首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In most cases aminoacyl-tRNA synthetases (aaRSs) are negatively charged, as are the tRNA substrates. It is apparent that there are driving forces that provide a long-range attraction between like charge aaRS and tRNA, and ensure formation of "close encounters." Based on numerical solutions to the nonlinear Poisson-Boltzmann equation, we evaluated the electrostatic potential generated by different aaRSs. The 3D-isopotential surfaces calculated for different aaRSs at 0.01 kT/e contour level reveal the presence of large positive patches-one patch for each tRNA molecule. This is true for classes I and II monomers, dimers, and heterotetramers. The potential maps keep their characteristic features over a wide range of contour levels. The results suggest that nonspecific electrostatic interactions are the driving forces of primary stickiness of aaRSs-tRNA complexes. The long-range attraction in aaRS-tRNA systems is explained by capture of negatively charged tRNA into "blue space area" of the positive potential generated by aaRSs. Localization of tRNA in this area is a prerequisite for overcoming the barrier of Brownian motion.  相似文献   

2.
Aminoacyl-tRNA synthetases (aaRSs) are responsible for creating the pool of correctly charged aminoacyl-tRNAs that are necessary for the translation of genetic information (mRNA) by the ribosome. Each aaRS belongs to either one of only two classes with two different mechanisms of aminoacylation, making use of either the 2'OH (Class I) or the 3'OH (Class II) of the terminal A76 of the tRNA and approaching the tRNA either from the minor groove (2'OH) or the major groove (3'OH). Here, an asymmetric pattern typical of differentiation is uncovered in the partition of the codon repertoire, as defined by the mechanism of aminoacylation of each corresponding tRNA. This pattern can be reproduced in a unique cascade of successive binary decisions that progressively reduces codon ambiguity. The deduced order of differentiation is manifestly driven by the reduction of translation errors. A simple rule can be defined, decoding each codon sequence in its binary class, thereby providing both the code and the key to decode it. Assuming that the partition into two mechanisms of tRNA aminoacylation is a relic that dates back to the invention of the genetic code in the RNA World, a model for the assignment of amino acids in the codon table can be derived. The model implies that the stop codon was always there, as the codon whose tRNA cannot be charged with any amino acid, and makes the prediction of an ultimate differentiation step, which is found to correspond to the codon assignment of the 22nd amino acid pyrrolysine in archaebacteria.  相似文献   

3.
A widespread consensus holds that protein synthesis according to a genetic code was launched entirely by sophisticated RNA molecules that played both coding and functional roles. This belief persists, unsupported by phylogenetic evidence for ancestral ribozymes that catalyzed either amino acid activation or tRNA aminoacylation. By contrast, we have adduced strong experimental evidence that the most highly conserved portions of contemporary aminoacyl-tRNA synthetases (aaRS) accelerate both reactions well in excess of rates achieved by RNA aptomers derived from combinatorial libraries and of rates required for primordial protein synthesis. Such ancestral enzymes, or “Urzymes”, characterized for Class I (TrpRS (Pham et al., 2010, 2007) and LeuRS (Collier et al., 2013); 130 residues) and Class II (HisRS; 120–140 residues; (Li et al., 2011)) synthetases generally have promiscuous amino acid specificities, whereas ATP and cognate tRNA affinities are within an order of magnitude of those for contemporary enzymes. These characteristics match or exceed expectations for the primordial catalysts necessary to launch protein synthesis. Structural hierarchies in Class I and II aaRS also exhibit plateaus of increasing enzymatic activity, suggesting that catalysis by peptides similar to the Aleph motif identified by Trifonov (Sobolevsky et al.) may have been both necessary and sufficient to launch protein synthesis. Sense/antisense alignments of TrpRS and HisRS Urzyme coding sequences reveal unexpectedly high middle-base complementarity that increases in reconstructed ancestral nodes (Chandrasekaran et al.), consistent with the proposal of Rodin and Ohno (Rodin & Ohno, 1995). Thus, these ancestors were likely coded by opposite strands of the same gene, favoring simultaneous expression of aaRS activating both hydrophobic (core) and hydrophilic (surface) amino acids. Our results support the view that aaRS coevolved with cognate tRNAs from a much earlier stage than that envisioned under the RNA World hypothesis, and that their descendants make up appreciable portions of the proteome.  相似文献   

4.
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.  相似文献   

5.
Myosins constitute a superfamily of motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments. Phylogenetic analysis currently places myosins into 17 classes based on class-specific features of their conserved motor domain. Traditionally, the myosins have been divided into two classes depending on whether they form monomers or dimers. The conventional myosin of muscle and nonmuscle cells forms class II myosins. They are complex molecules of four light chains bound to two heavy chains that form bipolar filaments via interactions between their coiled-coil tails (type II). Class I myosins are smaller monomeric myosins referred to as unconventional myosins. Now, at least 15 other classes of unconventional myosins are known. How many myosins are needed to ensure the proper development and function of eukaryotic organisms? Thus far, three types of myosins were found in budding yeast, six in the nematode Caenorhabditis elegans, and at least 12 in human. Here, we report on the identification and classification of Drosophila melanogaster myosins. Analysis of the Drosophila genome sequence identified 13 myosin genes. Phylogenetic analysis based on the sequence comparison of the myosin motor domains, as well as the presence of the class-specific domains, suggests that Drosophila myosins can be divided into nine major classes. Myosins belonging to previously described classes I, II, III, V, VI, and VII are present. Molecular and phylogenetic analysis indicates that the fruitfly genome contains at least five new myosins. Three of them fall into previously described myosin classes I, VII, and XV. Another myosin is a homolog of the mouse and human PDZ-containing myosins, forming the recently defined class XVIII myosins. PDZ domains are named after the postsynaptic density, disc-large, ZO-1 proteins in which they were first described. The fifth myosin shows a unique domain composition and a low homology to any of the existing classes. We propose that this is classified when similar myosins are identified in other species.  相似文献   

6.
Guo LT  Chen XL  Zhao BT  Shi Y  Li W  Xue H  Jin YX 《Nucleic acids research》2007,35(17):5934-5943
For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activate the ATP-PPi exchange reaction. Tryptophanyl-tRNA synthetase is a class I aaRS that catalyzes tryptophan activation in the absence of its cognate tRNA. Here we describe mutations located at the appended beta1-beta2 hairpin and the AIDQ sequence of human tryptophanyl-tRNA synthetase that switch this enzyme to a tRNA-dependent mode in the tryptophan activation step. For some mutant enzymes, ATP-PPi exchange activity was completely lacking in the absence of tRNA(Trp), which could be partially rescued by adding tRNA(Trp), even if it had been oxidized by sodium periodate. Therefore, these mutant enzymes have strong similarity to arginyl-tRNA synthetase, glutaminyl-tRNA synthetase and glutamyl-tRNA synthetase in their mode of amino acid activation. The results suggest that an aaRS that does not normally require tRNA for amino acid activation can be switched to a tRNA-dependent mode.  相似文献   

7.
Abstract

The aminoacyl-tRNA synthetases (aaRSs) covalently attach amino acids to their corresponding nucleic acid adapter molecules, tRNAs. The interactions in the tRNA-aaRSs complexes are mostly non-specific, and largely electrostatic. Tracing a way of aaRS-tRNA mutual adaptation throughout evolution offers a clearer view of understanding how aaRS-tRNA systems preserve patterns of tRNA recognition and binding. In this study, we used the compensatory mutations analysis to explore adaptation of aaRSs in respond to random mutations that can occur in the tRNA-recognition area. We showed that the frequency of compensatory mutations among residues that belong to the recognition region is 1.75-fold higher than that of the exposed residues. The highest frequencies of compensatory mutations are observed for pairs of charged residues, wherein one residue is located within the tRNA-recognition area, while the second is placed outside of the area, and contributes to the formation of the aaRS electrostatic landscape. Given charged residues are compensated by buried charge residues in more than 60% of the analyzed mutations. The cytoplasmatic and mitochondrial aaRSs preserve similar patterns of compensatory mutations in the tRNA recognition areas. Moreover, we found that mitochondrial aaRSs demonstrate a significant increase in the frequency of compensatory mutations in the area. Our findings shed light on the physical nature of compensatory mutations in aaRSs, thereby keeping unchanged tRNA-recognition patterns.  相似文献   

8.
9.
A series of disease-related mutations are known to affect the hs mt tRNA(Leu(UUR)) gene, and the molecular-level properties of this tRNA may underlie the effects of pathogenic sequence changes. A combinatorial approach has been used to explore the importance of the D, TPsiC, and anticodon loops of hs mt tRNA(Leu(UUR)) in the structure and function of this molecule. A tRNA library was constructed with 20 randomized nucleotides in the loop regions of hs mt tRNA(Leu(UUR)), and tRNA variants that were aminoacylated by hs mt LeuRS were isolated using an in vitro selection approach. Analysis of 26 selected sequences revealed that a stabilized anticodon stem significantly enhances aminoacylation activity. However, anticodon loop nucleotides were not conserved in the active sequences, indicating that this region of hs mt tRNA(Leu(UUR)) is not involved in recognition by LeuRS. Within the D and TPsiC loops, only two nucleotides conserved their identities, while new sequences were selected that likely mediate interloop interactions. The results indicate that hs mt tRNA(Leu(UUR)), which is known to have structurally weak D and anticodon stems, benefits functionally from the introduction of stabilizing interactions. However, the locations of individual nucleotides that govern discrimination of this tRNA by hs mt LeuRS still remain obscure.  相似文献   

10.
Aminoacyl-tRNA synthetases (aaRS) catalyze both chemical steps that translate the universal genetic code. Rodin and Ohno offered an explanation for the existence of two aaRS classes, observing that codons for the most highly conserved Class I active-site residues are anticodons for corresponding Class II active-site residues. They proposed that the two classes arose simultaneously, by translation of opposite strands from the same gene. We have characterized wild-type 46-residue peptides containing ATP-binding sites of Class I and II synthetases and those coded by a gene designed by Rosetta to encode the corresponding peptides on opposite strands. Catalysis by WT and designed peptides is saturable, and the designed peptides are sensitive to active-site residue mutation. All have comparable apparent second-order rate constants 2.9–7.0E-3 m−1 s−1 or ∼750,000–1,300,000 times the uncatalyzed rate. The activities of the two complementary peptides demonstrate that the unique information in a gene can have two functional interpretations, one from each complementary strand. The peptides contain phylogenetic signatures of longer, more sophisticated catalysts we call Urzymes and are short enough to bridge the gap between them and simpler uncoded peptides. Thus, they directly substantiate the sense/antisense coding ancestry of Class I and II aaRS. Furthermore, designed 46-mers achieve similar catalytic proficiency to wild-type 46-mers by significant increases in both kcat and Km values, supporting suggestions that the earliest peptide catalysts activated ATP for biosynthetic purposes.  相似文献   

11.
The genetic code is implemented by aminoacyl-tRNA synthetases (aaRS). These 20 enzymes are divided into two classes that, despite performing same functions, have nothing common in structure. The mystery of this striking partition of aaRSs might have been concealed in their sterically complementary modes of tRNA recognition that, as we have found recently, protect the tRNAs with complementary anticodons from confusion in translation. This finding implies that, in the beginning, life increased its coding repertoire by the pairs of complementary codons (rather than one-by-one) and used both complementary strands of genes as templates for translation. The class I and class II aaRSs may represent one of the most important examples of such primordial sense–antisense (SAS) coding (Rodin and Ohno, Orig Life Evol Biosph 25:565–589, 1995). In this report, we address the issue of SAS coding in a wider scope. We suggest a variety of advantages that such coding would have had in exploring a wider sequence space before translation became highly specific. In particular, we confirm that in Achlya klebsiana a single gene might have originally coded for an HSP70 chaperonin (class II aaRS homolog) and an NAD-specific GDH-like enzyme (class I aaRS homolog) via its sense and antisense strands. Thus, in contrast to the conclusions in Williams et al. (Mol Biol Evol 26:445–450, 2009), this could indeed be a “Rosetta stone” gene (Carter and Duax, Mol Cell 10:705–708, 2002) (eroded somewhat, though) for the SAS origin of the two aaRS classes.  相似文献   

12.
CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase], a template-independent RNA polymerase, adds the defined 'cytidine-cytidine-adenosine' sequence onto the 3' end of tRNA. The archaeal CCA-adding enzyme (class I) and eubacterial/eukaryotic CCA-adding enzyme (class II) show little amino acid sequence homology, but catalyze the same reaction in a defined fashion. Here, we present the crystal structures of the class I archaeal CCA-adding enzyme from Archaeoglobus fulgidus, and its complexes with CTP and ATP at 2.0, 2.0 and 2.7 A resolutions, respectively. The geometry of the catalytic carboxylates and the relative positions of CTP and ATP to a single catalytic site are well conserved in both classes of CCA-adding enzymes, whereas the overall architectures, except for the catalytic core, of the class I and class II CCA-adding enzymes are fundamentally different. Furthermore, the recognition mechanisms of substrate nucleotides and tRNA molecules are distinct between these two classes, suggesting that the catalytic domains of class I and class II enzymes share a common origin, and distinct substrate recognition domains have been appended to form the two presently divergent classes.  相似文献   

13.
T R Cech 《Gene》1988,73(2):259-271
Group I introns fold to form an active site to mediate their own RNA splicing. Sequence elements conserved among the available set of 66 group I introns are compiled. Comparative sequence analysis leads to the prediction of some conserved structural features that have not been widely appreciated. The possible significance of conserved nucleotides within base-paired duplexes is discussed; they might be involved in base triplets or alternate pairing interactions.  相似文献   

14.
CCA-adding enzymes are polymerases existing in two distinct enzyme classes that both synthesize the C-C-A triplet at tRNA 3′-ends. Class II enzymes (found in bacteria and eukaryotes) carry a flexible loop in their catalytic core required for switching the specificity of the nucleotide binding pocket from CTP- to ATP-recognition. Despite this important function, the loop sequence varies strongly between individual class II CCA-adding enzymes. To investigate whether this loop operates as a discrete functional entity or whether it depends on the sequence context of the enzyme, we introduced reciprocal loop replacements in several enzymes. Surprisingly, many of these replacements are incompatible with enzymatic activity and inhibit ATP-incorporation. A phylogenetic analysis revealed the existence of conserved loop families. Loop replacements within families did not interfere with enzymatic activity, indicating that the loop function depends on a sequence context specific for individual enzyme families. Accordingly, modeling experiments suggest specific interactions of loop positions with important elements of the protein, forming a lever-like structure. Hence, although being part of the enzyme’s catalytic core, the loop region follows an extraordinary evolutionary path, independent of other highly conserved catalytic core elements, but depending on specific sequence features in the context of the individual enzymes.  相似文献   

15.
In the first stage of a diffusion-controlled enzymatic reaction, aminoacyl-tRNA synthetases (aaRSs) interact with cognate tRNAs forming non-specific encounters. The aaRSs catalyzing the same overall aminoacylation reaction vary greatly in subunit organization, structural domain composition and amino acid sequence. The diffusional association of aaRS and tRNA was found to be governed by long-range electrostatic interactions when the homogeneous negative potential of tRNA fits to the patches of positive potential produced by aaRS; one patch for each tRNA substrate molecule. Considering aaRS as a molecule with anisotropic reactivity and on the basis of continuum electrostatics and Smoluchowski's theory, the reaction conditions for tRNA-aaRS diffusional encounters were formulated. The domains, categorized as enzymatically relevant, appeared to be non-essential for field sculpturing at long distances. On the other hand, a set of complementary domains exerts primary control on the aaRS isopotential surface formation. Subdividing the aaRS charged residues into native, conservative and non-conservative subsets, we evaluated the contribution of each group to long-range electrostatic potential. Surprisingly, the electrostatic potential landscapes generated by native and non-conservative subsets are fairly similar, thus suggesting the non-conservative subset is developed specifically for efficient tRNA attraction.  相似文献   

16.
We report the identification and characterization of eight yeast mitochondrial tRNA mutants, located in mitochondrial tRNA(Gln), tRNA(Arg2), tRNA(Ile), tRNA(His), and tRNA(Cys), the respiratory phenotypes of which exhibit various degrees of deficiency. The mutations consist in single-base substitutions, insertions, or deletions, and are distributed all over the tRNA sequence and structure. To identify the features responsible for the defective phenotypes, we analyzed the effect of the different mutations on the electrophoretic mobility and efficiency of acylation of the mutated tRNAs in comparison with the respective wild-type molecules. Five of the studied mutations determine both conformational changes and defective acylation, while two have neither or limited effect. However, variations in structure and acylation are not necessarily correlated; the remaining mutation affects the tRNA conformation, but not its acylation properties. Analysis of tRNA structures and of mitochondrial and cytoplasmic yeast tRNA sequences allowed us to propose explanations for the observed defects, which can be ascribed to either the loss of identity nucleotides or, more often, of specific secondary and/or tertiary interactions that are largely conserved in native mitochondrial and cytoplasmic tRNAs.  相似文献   

17.
A highly conserved protein motif characteristic of Class II aminoacyl tRNA synthetases was found to align with a region of Escherichia coli asparagine synthetase A. The alignment was most striking for aspartyl tRNA synthetase, an enzyme with catalytic similarities to asparagine synthetase. To test whether this sequence reflects a conserved function, site-directed mutagenesis was used to replace the codon for Arg298 of asparagine synthetase A, which aligns with an invariant arginine in the Class II aminoacyl tRNA synthetases. The resulting genes were expressed in E. coli, and the gene products were assayed for asparagine synthetase activity in vitro. Every substitution of Arg298, even to a lysine, resulted in a loss of asparagine synthetase activity. Directed random mutagenesis was then used to create a variety of codon changes which resulted in amino acid substitutions within the conserved motif surrounding Arg298. Of the 15 mutant enzymes with amino acid substitutions yielding soluble enzyme, 13 with changes within the conserved region were found to have lost activity. These results are consistent with the possibility that asparagine synthetase A, one of the two unrelated asparagine synthetases in E. coli, evolved from an ancestral aminoacyl tRNA synthetase.  相似文献   

18.
Class II transfer RNAs (tRNAs), including tRNA(Leu) and tRNA(Ser), have an additional stem and loop structure, the long variable arm (V-arm). Here, we describe Class II tRNAs with a unique anticodon corresponding to neither leucine nor serine. Because these tRNAs are specifically conserved among the nematodes, we have called them 'nematode-specific V-arm-containing tRNAs' (nev-tRNAs). The expression of nev-tRNA genes in Caenorhabditis elegans was confirmed experimentally. A comparative sequence analysis suggested that the nev-tRNAs derived phylogenetically from tRNA(Leu). In vitro aminoacylation assays showed that nev-tRNA(Gly) and nev-tRNA(Ile) are only charged with leucine, which is inconsistent with their anticodons. Furthermore, the deletion and mutation of crucial determinants for leucylation in nev-tRNA led to a marked loss of activity. An in vitro translation analysis showed that nev-tRNA(Gly) decodes GGG as leucine instead of the universal glycine code, indicating that nev-tRNAs can be incorporated into ribosomes and participate in protein biosynthesis. Our findings provide the first example of unexpected tRNAs that do not consistently obey the general translation rules for higher eukaryotes.  相似文献   

19.
Seth M  Thurlow DL  Hou YM 《Biochemistry》2002,41(14):4521-4532
The CCA-adding enzymes [ATP(CTP):tRNA nucleotidyl transferases], which catalyze synthesis of the conserved CCA sequence to the tRNA 3' end, are divided into two classes. Recent studies show that the class II Escherichia coli CCA-adding enzyme synthesizes poly(C) when incubated with CTP alone, but switches to synthesize CCA when incubated with both CTP and ATP. Because the poly(C) activity can shed important light on the mechanism of the untemplated synthesis of CCA, it is important to determine if this activity is also present in the class I CCA enzymes, which differ from the class II enzymes by significant sequence divergence. We show here that two members of the class I family, the archaeal Sulfolobus shibatae and Methanococcus jannaschii CCA-adding enzymes, are also capable of poly(C) synthesis. These two class I enzymes catalyze poly(C) synthesis and display a response of kinetic parameters to the presence of ATP similar to that of the class II E. coli enzyme. Thus, despite extensive sequence diversification, members of both classes employ common strategies of nucleotide addition, suggesting conservation of a mechanism in the development of specificity for CCA. For the E. coli enzyme, discrimination of poly(C) from CCA synthesis in the intact tRNA and in the acceptor-TPsiC domain is achieved by the same kinetic strategy, and a mutation that preferentially affects addition of A76 but not poly(C) has been identified. Additionally, we show that enzymes of both classes exhibit a processing activity that removes nucleotides in the 3' to 5' direction to as far as position 74.  相似文献   

20.
In the present work we report, for the first time, a novel difference in the molecular mechanism of the activation step of aminoacylation reaction between the class I and class II aminoacyl tRNA synthetases (aaRSs). The observed difference is in the mode of nucleophilic attack by the oxygen atom of the carboxylic group of the substrate amino acid (AA) to the αP atom of adenosine triphosphate (ATP). The syn oxygen atom of the carboxylic group attacks the α-phosphorous atom (αP) of ATP in all class I aaRSs (except TrpRS) investigated, while the anti oxygen atom attacks in the case of class II aaRSs. The class I aaRSs investigated are GluRS, GlnRS, TyrRS, TrpRS, LeuRS, ValRS, IleRS, CysRS, and MetRS and class II aaRSs investigated are HisRS, LysRS, ProRS, AspRS, AsnRS, AlaRS, GlyRS, PheRS, and ThrRS. The variation of the electron density at bond critical points as a function of the conformation of the attacking oxygen atom measured by the dihedral angle ψ (C(α)-C') conclusively proves this. The result shows that the strength of the interaction of syn oxygen and αP is stronger than the interaction with the anti oxygen for class I aaRSs. This indicates that the syn oxygen is the most probable candidate for the nucleophilic attack in class I aaRSs. The result is further supported by the computation of the variation of the nonbonded interaction energies between αP atom and anti oxygen as well as syn oxygen in class I and II aaRSs, respectively. The difference in mechanism is explained based on the analysis of the electrostatic potential of the AA and ATP which shows that the relative arrangement of the ATP with respect to the AA is opposite in class I and class II aaRSs, which is correlated with the organization of the active site in respective aaRSs. A comparative study of the reaction mechanisms of the activation step in a class I aaRS (Glutaminyl tRNA synthetase) and in a class II aaRS (Histidyl tRNA synthetase) is carried out by the transition state analysis. The atoms in molecule analysis of the interaction between active site residues or ions and substrates are carried out in the reactant state and the transition state. The result shows that the observed novel difference in the mechanism is correlated with the organizations of the active sites of the respective aaRSs. The result has implication in understanding the experimentally observed different modes of tRNA binding in the two classes of aaRSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号