首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laboratory bioassay was developed to evaluate miticides to control Varroa jacobsoni (Oudemans), an important parasite of the honey bee, Apis mellifera L. Bees and mites were exposed to applications of essential oil constituents in petri dishes (60 by 20 mm). The registered mite control agents tau-fluvalinate (Apistan) and formic acid also were evaluated as positive controls. Treatments that caused high mite mortality (> 70%) at doses that produced low bee mortality (< 30%) were considered mite selective. The six most selective of the 22 treatments tested (clove oil, benzyl acetate, thymol, carvacrol, methyl salicylate, and Magic3) were further evaluated to estimate LD50 values and selectivity ratios (A. mellifera LD50/V. jacobsoni LD50) at 24, 43, and 67 h after exposure. Tau-fluvalinate was the most selective treatment, but thymol, clove oil, Magic3, and methyl salicylate demonstrated selectivity equal to or greater than formic acid. The effect of mode of application (complete exposure versus vapor only) on bee and mite mortality was assessed for thymol, clove oil, and Magic3 by using a 2-chambered dish design. Estimated V. jacobsoni LD50 values were significantly lower for complete exposure applications of thymol and Magic3, suggesting that both vapor and topical exposure influenced mite mortality, whereas estimated values for clove oil suggested that topical exposure had little or no influence on mite mortality. These results indicate that essential oil constituents alone may not be selective enough to control Varroa under all conditions, but could be a useful component of an integrated pest management approach to parasitic mite management in honey bee colonies.  相似文献   

2.
The potential for Metarhizium anisopliae (Metschinkoff) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in honey bee colonies was evaluated in field trials against the miticide, tau-fluvalinate (Apistan). Peak mortality of V. destructor occurred 3-4 d after the conidia were applied; however, the mites were still infected 42 d posttreatments. Two application methods were tested: dusts and strips coated with the fungal conidia, and both methods resulted in successful control of mite populations. The fungal treatments were as effective as the Apistan, at the end of the 42-d period of the experiment. The data suggested that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. M. anisopliae was harmless to the honey bees (adult bees, or brood) and colony development was not affected. Mite mortality was highly correlated with mycosis in dead mites collected from sticky traps, indicating that the fungus was infecting and killing the mites. Because workers and drones drift between hives, the adult bees were able to spread the fungus between honey bee colonies in the apiary, a situation that could be beneficial to beekeepers.  相似文献   

3.
Formic acid treatment for the control of the ectoparasitic varroa mite, Varroa destructor Anderson & Trueman, infesting honey bee, Apis mellifera L., colonies is usually carried out as an in-hive outdoor treatment. This study examined the use of formic acid on wintered colonies kept indoors at 5 degrees C from 24 November 1999 to 24 March 2000. Colonies were placed in small treatment rooms that were not treated (control) or fumigated at three different concentrations of formic acid: low (mean 11.9 +/- 1.2 ppm), medium (mean 25.8 +/- 1.4 ppm), or high (mean 41.2 +/- 3.3 ppm), for 48 h on 22-24 January 2000. Queen bee, worker bee, and varroa mite mortality were monitored throughout the winter, and tracheal mite, Acarapis woodi (Rennie), prevalence and mean abundance of nosema, Nosema apis Zander, spores were assessed. This study revealed that formic acid fumigation of indoor-wintered honey bees is feasible and effective. The highest concentration significantly reduced the mean abundance of varroa mites and nosema spores without increasing bee mortality. Tracheal mite prevalence did not change significantly at any concentration, although we did not measure mortality directly. The highest concentration treatment killed 33.3% of queens compared with 4.8% loss in the control. Repeated fumigation periods at high concentrations or extended fumigation at low concentrations may increase the efficacy of this treatment method and should be tested in future studies. An understanding of the cause of queen loss and methods to prevent it must be developed for this method to be generally accepted.  相似文献   

4.
Strips coated with conidia of Metarhizium anisopliae (Metschinkoff; Deuteromycetes: Hyphomycetes) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in colonies of honey bees, Apis mellifera (Hymenoptera: Apidae) were compared against the miticide, tau-fluvalinate (Apistan) in field trials in Texas and Florida (USA). Apistan and the fungal treatments resulted in successful control of mite populations in both locations. At the end of the 42-day period of the experiment in Texas, the number of mites per bee was reduced by 69-fold in bee hives treated with Apistan and 25-fold in hives treated with the fungus; however mite infestations increased by 1.3-fold in the control bee hives. Similarly, the number of mites in sealed brood was 13-fold and 3.6-fold higher in the control bee hives than in those treated with Apistan and with the fungus, respectively. Like the miticide Apistan, the fungal treatments provided a significant reduction of mite populations at the end of the experimental period. The data from the broodless colonies treated with the fungus indicated that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. In established colonies in Florida, honey bee colony development did not increase under either Apistan or fungal treatments at the end of the experimental period, suggesting that other factors (queen health, food source, food availability) play some major role in the growth of bee colonies. Overall, microbial control of Varroa mites with fungal pathogens could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

5.
The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies.  相似文献   

6.
The combination of the concentration of formic acid and the duration of fumigation (CT product) during indoor treatments of honey bee, Apis mellifera L., colonies to control the varroa mite, Varroa destructor Anderson & Trueman, determines the efficacy of the treatment. Because high concentrations can cause queen mortality, we hypothesized that a high CT product given as a low concentration over a long exposure time rather than as a high concentration over a short exposure time would allow effective control of varroa mites without the detrimental effects on queens. The objective of this study was to assess different combinations of formic acid concentration and exposure time with similar CT products in controlling varroa mites while minimizing the effect on worker and queen honey bees. Treated colonies were exposed to a low, medium, or high concentration of formic acid until a mean CT product of 471 ppm*d in room air was realized. The treatments consisted of a long-term low concentration of 19 ppm for 27 d, a medium-term medium concentration of 42 ppm for 10 d, a short-term high concentration of 53 ppm for 9 d, and an untreated control. Both short-term high-concentration and medium-term medium-concentration fumigation with formic acid killed varroa mites, with averages of 93 and 83% mortality, respectively, but both treatments also were associated with an increase in mortality of worker bees, queen bees, or both. Long-term low-concentration fumigation had lower efficacy (60% varroa mite mortality), but it did not increase worker or queen bee mortality. This trend differed slightly in colonies from two different beekeepers. Varroa mite mean abundance was significantly decreased in all three acid treatments relative to the control. Daily worker mortality was significantly increased by the short-term high concentration treatment, which was reflected by a decrease in the size of the worker population, but not an increase in colony mortality. Queen mortality was significantly greater under the medium-term medium concentration and the short-term high concentration treatments than in controls.  相似文献   

7.
Two major parasitic pests threaten honey bee populations, the external mite Varroa destructor and the internal mite Acarapis woodi (Rennie). Varroa are beginning to develop resistance to the main chemical defense fluvalinate, and alternative control methods are being pursued. Previous studies have shown that botanical oils, especially thymol, can be effective. Six release devices for either thymol or a blend of botanical oils known as Magic 3 were tested in beehives. The release devices were as follows: (1) low density polyethylene (LDPE) sleeves filled with Magic 3, (2) Magic 3-infused florist blocks, (3) thymol infused florist blocks, (4) a canola oil and thymol mixture wick release, (5) a plastic strip coated with calcium carbonate and Magic 3, and (6) an untreated control. There were significant decreases in varroa levels with the use of Magic 3 sleeves, but brood levels also decreased. Tracheal mite levels significantly decreased with the Magic 3 sleeve treatment, the Magic 3 florist block treatment, and the thymol canola wick treatment. A second experiment showed that changing the location of Magic 3 sleeves in the colony did not detrimentally effect brood levels, but also did not effectively control varroa mites.  相似文献   

8.
In order to decrease the variability of formic acid treatments against the honey bee parasite the varroa mite, Varroa destructor, it is necessary to determine the dose-time combination that best controls mites without harming bees. The concentration × time (CT) product is a valuable tool for studying fumigants and how they might perform under various environmental conditions. This laboratory study is an assessment of the efficacy of formic acid against the varroa mite under a range of formic acid concentrations and temperatures. The objectives are 1) to determine the effect of temperature and dose of formic acid on worker honey bee and varroa mite survival, 2) to determine the CT50 products for both honey bees and varroa mites and 3) to determine the best temperature and dose to optimize selectivity of formic acid treatment for control of varroa mites. Worker honey bees and varroa mites were fumigated at 0, 0.01, 0.02, 0.04, 0.08, and 0.16 mg/L at 5, 15, 25, and 35 °C for 12 d. Mite and bee mortality were assessed at regular intervals. Both mite and bee survival were affected by formic acid dose. Doses of 0.08 and 0.16 mg/L were effective at killing mites at all temperatures tested above 5 °C. There was a significant interaction between temperature, dose, and species for the CT50 product. The difference between the CT50 product of bees and mites was significant at only a few temperature-dose combinations. CT product values showed that at most temperatures the greatest fumigation efficiency occurred at lower doses of formic acid. However, the best fumigation efficiency and selectivity combination for treatments occurred at a dose of 0.16 mg/L when the temperature was 35 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Neem oil, neem extract (neem-aza), and canola oil were evaluated for the management of the honey bee mite parasites Varroa jacobsoni (Oudemans) and Acarapis woodi (Rennie) in field experiments. Spraying neem oil on bees was more effective at controlling V. jacobsoni than feeding oil in a sucrose-based matrix (patty), feeding neem-aza in syrup, or spraying canola oil. Neem oil sprays also protected susceptible bees from A. woodi infestation. Only neem oil provided V. jacobsoni control comparable to the known varroacide formic acid, but it was not as effective as the synthetic product Apistan (tau-fluvalinate). Neem oil was effective only when sprayed six times at 4-d intervals and not when applied three times at 8-d intervals. Neem oil spray treatments had no effect on adult honey bee populations, but treatments reduced the amount of sealed brood in colonies by 50% and caused queen loss at higher doses. Taken together, the results suggest that neem and canola oil show some promise for managing honey bee parasitic mites, but the negative effects of treatments to colonies and the lower efficacy against V. jacobsoni compared with synthetic acaricides may limit their usefulness to beekeepers.  相似文献   

10.
The efficacy of a formic acid pad formulation was field tested for control of the honey bee parasitic mite Varroa destructor Anderson & Trueman in Florida and Texas. This pad formulation gave 39.8 +/- 11.1% control at the end of a 6-wk treatment period, which did not significantly differ from the initial sample date. Coumaphos treatment provided poor control (38.4 +/- 11.1%) over the 6-wk period, confirming reports of coumaphos resistance in the region. Under relatively warm winter conditions in southern Texas, formic acid caused mortality of developing eggs and brood. If resistance by V. destructor to the two acaricides registered for its control in the United States continues, the formic acid pad could provide an alternative compound to use as part of an integrated pest management approach. Given the low control seen in this trial, however, modifications of application technology would seem necessary.  相似文献   

11.
In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.  相似文献   

12.
An apiary trial on the use of two acaricide formulations (gel-Apiguard and vermiculite and Api Life VAR) in the control of Varroa destructor (Anderson & Trueman) was conducted in summer 2001 in Sardinia (Italy). The main goals were 1) to determine their effectiveness against V. destructor, taking into account natural mite mortality in control hives; and simultaneously 2) to determine the persistence of both formulations and residues in honey and wax, by using a new extraction method. Both thymol formulations, after the treatments, reduced significantly the levels of mite infestations of adult bees and sealed brood, but their efficacy, expressed as percentage of mortality, was lower for both products (Api Life VAR 74.8 +/- 13.1 and 81.3 +/- 15.5, Apiguard 90.4 +/- 8.3 and 95.5 +/- 8.7 for sealed brood and adult bees, respectively) than the efficacy previously obtained with the same products in other experimental conditions. Moreover, a considerable colony-to-colony variability was recorded, and a significant negative effect of the thymol treatments on colony development was observed. During 2 wk of treatment, the bees removed nearly 95% of all the applied product (gel or vermiculite). Residues found in honey collected from the nest varied from 0.12 to 4.03 mg/kg for Api Life VAR and from 0.40 to 8.80 mg/kg for Apiguard. The residues were relatively higher in wax (Api Life VAR = 21.6 +/- 13.0; Apiguard = 147.7 +/- 188.9) than in honey, because thymol is a fat-soluble ingredient.  相似文献   

13.
Hop (Humulus lupulus L.) beta acids (HBA) were tested for miticidal effects on varroa destructor Anderson and Trueman, a parasitic mite of the honey bee (Apis mellifera L.). When varroa were placed on bees that had topical applications of 1?% HBA, there was 100?% mite mortality. Bee mortality was unaffected. Cardboard strips saturated with HBA and placed in colonies resulted in mite drop that was significantly greater than in untreated hives. HBA was detected on about 60?% of the bees in colonies during the first 48?h after application. Mite drop in colonies lasted for about 7?days with the highest drop occurring in the first 2–3?days after treatment. There was a reduction in the percentages of bees with HBA and in the amounts on their bodies after 7?days. Bee and queen mortality in the colonies were not affected by HBA treatments. When cardboard strips saturated with HBA were put in packages of bees, more than 90?% of the mites were killed without an increase in bee mortality. HBA might have potential to control varroa when establishing colonies from packages or during broodless periods.  相似文献   

14.
The parasitic mite Varroa destructor is amongst the most serious problems of honey bees, Apis mellifera (Hymenoptera: Apidae) around the world including Pakistan. The present study estimates the mite density through powdered sugar roll method and evaluates the effectiveness of five miticides (fluvalinate, flumethrin, amitraz, formic acid, and oxalic acid) on A. mellifera colonies in German modified beehives. The results indicated that by treating the bees with one strip and two strips of fluvalinate per colony; the mite population remained below the economic threshold level (ETL) for 14 days and 25 days, respectively. Treatment of flumthrin @1 strip and @ 2 strips per colony resulted in mite population suppressed for 14 days and 39 days, respectively below ETL. Application of Amitraz @ 2 mL per 1.5 L water after every three days interval on sealed brood effectively controlled mites below ETL for 21 days. Formic acid @10 mL per colony applied through plastic applicator proved effective (below 3 mites per bee sample) for 24 days and oxalic acid applied through shop towel method resulted in mite population control for fifteen days. Use of powdered sugar roll method for easy sampling of Varroa mites and application of acaricides on precise economic threshold level during different seasons of the year for integrated management of Varroa mite is hereby advocated by current studies.  相似文献   

15.
Honey bee (Apis mellifera) colonies are declining, and a number of stressors have been identified that affect, alone or in combination, the health of honey bees. The ectoparasitic mite Varroa destructor, honey bee viruses that are often closely associated with the mite, and pesticides used to control the mite population form a complex system of stressors that may affect honey bee health in different ways. During an acaricide treatment using Apistan (plastic strips coated with tau-fluvalinate), we analyzed the infection dynamics of deformed wing virus (DWV), sacbrood virus (SBV), and black queen cell virus (BQCV) in adult bees, mite-infested pupae, their associated Varroa mites, and uninfested pupae, comparing these to similar samples from untreated control colonies. Titers of DWV increased initially with the onset of the acaricide application and then slightly decreased progressively coinciding with the removal of the Varroa mite infestation. This initial increase in DWV titers suggests a physiological effect of tau-fluvalinate on the host's susceptibility to viral infection. DWV titers in adult bees and uninfested pupae remained higher in treated colonies than in untreated colonies. The titers of SBV and BQCV did not show any direct relationship with mite infestation and showed a variety of possible effects of the acaricide treatment. The results indicate that other factors besides Varroa mite infestation may be important to the development and maintenance of damaging DWV titers in colonies. Possible biochemical explanations for the observed synergistic effects between tau-fluvalinate and virus infections are discussed.  相似文献   

16.
Two formic acid autumnal treatments, gel packets (BeeVar formulation) and impregnated paperwick (Liebig-Dispenser), were tested in apiary to evaluate their effectiveness against Varroa destructor Anderson & Trueman and their residues in honey in a Mediterranean region (Sardinia, Italy). Both treatments were efficient in the apiary control of the varroosis, with values of percentage of mite mortality ranging between 93.6 and 100%, without statistical differences between them. The more gradual release of formic acid from the gel application allowed a longer action (2 wk for each treatment) compared with the Liebig-Dispenser (approximately 3d for each treatment). The rate of daily evaporation ranged between approximately 5 and 9 g/d from BeeVar and approximately 26 and 35 g/d from the Liebig-Dispenser, in the first and second treatment, respectively. The total amount of formic acid administered per hive during all the treatment period was approximately 200 g for either treatment. A significantly higher adult bee mortality was recorded in the Liebig-Dispenser-treated hives compared with the BeeVar-treated group. On the contrary, BeeVar treatment produced an interruption of brood reared, whereas the extension of the sealed brood area of the Liebig-Dispenser-treated hives was not significantly different from that of the control hives. Neither queen mortality nor robbing activity was observed due to the treatments. Formic acid residues in honey collected in the nest were 3,855 +/- 2,061 and 3,030 +/- 1,624 mg/kg for the BeeVar- and the Liebig-Dispenser-treated hives, respectively. After 21 d from the end of the treatment, the residues fell to 1,261 +/- 1,054 and 794 +/- 518 mg/kg for the honey sampled from the BeeVar and Liebig-Dispenser groups, respectively.  相似文献   

17.
Varroa (Varroa destuctor Anderson and Trueman) populations in honey bee (Apis mellifera L.) colonies might be kept at low levels by well-timed miticide applications. HopGuard® (HG) that contains beta plant acids as the active ingredient was used to reduce mite populations. Schedules for applications of the miticide that could maintain low mite levels were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on defined parameters for efficacy of the miticide and predictions of varroa population growth generated from a mathematical model of honey bee colony–varroa population dynamics. Colonies started from package bees and treated with HG in the package only or with subsequent HG treatments in the summer had 1.2–2.1 mites per 100 bees in August. Untreated controls averaged significantly more mites than treated colonies (3.3 mites per 100 bees). By October, mite populations ranged from 6.3 to 15.0 mites per 100 bees with the lowest mite numbers in colonies treated with HG in August. HG applications in colonies started from splits in April reduced mite populations to 0.12 mites per 100 bees. In September, the treated colonies had significantly fewer mites than the untreated controls. Subsequent HG applications in September that lasted for 3 weeks reduced mite populations to levels in November that were significantly lower than in colonies that were untreated or had an HG treatment that lasted for 1 week. The model accurately predicted colony population growth and varroa levels until the fall when varroa populations measured in colonies established from package bees or splits were much greater than predicted. Possible explanations for the differences between actual and predicted mite populations are discussed.  相似文献   

18.
The aim of this study was to investigate an underlying mechanism of the apparent tolerance of Africanized honey bees (AHB) to Varroa jacobsoni mites in Mexico. This was achieved by conducting the first detailed study into the mites' reproductive biology in AHB worker cells. The data was then compared directly with a similar study previously carried out on European honey bees (EHB) in the UK. A total of 1071 singly infested AHB worker cells were analyzed and compared with the data from 908 singly infested EHB worker cells. There was no significant difference between the number of mother mites dying in the cells (AHB = 2.0%, EHB = 1.8%); the mean number of eggs laid per mite (AHB = 4.86, EHB = 4.93); the number of mites producing no offspring (AHB = 12%, EHB = 9%); and developmental times of the offspring in worker cells of AHB and EHB. However, there was a major difference between the percentage of mother mites producing viable adult female offspring (AHB = 40%, EHB = 75%). This was caused by the increased rate of mite offspring mortality suffered by the first (male) and second (female) offspring in AHB worker cells. Therefore, only an average of 0.7 viable adult female offspring are produced per mite in AHB, compared to 1.0 in EHB.  相似文献   

19.
A strain of the fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycota: Hyphomycetes) isolated from varroa mites, Varroa destructor Anderson & Trueman (Acari: Varroidae), was used to treat honey bees, Apis mellifera L. (Hymenoptera: Apidae), against varroa mites in southern France. Fungal treatment caused a significant increase in the percentage of infected varroa mites compared with control treatments in two field experiments. In the first experiment, hives were treated with a formulation containing 0.37 g of B. bassiana conidia per hive and in the second experiment with a dose of 1.0 g of conidia per hive. The percentage of infected varroa mites also increased in the nontreated (control) hives, suggesting a movement of conidia, probably via bee drift, among the hives. Mite fall was significantly higher among treated hives compared with control hives on the sixth and eighth days after treatment in the first experiment. These days correspond to previously published data on the median survivorship of mites exposed to that fungal solate. The interaction of treatment and date was significant in the second experiment with respect to mite fall. Increases in colony-forming unit (cfu) density per bee were observed in all treatments but were significantly higher among bees from treated hives than control hives for at least a week after treatment. The relationship between cfu density per bee and proportion infected was modeled using a sigmoid curve. High levels of infection (>80%) were observed for cfu density per bee as low as 5 x 102 per bee, but the cfu density in hives treated with 0.37 g generally dropped below this level less than a week after treatment.  相似文献   

20.
The utility of USDA-developed Russian and varroa sensitive hygiene (VSH) honey bees, Apis mellifera L. (Hymenoptera: Apidae), was compared with that of locally produced, commercial Italian bees during 2004-2006 in beekeeping operations in Alabama, USA. Infestations of varroa mites, Varroa destructor Anderson & Truman (Acari: Varroidae), were measured twice each year, and colonies that reached established economic treatment thresholds (one mite per 100 adult bees in late winter; 5-10 mites per 100 adult bees in late summer) were treated with acaricides. Infestations of tracheal mites, Acarapis woodi (Rennie) (Acari: Tarsonemidae), were measured autumn and compared with a treatment threshold of 20% mite prevalence. Honey production was measured in 2005 and 2006 for colonies that retained original test queens. Throughout the three seasons of measurement, resistant stocks required less treatment against parasitic mites than the Italian stock. The total percentages of colonies needing treatment against varroa mites were 12% of VSH, 24% of Russian, and 40% of Italian. The total percentages requiring treatment against tracheal mites were 1% of Russian, 8% of VSH and 12% of Italian. The average honey yield of Russian and VSH colonies was comparable with that of Italian colonies each year. Beekeepers did not report any significant behavioral problems with the resistant stocks. These stocks thus have good potential for use in nonmigratory beekeeping operations in the southeastern United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号