warrant attention in the design and evaluation of protease inhibitors focused on the FPs. The simultaneous substitution of the neighboring residues (I85 or A151) rendered the double mutants (S149A/I85M and S149A/A151D) completely inactive. Significantly, the mutations did not result in 'catL-like' specificity, suggesting that substrate-based inhibitors could be rationally designed against these important parasite-specific structural determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号