首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conspecific populations of plants in their native range are expected to show considerable variation due to long‐term ecological and evolutionary factors. We investigated the levels of secondary metabolites in Heracleum including Hpersicum a valuable medicinal plant to depict the magnitude of cryptic variation and the potential significance of novel chemical traits. The essential oil volatiles from fruits of 34 populations from different species of Heracleum in Iranian distribution range and a native of Hsphondylium and an invasive population of Hpersicum from Norway were analyzed with GC/MS. Out of 48 compounds identified, a contrasting pattern in the level of two major compounds, octyl acetate and hexyl butyrate was found among all studied species. Interestingly, a significant geographic pattern was observed; the hexyl butyrate/octyl acetate ratio was high (range 1.8 – 3.2) in the northwestern Iranian populations of Hpersicum compared to that in northern and central populations (range 0.3 – 0.9). Four populations from Zagros mountains also exhibited a unique composition. Anethole was found in two populations of Hpersicum from central Zagros, which has not been previously reported for essential oil of fruits of Heracleum so far. The results suggest high efficiency of large scale sampling from distribution range of species in identifying novel compounds. The unique pattern of geographic structuring also provides novel information to unravel cryptic variation in Heracleum.  相似文献   

2.
The composition of 21 essential‐oil samples isolated from Helichrysum italicum collected in seven locations of Elba Island (Tuscany, Italy), characterized by different soil types, during three different periods (January, May, and October 2010) was determined by GC‐FID and GC/EI‐MS analyses. In total, 115 components were identified, representing 96.8–99.8% of the oil composition. The oils were characterized by a high content of oxygenated monoterpenes (38.6–62.7%), while monoterpene and sesquiterpene hydrocarbons accounted for 2.3–41.9 and 5.1–20.1% of the identified constituents, respectively. The main oxygenated derivatives were nerol (2.8–12.8%) and its ester derivative neryl acetate (5.6–45.9%). To compare the chemical variability of the species within Elba Island and between the island and other localities within the Mediterranean area, studied previously, multivariate statistical analysis was performed. The results obtained showed a difference in the composition of the essential oils of H. italicum from Elba Island, mainly due to the environment where the plant grows, and, in particular, to the soil type. These hypotheses were further confirmed by the comparison of these oils with essential oils obtained from H. italicum collected on other islands of the Tuscan archipelago.  相似文献   

3.
The chemical compositions of 25 Corsican Limbarda crithmoides ssp. longifolia essential oils were investigated for the first time using GC‐FID, GC/MS, and NMR analyses. Altogether, 65 compounds were identified, accounting for 90.0–99.3% of the total oil compositions. The main components were p‐cymene ( 1 ; 15.1–34.6%), 3‐methoxy‐p‐cymenene ( 4 ; 11.8–28.5%), 2,5‐dimethoxy‐p‐cymenene ( 5 ; 5.9–16.4%), thymol methyl ether ( 6 ; 1.3–14.9%), α‐phellandrene ( 2 ; 0.9–11.9%), and α‐pinene ( 3 ; 0.2–13.4%). The chemical variability of the Corsican oil samples was studied using multivariate statistical analysis, which allowed the discrimination of two main clusters. A direct correlation between the water salinities of the plant locations and the chemical compositions of the L. crithmoides essential oils was evidenced. Indeed, essential oils rich in 1 (30.4–34.6%) were found in samples growing in the wetlands of the southern oriental coast, which exhibit high salinity levels (24.4±0.2–33.9±0.2 ppt), and essential oils with lower contents of 1 (15.1–27.3%) were isolated form samples growing in the wetlands of northern Corsica, which exhibit lower salinity levels (10.90±0.20–15.47±0.15 ppt). The antioxidant potential of L. crithmoides essential oil was also investigated, by assessing the DPPH.‐ and ABTS.+‐scavenging activities and the reducing power of ferric ions, and was found to be interesting. Moreover, using bioassay‐guided fractionation of the essential oil, a higher antioxidant activity was obtained for the oxygenated fraction and both ester and alcohol subfractions.  相似文献   

4.
Chemical compositions of essential oils from 17 citron cultivars were studied using GC and GC/MS. To the best of our knowledge, chemical compositions of peel and petitgrain oils from seven of them were reported for the first time. Combined analysis of peel and petitgrain essential oils led to the identification of 37 components (amounting to 98.2–99.9% of the total oil) and 42 components (97.0–99.9%), respectively. Statistical analysis was applied to identify possible relationships between citron cultivars. The levels of seven components, i.e., limonene, β‐pinene, γ‐terpinene, neral, geranial, nerol, and geraniol, indicated that the cultivars could be classified in four main chemotypes for peel and petitgrain oils. Chemotaxonomic investigations were carried out to establish relations between the morphological characteristics of citron cultivars and their corresponding oil compositions.  相似文献   

5.
The essential‐oil compositions of one Croatian and three Serbian populations of Juniperus deltoides R.P.Adams have been determined by GC/MS analysis. In total, 147 compounds were identified, representing 97.3–98.3% of the oil composition. The oils were dominated by monoterpenes, which are characteristic components for the species of the section Juniperus. Two monoterpenes, α‐pinene and limonene, were the dominant constituents, with a summed‐up average content of 49.45%. Statistical methods were used to determine the diversity of the terpene classes and the common terpenes between the newly described J. deltoides populations from Serbia and Croatia. Only reports on several specimens from this species have been reported so far, and there are no studies that treat population diversity. Cluster analysis of the oil contents of 21 terpenes showed high correlation with the geographical distribution of the populations, separating the Croatian from the Serbian populations. The comparison of the essential‐oil compositions obtained in the present study with literature data, showed the separation of J. deltoides and J. oxycedrus ssp. oxycedrus from the western Mediterranean region.  相似文献   

6.
The essential‐oil composition of 60 individual trees of Juniperus phoenicea L. from four Tunisian populations in three different periods were investigated by GC and GC/MS analyses. 59 Compounds were identified in the oils, and a relatively high variation in their contents was found. All the oils were dominated by the terpenic hydrocarbon fraction, and the main component was α‐pinene (20.28–40.86%). The results of the oil compositions were processed by hierarchical clustering and principal component analysis (PCA) allowing establishing four groups of essential‐oils differentiated by one compound or more. Pattern of geographic variation in essential‐oil composition indicated that individuals from the continental site (Makthar) were clearly distinguished from those from littoral localities (Tabarka, Hawaria, and Rimel).  相似文献   

7.
The chemical composition of 48 leaf oil samples isolated from individual plants of Cleistopholis patens (Benth .) Engl. et Diels harvested in four Ivoirian forests was investigated by GC‐FID (determination of retention indices), GC/MS, and 13C‐NMR analyses. The main components identified were β‐pinene (traces–59.1%), sabinene (traces–54.2%), (E)‐β‐caryophyllene (0.3–39.3%), linalool (0.1–38.5%), (E)‐β‐ocimene (0.1–33.2%), germacrene D (0.0–33.1%), α‐pinene (0.1–32.3%), and germacrene B (0–21.2%). The 48 oil compositions were submitted to hierarchical clustering and principal components analyses, which allowed the distinction of three groups within the oil samples. The oil composition of the major group (Group I, 33 samples) was dominated by (E)‐β‐caryophyllene and linalool. The oils of Group II (eight samples) contained mainly β‐pinene and α‐pinene, while those of Group III (seven samples) were dominated by sabinene, limonene, and β‐phellandrene. Moreover, the compositions of the Ivoirian C. patens leaf oils differed from those of Nigerian and Cameroonian origins.  相似文献   

8.
The composition of 55 samples of essential oil isolated from the aerial parts of wild growing Myrtus communis L. harvested in 16 locations from East to West Algeria were investigated by GC (determination of retention indices) and 13C‐NMR analyses. The essential oils consisted mainly of monoterpenes, α‐pinene (27.4–59.2%) and 1,8‐cineole (6.1–34.3%) being the major components. They were also characterized by the absence of myrtenyl acetate. The compositions of the 55 oils were submitted to k‐means partitioning and principal component analysis, which allowed the distinction of two groups within the oil samples, which could be subdivided into two subgroups each. Groups I (78% of the samples) and II were differentiated on the basis of the contents of α‐pinene, linalool, and linalyl acetate. Subgroups IA and IB could be distinguished by their contents of α‐pinene and 1,8‐cineole. Subgroups IIA and IIB differed substantially in their contents of 1,8‐cineole and limonene. All the samples contained 3,3,5,5,8,8‐hexamethyl‐7‐oxabicyclo[4.3.0]non‐1(6)‐ene‐2,4‐dione (up to 4.9%).  相似文献   

9.
Mexican oregano (Lippia graveolens) is an important aromatic plant, mainly used as flavoring and usually harvested from non‐cultivated populations. Mexican oregano essential oil showed important variation in the essential‐oil yield and composition. The composition of the essential oils extracted by hydrodistillation from 14 wild populations of L. graveolens growing along an edaphoclimatic gradient was evaluated. Characterization of the oils by GC‐FID and GC/MS analyses allowed the identification of 70 components, which accounted for 89–99% of the total oil composition. Principal component and hierarchical cluster analyses divided the essential oils into three distinct groups with contrasting oil compositions, viz., two phenolic chemotypes, with either carvacrol (C) or thymol (T) as dominant compounds (contents >75% of the total oil composition), and a non‐phenolic chemotype (S) dominated by oxygenated sesquiterpenes. While Chemotype C was associated with semi‐arid climate and shallower and rockier soils, Chemotype T was found for plants growing under less arid conditions and in deeper soils. The plants showing Chemotype S were more abundant in subhumid climate. High‐oil‐yield individuals (>3%) were identified, which additionally presented high percentages of either carvacrol or thymol; these individuals are of interest, as they could be used as parental material for scientific and commercial breeding programs.  相似文献   

10.
The chemical composition of the essential oils isolated from the aerial parts of Anthemis pignattiorum Guarino, Raimondo & Domina and A. ismelia Lojac . and the aerial parts and flowers of Anthemis cupaniana Tod . ex Nyman , three endemic Sicilian species belonging to the section Hiorthia, was determined by GC‐FID and GC/MS analyses. (Z)‐Muurola‐4(14),5‐diene (27.3%) was recognized as the main constituent of the A. pignattiorum essential oil, together with isospathulenol (10.6%), sabinene (7.7%), and artemisyl acetate (6.8%), while in the oil obtained from the aerial parts of A. ismelia, geranyl propionate (8.8%), bornyl acetate (7.9%), β‐thujone (7.8%), neryl propionate (6.5%), and τ‐muurolol (6.5%) prevailed. α‐Pinene was the main compound of both the aerial part and flower oils of A. cupaniana (18.4 and 13.2%, resp.). Also noteworthy are the considerable amounts of artemisyl acetate (12.7%) and β‐thujone (11.8%) found in the oil from the aerial parts and those of tricosane (9.8%) and sabinene (7.6%) evidenced in the flower oil. Furthermore, an update on the main compounds identified in the essential oils of all the Anthemis taxa studied so far was presented, and cluster analyses were carried out, to compare the essential oils of these taxa.  相似文献   

11.
Hydrodistilled essential oils of 21 accessions of Ocimum basilicum L. belonging to two different varieties (var. purpurascens and var. dianatnejadii) from Iran were characterized by GC‐FID and GC/MS analyses. The oil yield was found to be between 0.6 and 1.1% (v/w). In total, 49 compounds, accounting for 96.6–99.7% of the oil compositions, were identified. Aromatic compounds, represented mainly by methyl chavicol (33.6–49.1%), and oxygenated monoterpenes, represented by linalool (14.4–39.3%), were the main components in all essential oils. Monoterpene hydrocarbons were present in the essential oils of all accessions of the purpurascens variety, whereas they were completely absent in those of the dianatnejadii variety, indicating that monoterpene hydrocarbons might be considered as marker constituents of the purpurascens variety. The chemotaxonomic value of the essential‐oil compositions was discussed according to the results of the cluster analysis (CA). The CA showed a clear separation of the O. basilicum var. purpurascens accessions and the O. basilicum var. dianatnejadii accessions, although the data showed no major chemotype variation between the studied varieties. Indeed, the CA revealed only one principal chemotype (methyl chavicol/linalool) for both varieties. In conclusion, GC/MS analyses in combination with CA showed to be a flexible and reliable method for the characterization of the chemical profiles of different varieties of Ocimum basilicum L.  相似文献   

12.
Hydrodistillated essential oils of Ziziphora clinopodioides ssp. rigida from nine populations of the Lashgardar protected region (Hamedan Province, Iran) were analyzed by using GC and GC/MS techniques to determine the intraspecific chemical variability. Altogether, 39 compounds were identified in the oils, and a relatively high variation in their contents was found. The main constituents of the essential oils were pulegone (0.7–44.5%), 1,8‐cineole (2.1–26.0%), neomenthol (2.5–22.5%), 4‐terpineol (0.0–9.9%), 1‐terpineol (0.0–13.2%), neomenthyl acetate (0.0–7.1%), and piperitenone (0.0–5.4%). For the determination of the chemotypes and the intraspecific chemical variability, the essential oil components were subjected to cluster analysis (CA). The five different chemotypes characterized were Chemotype I (pulegone/neomenthol), Chemotype II (pulegone), Chemotype III (pulegone/1,8‐cineole), Chemotype IV (neomenthol), and Chemotype V (1,8‐cineole/4‐terpineol).  相似文献   

13.
The chemical compositions of the essential oils obtained by hydrodistillation of the aerial parts of Croatian Eryngium alpinum L. and E. amethystinum L. were characterized by GC‐FID and GC/MS analyses. The main components identified were the sesquiterpene β‐caryophyllene (19.7%) in the oil of E. amethystinum and the oxygenated sesquiterpene caryophyllene oxide (21.6%) in the oil of E. alpinum. Overall, 32 and 35 constituents were detected in the essential oils of the aerial parts of E. alpinum and E. amethystinum, respectively, representing 92.4 and 93.1% of the total oil compositions. The essential oils of both Eryngium species were proved to reduce the number of lesions in the local host Chenopodium quinoa infected with cucumber mosaic virus and an associated satellite. This is the first investigation of antiphytoviral activity of essential oils of Eryngium species.  相似文献   

14.
Extracts of mature dark blue and white berries from two Tunisian Myrtus communis morphs growing at the same site were assessed for their essential‐oil and fatty‐acid compositions, phenolic contents, and antioxidant activities. The GC and GC/MS analyses of the essential oils allowed the identification of 33 constituents. The oils from the dark blue fruits showed high percentages of α‐pinene (11.1%), linalool (11.6%), α‐terpineol (15.7%), methyl eugenol (6.2%), and geraniol (3.7%). Myrtenyl acetate (20.3%) was found to be the major compound in the oils from white berries. GC Analysis of the pericarp and seed fatty acids showed that the polyunsaturated fatty acids constituted the major fraction (54.3–78.1%). The highest percentages of linoleic acid (78.0%) and oleic acid (20.0%) were observed in the seeds and the pericarps of the white fruits, respectively. The total phenol, flavonoid, and flavonol contents and the concentration of the eight anthocyanins, identified by HPLC analysis, were significantly higher in the dark blue fruits. All extracts showed a substantial antioxidant activity, assessed by the free radical‐scavenging activity and the ferric reducing power, with the dark blue fruit extracts being more effective.  相似文献   

15.
Thymus sect. Teucrioides comprises three species, namely, T. hartvigii, T. leucospermus, and T. teucrioides, distributed in Greece and Albania. The volatile constituents of all species of the section were obtained by hydrodistillation and investigated by GC‐FID and GC/MS analyses. Twenty populations were sampled and a total of 103 compounds were identified, representing 98.0–99.9% of the oil compositions. The oils were mainly characterized by high contents of monoterpene hydrocarbons (42.7–92.4%), with the exception of three oils for which oxygenated monoterpenes were the dominating constituents, viz., that of T. hartvigii ssp. macrocalyx, with linalool as main compound (89.2±0.5%), and those of T. hartvigii ssp. hartvigii and of one population of T. teucrioides ssp. candilicus, containing thymol as major component (46.4±3.1 and 38.2±3.9%, resp.). The most common compound in the oils of the 20 populations of the section was p‐cymene. Considerable variation was detected within and among populations, and seven chemotypes were distinguished, i.e., p‐cymene, linalool, p‐cymene/thymol, p‐cymene/γ‐terpinene, p‐cymene/borneol, p‐cymene/γ‐terpinene/borneol, and p‐cymene/linalool chemotypes. Different chemotypes may exist in the same population. Multivariate statistical analyses enabled the segregation of the oils within Thymus sect. Teucrioides into two groups, one consisting of the three subspecies of T. teucrioides and the second comprising the species T. hartvigii and T. leucospermus. A linalool‐rich chemotype, unique within the section, distinguished the oil of T. hartvigii ssp. macrocalyx from all other oils. The high oil content of p‐cymene and the preference for serpentine substrates render T. teucrioides species promising for future exploitation.  相似文献   

16.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

17.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

18.
The composition of 109 samples of essential oil isolated from the needles of Juniperus communis ssp. alpina growing wild in Corsica was investigated by GC (in combination with retention indices), GC/MS, and 13C‐NMR. Forty‐four compounds accounting for 86.7–96.7% of the oil were identified. The oils consisted mainly of monoterpene hydrocarbons, in particular, limonene (9.2–53.9%), β‐phellandrene (3.7–25.2%), α‐pinene (1.4–33.7%), and sabinene (0.1–33.6%). The 109 oil compositions were submitted to k‐means partitioning and principal component analysis, which allowed the distinction of two groups within the oil samples. The composition of the major group (92% of the samples) was dominated by limonene and β‐phellandrene, while the second group contained mainly sabinene beside limonene and β‐phellandrene.  相似文献   

19.
In an effort to develop local productions of aromatic and medicinal plants, a comprehensive assessment of the composition and biological activities of the essential oils (EOs) extracted from the aerial flowering parts of wild growing Lavandula stoechas L. collected from eleven different locations in northern Algeria was performed. The oils were characterized by GC‐FID and GC/MS analyses, and 121 compounds were identified, accounting for 69.88–91.2% of the total oil compositions. The eleven oils greatly differed in their compositions, since only 66 compounds were common to all oils. Major EO components were fenchone ( 2 ; 11.27–37.48%), camphor ( 3 , 1.94–21.8%), 1,8‐cineole ( 1 ; 0.16–8.71%), and viridiflorol ( 10 ; 2.89–7.38%). The assessed in vitro biological properties demonstrated that the DPPH‐based radical‐scavenging activities and the inhibition of the β‐carotene/linoleic acid‐based lipid oxidation differed by an eight‐fold factor between the most and the least active oils and were linked to different sets of molecules in the different EOs. The eleven EOs exhibited good antimicrobial activities against most of the 16 tested strains of bacteria, filamentous fungi, and yeasts, with minimum inhibitory concentrations (MICs) ranging from 0.16 to 11.90 mg/ml.  相似文献   

20.
A detailed analysis of Bupleurum fruticosum oil was carried out by combination of GC (RI), GC/MS, and 13C‐NMR analyses. After fractionation by column chromatography, 34 components accounting for 97.8% of the oils were identified. The main component was β‐phellandrene (67.7%), followed by sabinene (9.3%), and limonene (5.6%). The evolution of the chemical composition according to the stages of development of the plant was investigated as well as the composition of leaf, twig, and flower oils. A solvent‐free microwave extraction (SFME) of aerial parts was carried out and the composition of the extract compared with that of the essential oil. Finally, 57 oil samples isolated from aerial parts of individual plants, collected all around Corsica, were analyzed, and the data were submitted to statistical analysis. Although the contents of the main components varied, only one group emerged, accompanied with some atypical compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号