首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regenerative potential of mesenchymal stromal cells (MSC) holds great promise in using them for treatment of a wide range of debilitating diseases. Several types of culture media and systems have been used for large‐scale expansion of MSCs in vitro; however, the majority of them rely heavily on using foetal bovine serum (FBS)‐supplement for optimal cell proliferation. FBS‐based cultures pose the potential threat of spread of transmissible spongiform encephalopathy and bovine spongiform encephalopathy to MSCs and then to their recipients. A recent trend in cell culture is to change from serum‐use to serum‐free media (SFM). In this context, the current review focuses specifically on employment of various SFM for MSCs and discusses existences of various options with which to substitute FBS. In addition, we analyse MSC population growth kinetic patterns using various SFM for large‐scale production of MSCs.  相似文献   

2.
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell‐based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non‐invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)‐free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin‐based Cultispher®S microcarriers and xeno‐free culture medium for the expansion of umbilical cord matrix (UCM)‐derived MSC. This system enabled the production of 2.4 (±1.1) x105 cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)‐fold increase in cell number. The established protocol was then implemented in a stirred‐tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier‐based stirred culture system, using xeno‐free culture medium that suits the intrinsic features of UCM‐derived MSC represents an important step towards a GMP compliant large‐scale production platform for these promising cell therapy candidates.  相似文献   

3.
Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost‐effective manufacturing processes. Microcarriers enable the culture of anchorage‐dependent cells in stirred‐tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow‐derived MSC (hBM‐MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM‐MSC1 underwent more cumulative population doublings over three passages in comparison to hBM‐MSC2 and hBM‐MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM‐MSC expansion. HBM‐MSCs were successfully harvested and characterised, demonstrating hBM‐MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier‐based allogeneic cell therapy manufacture.  相似文献   

4.
Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale‐down and scale‐up become crucial in the development of robust cell‐culture processes. For successful scale‐up and scale‐down of cell culture operations, it is important to understand the scale‐dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:760–764, 2014  相似文献   

5.
Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr?) is an automated micro‐bioreactor system with miniature single‐use bioreactors with a 10–15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in‐line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr? resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr? was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr? system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:718–727, 2014  相似文献   

6.
The fields of regenerative medicine and tissue engineering require large‐scale manufacturing of stem cells for both therapy and recombinant protein production, which is often achieved by culturing cells in stirred suspension bioreactors. The rheology of cell suspensions cultured in stirred suspension bioreactors is critical to cell growth and protein production, as elevated exposure to shear stress has been linked to changes in growth kinetics and genetic expression for many common cell types. Currently, little is understood on the rheology of cell suspensions cultured in stirred suspension bioreactors. In this study, we present the impact of three common cell culture parameters, serum content, cell presence, and culture age, on the rheology of a model cell line cultured in stirred suspension bioreactors. The results reveal that cultures containing cells, serum, or combinations thereof are highly shear thinning, whereas conditioned and unconditioned culture medium without serum are both Newtonian. Non‐Newtonian viscosity was modeled using a Sisko model, which provided insight on structural mechanisms driving the rheological behavior of these cell suspensions. A comparison of shear stress estimated by using Newtonian and Sisko relationships demonstrated that assuming Newtonian viscosity underpredicts both mean and maximum shear stress in stirred suspension bioreactors. Non‐Newtonian viscosity models reported maximum shear stresses exceeding those required to induce changes in genetic expression in common cell types, whereas Newtonian models did not. These findings indicate that traditional shear stress quantification of cell or serum suspensions is inadequate and that shear stress quantification methods based on non‐Newtonian viscosity must be developed to accurately quantify shear stress.  相似文献   

7.
Anchorage‐dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large‐scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage‐dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single‐use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical‐Wheel? technology was evaluated for its potential to support scalable cell culture process development. Two anchorage‐dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow‐derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical‐Wheel bioreactors (PBS‐VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS‐VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS‐VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA‐DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS‐VW, and scale‐up was successfully carried out for two different microcarrier‐based cell cultures. Ultimately, the data herein generated demonstrate the potential of Vertical‐Wheel bioreactors as a new scalable biomanufacturing platform for microcarrier‐based cell cultures of complex biopharmaceuticals. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1600–1612, 2015  相似文献   

8.
Auto‐induction media containing glucose, lactose, and glycerol are a simple and efficient approach for high‐throughput protein expression in Escherichia coli with lac‐derived expression systems. Its principle is based on inducer exclusion between glucose and lactose, preventing the induction by lactose before the depletion of glucose. Isopropyl‐β‐d ‐1‐thiogalactopyranoside (IPTG)—at least in typically used millimolar concentrations—is thought to be unsuitable for this purpose since it can enter the cell by diffusion independently of inducer exclusion. In this study, using parallel batch cultivations in stirred‐tank bioreactors on a milliliter scale, we show that the induction by micromolar concentrations of IPTG is prevented in the presence of glucose. With up to 40 μM IPTG, full induction and heterologous protein expression start only after the depletion of glucose. Thus, auto‐induction is possible with either lactose or IPTG, and the expression greatly depends on the type and concentration of the inducer. The best expression of enhanced green fluorescent protein was achieved with 40 μM IPTG in stirred‐tank bioreactors on a milliliter scale. The IPTG‐based auto‐induction was also reproduced in shaking flasks. Therefore, IPTG can be used in auto‐induction media for protein expression in batch‐cultured E. coli. Furthermore, we show that acetate or arabinose can have significant effects on the auto‐induction mechanism.  相似文献   

9.
In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5–100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple—easy to assemble, easy to use, easy to clean—cell culture mini‐bioreactors for lab‐scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini‐bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini‐bioreactor were comparable to those observed for 6‐well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini‐bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini‐bioreactor. Biotechnol. Bioeng. 2013; 110: 1106–1118. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Effective clone selection is a crucial step toward developing a robust mammalian cell culture production platform. Currently, clone selection is done by culturing cells in well plates and picking the highest producers. Ideally, clone selection should be done in a stirred tank bioreactor as this would best replicate the eventual production environment. The actual number of clones selected for future evaluation in bioreactors at bench‐scale is limited by the scale‐up and operational costs involved. This study describes the application of miniaturized stirred high‐throughput bioreactors (35 mL working volume; HTBRs) with noninvasive optical sensors for clone screening and selection. We investigated a method for testing several subclones simultaneously in a stirred environment using our high throughput bioreactors (up to 12 clones per HTBR run) and compared it with a traditional well plate selection approach. Importantly, it was found that selecting clones solely based on results from stationary well plate cultures could result in the chance of missing higher producing clones. Our approach suggests that choosing a clone after analyzing its performance in a stirred bioreactor environment is an improved method for clone selection. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

11.
A novel milliliter‐scale stirred tank bioreactor was developed for the cultivation of mycelium forming microorganisms on a 10 milliliter‐scale. A newly designed one‐sided paddle impeller is driven magnetically and rotates freely on an axis in an unbaffled reaction vessel made of polystyrene. A rotating lamella is formed which spreads out along the reactor wall. Thus an enhanced surface‐to‐volume ratio of the liquid phase is generated where oxygen is introduced via surface aeration. Volumetric oxygen transfer coefficients (kLa) > 0.15 s?1 were measured. The fast moving liquid lamella efficiently prevents wall growth and foaming. Mean power consumption and maximum local energy dissipation were measured as function of operating conditions in the milliliter‐scale stirred tank bioreactor (V = 10 mL) and compared to a standard laboratory‐scale stirred tank bioreactor with six‐bladed Rushton turbines (V = 2,000 mL). Mean power consumption increases with increasing impeller speed and shows the same characteristics and values on both scales. The maximum local energy dissipation of the milliliter‐scale stirred tank bioreactor was reduced compared to the laboratory‐scale at the same mean volumetric power input. Hence the milliliter impeller distributes power more uniformly in the reaction medium. Based on these data a reliable and robust scale‐up of fermentation processes is possible. This was demonstrated with the cultivation of the actinomycete Streptomyces tendae on both scales. It was shown that the process performances were equivalent with regard to biomass concentration, mannitol consumption and production of the pharmaceutical relevant fungicide nikkomycin Z up to a process time of 120 h. A high parallel reproducibility was observed on the milliliter‐scale (standard deviation < 8%) with up to 48 stirred tank bioreactors operated in a magnetic inductive drive. Rheological behavior of the culture broth was measured and showed a highly viscous shear‐thinning non‐Newtonian behavior. The newly developed one‐sided paddle impellers operated in unbaffled reactors on a 10 milliliter‐scale with a magnetic inductive drive for up to 48 parallel bioreactors allows for the first time the parallel bioprocess development with mycelium forming microorganisms. This is especially important since these kinds of cultivations normally exhibit process times of 100 h and more. Thus the operation of parallel stirred tank reactors will have the potential to reduce process development times drastically. Biotechnol. Bioeng. 2010; 106: 443–451. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
13.
Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal‐derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum‐free, protein‐free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single‐cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD‐CHO? and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

14.
Cysteine proteases from Jacaratia mexicana, an endemic Mexican plant, could compete in industrial applications with papain. Currently the only way to obtain these proteases is by extracting them from the wild plant. An alternative source of these enzymes is by J. mexicana suspension culture. In this work, this culture was carried out in airlift, bubble column and stirred tank bioreactors, and the effects of shear rate and microturbulence on cell growth, protein accumulation and proteolytic activity were determined. The shear rates in the stirred tank, bubble column and airlift bioreactors were 274 1/s, 13 1/s and 36 1/s respectively, and microturbulences (symbolized by λ, in units of μm) were 46, 79, and 77 μm, respectively. Protein levels and proteolytic activity were linearly correlated with both shear rate and microturbulence. A higher shear rate and a more intensive microturbulence occurred in the stirred tank, producing higher protein accumulation and higher proteolytic activity compared with those of the other two bioreactor systems. Higher shear rate and microturbulence had an elicitor effect on protease synthesis, because microturbulence in stirred tank bioreactors was lower than the average length of J. mexicana cells. Furthermore, cells in the stirred tank were smaller and thinner than those grown in shake flask, bubble column and airlift bioreactors. In summary, proteases were produced by J. mexicana cell cultures in a stirred tank under conditions of high shear rate and intensive microturbulence, which are similar to those which occur in industrial stirred tanks. These results encourage continuation of the process development for large scale production of these proteases by this technology.  相似文献   

15.
Somatic embryo suspension cultures of Picea sitchensis (Sitka spruce) derived from two cell lines, SS03 and SS10, were grown in shake flasks, air-lift, bubble, stirred tank and hanging stirrer bar bioreactors. Cell line SS03 yielded freely suspended and individual stage 1 embryos, while the embryos of SS10 were present in large aggregates. Compared to shake flasks, proliferation in bioreactors resulted in increased biomass; however, cell line morphology influenced the effect of different bioreactor configurations on growth and maturation of embryo cultures. Somatic embryos grown in shake flasks and bioreactors were matured on gelled solid medium and in submerged culture where gelled solid medium was covered with a layer of liquid medium. The number of stage 3 (mature) embryos produced from SS03 in the bubble bioreactor was significantly higher than those from stirred tank and hanging stirrer bar bioreactors with both solid medium and submerged culture. Submerged culture was unsuitable for SS10 embryo maturation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
《Cytotherapy》2014,16(11):1486-1500
Background aimsHuman mesenchymal stromal cells (MSCs) are being used in clinical trials, but the best protocol to prepare the cells for administration to patients remains unclear. We previously demonstrated that MSCs could be pre-activated to express therapeutic factors by culturing the cells in 3 dimensions (3D). We compared the activation of MSCs in 3D in fetal bovine serum containing medium and in multiple xeno-free media formulations.MethodsMSC aggregation and sphere formation was studied with the use of hanging drop cultures with medium containing fetal bovine serum or with various commercially available stem cell media with or without human serum albumin (HSA). Activation of MSCs was studied with the use of gene expression and protein secretion measurements and with functional studies with the use of macrophages and cancer cells.ResultsMSCs did not condense into tight spheroids and express a full complement of therapeutic genes in α-minimum essential medium or several commercial stem-cell media. However, we identified a chemically defined xeno-free media, which, when supplemented with HSA from blood or recombinant HSA, resulted in compact spheres with high cell viability, together with high expression of anti-inflammatory (prostaglandin E2, TSG-6 TNF-alpha induced gene/protein 6) and anti-cancer molecules (TRAIL TNF-related apoptosis-inducing ligand, interleukin-24). Furthermore, spheres cultured in this medium showed potent anti-inflammatory effects in a lipopolysaccharide-stimulated macrophage system and suppressed the growth of prostate cancer cells by promoting cell-cycle arrest and cell death.ConclusionsWe demonstrated that cell activation in 3D depends critically on the culture medium. The conditions developed in the present study for 3D culture of MSCs should be useful in further research on MSCs and their potential therapeutic applications.  相似文献   

17.
Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20–30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB‐MSC‐like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 × 106 cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL‐3, and 5 ng/mL Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Moreover, the UCB‐MSC‐like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens‐DR (HLA‐DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB‐MSCs by adding suitable cytokines into the culture system. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
Choosing the culture system and culture medium used to produce cells are key steps toward a safe, scalable, and cost‐effective expansion bioprocess for cell therapy purposes. The use of AB human serum (AB HS) as an alternative xeno‐free supplement for mesenchymal stromal cells (MSC) cultivation has increasingly gained relevance due to safety and efficiency aspects. Here we have evaluated different scalable culture systems to produce a meaningful number of umbilical cord matrix‐derived MSC (UCM MSC) using AB HS for culture medium supplementation during expansion and cryopreservation to enable a xeno‐free bioprocess. UCM MSC were cultured in a scalable planar (compact 10‐layer flasks and roller bottles) and 3‐D microcarrier‐based culture systems (spinner flasks and stirred tank bioreactor). Ten layer flasks and roller bottles enabled the production of 2.6 ± 0.6 × 104 and 1.4 ± 0.3 × 104 cells/cm2. UCM MSC‐based microcarrier expansion in the stirred conditions has enabled the production of higher cell densities (5.5–23.0 × 104 cells/cm2) when compared to planar systems. Nevertheless, due to the moderate harvesting efficiency attained, (80% for spinner flasks and 46.6% for bioreactor) the total cell number recovered was lower than expected. Cells maintained the functional properties after expansion in all the culture systems evaluated. The cryopreservation of cells (using AB HS) was also successfully carried out. Establishing scalable xeno‐free expansion processes represents an important step toward a GMP compliant large‐scale production platform for MSC‐based clinical applications. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1358–1367, 2017  相似文献   

19.
Mean power consumption and maximum local energy dissipation were measured as function of operating conditions of a milliliter‐scale stirred tank bioreactor (V = 12 mL) with a gas‐inducing impeller. A standard laboratory‐scale stirred tank bioreactor (V = 1,200 mL) with Rushton turbines was used as reference. The measured power characteristics (Newton number as function of Reynolds number) were the same on both scales. The changeover between laminar and turbulent flow regime was observed at a Reynolds number of 3,000 with the gas‐inducing stirrer on a milliliter‐scale. The Newton number (power number) in the turbulent flow regime was 3.3 on a milliliter‐scale, which is close to values reported for six‐blade Rushton turbines of standard bioreactors. Maximum local energy dissipation (εmax) was measured using a clay/polymer flocculation system. The maximum local energy dissipation in the milliliter‐scale stirred tank bioreactor was reduced compared with the laboratory‐scale stirred tank at the same mean power input per unit mass (εø), yielding εmax/εø ≈ 10 compared with εmax/εø ≈ 16. Hence, the milliliter‐scale stirred tank reactor distributes power more uniformly in the reaction medium. These results are in good agreement with literature data, where a decreasing εmax/εø with increasing ratio of impeller diameter to reactor diameter is found (d/D = 0.7 compared with d/D = 0.4). Based on these data, impeller speeds can now be easily adjusted to achieve the same maximum local energy dissipation at different scales. This enables a more reliable and robust scale‐up of bioprocesses from milliliter‐scale to liter‐scale reactors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.

Objectives

This study has intended to investigate longevity of subcutaneous fat‐derived mesenchymal stem cells (SF‐MSCs) under extensive culturing. It has also focused on optimization of culture media for them over prolonged periods in vitro.

Materials and methods

We evaluated SF‐MSCs with reference to phenotypic characterization, proliferative ability, karyotype stability and differentiation potency with early (P3) and late passage (P20) conditions, using four different media, DMEM‐LG, ALPHA‐MEM, DMEM‐F12 and DMEM‐KO.

Results

This study unravels retention of SF‐MSC characteristics in facets of phenotypic expression profile (CD 90, CD 105, CD 73, CD 34, CD 29, CD 54, CD 49d, CD 117, HLA‐DR, CD 166, CD 31, CD 44), proliferative characteristics, karyotyping and differentiation potency prolonged culturing to P25 in all media. Population doubling time (PDT) in Alpha MEM, DMEM LG, DMEM F 12, DMEM KO were identified to be (1.81, 1.84, 1.9, 2.08 days) at early passage and (2.93, 2.94, 3.12, 3.06 days) at late passage. As a corollary, Alpha MEM and DMEM LG serve as appropriate basal media for SF‐MSC when proliferative potency is considered.

Conclusions

In research, it is imperative that SF‐MSC uphold their expansion potency in the aforesaid attributes in all media over extensive culturing, thereby transforming their colossal in vitro potency, with the aim of curing a wide horizon of diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号