首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
M C Lorenz  J Heitman 《The EMBO journal》1997,16(23):7008-7018
Pseudohyphal differentiation, a filamentous growth form of the budding yeast Saccharomyces cerevisiae, is induced by nitrogen starvation. The mechanisms by which nitrogen limitation regulates this process are currently unknown. We have found that GPA2, one of the two heterotrimeric G protein alpha subunit homologs in yeast, regulates pseudohyphal differentiation. Deltagpa2/Deltagpa2 mutant strains have a defect in pseudohyphal growth. In contrast, a constitutively active allele of GPA2 stimulates filamentation, even on nitrogen-rich media. Moreover, a dominant negative GPA2 allele inhibits filamentation of wild-type strains. Several findings, including epistasis analysis and reporter gene studies, indicate that GPA2 does not regulate the MAP kinase cascade known to regulate filamentous growth. Previous studies have implicated GPA2 in the control of intracellular cAMP levels; we find that expression of the dominant RAS2(Gly19Val) mutant or exogenous cAMP suppresses the Deltagpa2 pseudohyphal defect. cAMP also stimulates filamentation in strains lacking the cAMP phosphodiesterase PDE2, even in the absence of nitrogen starvation. Our findings suggest that GPA2 is an element of the nitrogen sensing machinery that regulates pseudohyphal differentiation by modulating cAMP levels.  相似文献   

2.
In response to nitrogen starvation, diploid cells of the budding yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. This dimorphic transition is regulated by the Galpha protein GPA2, by RAS2, and by elements of the pheromone-responsive MAP kinase cascade, yet the mechanisms by which nitrogen starvation is sensed remain unclear. We have found that MEP2, a high affinity ammonium permease, is required for pseudohyphal differentiation in response to ammonium limitation. In contrast, MEP1 and MEP3, which are lower affinity ammonium permeases, are not required for filamentous growth. Deltamep2 mutant strains had no defects in growth rates or ammonium uptake, even at limiting ammonium concentrations. The pseudohyphal defect of Deltamep2/Deltamep2 strains was suppressed by dominant active GPA2 or RAS2 mutations and by addition of exogenous cAMP, but was not suppressed by activated alleles of the MAP kinase pathway. Analysis of MEP1/MEP2 hybrid proteins identified a small intracellular loop of MEP2 involved in the pseudohyphal regulatory function. In addition, mutations in GLN3, URE2 and NPR1, which abrogate MEP2 expression or stability, also conferred pseudohyphal growth defects. We propose that MEP2 is an ammonium sensor, generating a signal to regulate filamentous growth in response to ammonium starvation.  相似文献   

3.
Laxman S  Tu BP 《PloS one》2011,6(10):e26081

Background

The budding yeast Saccharomyces cerevisiae undergoes differentiation into filamentous-like forms and invades the growth medium as a foraging response to nutrient and environmental stresses. These developmental responses are under the downstream control of effectors regulated by the cAMP/PKA and MAPK pathways. However, the upstream sensors and signals that induce filamentous growth through these signaling pathways are not fully understood. Herein, through a biochemical purification of the yeast TORC1 (Target of Rapamycin Complex 1), we identify several proteins implicated in yeast filamentous growth that directly associate with the TORC1 and investigate their roles in nitrogen starvation-dependent or independent differentiation in yeast.

Methodology

We isolated the endogenous TORC1 by purifying tagged, endogenous Kog1p, and identified associated proteins by mass spectrometry. We established invasive and pseudohyphal growth conditions in two S. cerevisiae genetic backgrounds (Σ1278b and CEN.PK). Using wild type and mutant strains from these genetic backgrounds, we investigated the roles of TORC1 and associated proteins in nitrogen starvation-dependent diploid pseudohyphal growth as well as nitrogen starvation-independent haploid invasive growth.

Conclusions

We show that several proteins identified as associated with the TORC1 are important for nitrogen starvation-dependent diploid pseudohyphal growth. In contrast, invasive growth due to other nutritional stresses was generally not affected in mutant strains of these TORC1-associated proteins. Our studies suggest a role for TORC1 in yeast differentiation upon nitrogen starvation. Our studies also suggest the CEN.PK strain background of S. cerevisiae may be particularly useful for investigations of nitrogen starvation-induced diploid pseudohyphal growth.  相似文献   

4.
5.
6.
7.
8.
Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some characteristics with classic forms of filamentous growth, but differing in crucial aspects of morphology, growth conditions and genetic regulation. The constitutive pseudohyphal state is observed in fus3 mutants containing various septin assembly defects, which we refer to as sadF growth (septin assembly defect induced filamentation) to distinguish it from classic filamentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background, which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polarized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is induced by synergism between Kss1p-dependent signaling and septin assembly defects; mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacerbates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-protein β and γ subunits from the pheromone response pathway, respectively. A swe1 mutation largely abolished signaling, breaking the positive feedback that leads to amplification of sadF signaling. Taken together, our findings show that budding yeast can access a stable constitutive pseudohyphal growth state with very few genetic and regulatory changes.  相似文献   

9.
Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms.  相似文献   

10.
Signal transduction cascades regulating fungal development and virulence.   总被引:19,自引:0,他引:19  
Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms.  相似文献   

11.
12.
Saccharomyces cerevisiae Gpa2p, the alpha subunit of a heterotrimeric guanine nucleotide-binding protein (G protein), is involved in the regulation of vegetative growth and pseudohyphal development. Here we report that Gpa2p also controls sporulation by interacting with the regulatory domain of Ime2p (Sme1p), a protein kinase essential for entrance of meiosis and sporulation. Protein-protein interactions between Gpa2p and Ime2p depend on the GTP-bound state of Gpa2p and correlate with down-regulation of Ime2p kinase activity in vitro. Overexpression of Ime2p inhibits pseudohyphal development and enables diploid cells to sporulate even in the presence of glucose or nitrogen. In contrast, overexpression of Gpa2p in cells simultaneously overproducing Ime2p results in a drastic reduction of sporulation efficiency, demonstrating an inhibitory effect of Gpa2p on Ime2p function. Furthermore, deletion of GPA2 accelerates sporulation on low-nitrogen medium. These observations are consistent with the following model. In glucose-containing medium, diploid cells do not sporulate because Ime2p is inactive or expressed at low levels. Upon starvation, expression of Gpa2p and Ime2p is induced but sporulation is prevented as long as nitrogen is present in the medium. The negative control of Ime2p kinase activity is exerted at least in part through the activated form of Gpa2p and is released as soon as nutrients are exhausted. This model attributes a switch function to Gpa2p in the meiosis-pseudohyphal growth decision.  相似文献   

13.
Pseudohyphal differentiation in the budding yeast Saccharomyces cerevisiae is induced in diploid cells in response to nitrogen starvation and abundant fermentable carbon source. Filamentous growth requires at least two signaling pathways: the pheromone responsive MAP kinase cascade and the Gpa2p-cAMP-PKA signaling pathway. Recent studies have established a physical and functional link between the Galpha protein Gpa2 and the G protein-coupled receptor homolog Gpr1. We report here that the Gpr1 receptor is required for filamentous and haploid invasive growth and regulates expression of the cell surface flocculin Flo11. Epistasis analysis supports a model in which the Gpr1 receptor regulates pseudohyphal growth via the Gpa2p-cAMP-PKA pathway and independently of both the MAP kinase cascade and the PKA related kinase Sch9. Genetic and physiological studies indicate that the Gpr1 receptor is activated by glucose and other structurally related sugars. Because expression of the GPR1 gene is known to be induced by nitrogen starvation, the Gpr1 receptor may serve as a dual sensor of abundant carbon source (sugar ligand) and nitrogen starvation. In summary, our studies reveal a novel G protein-coupled receptor senses nutrients and regulates the dimorphic transition to filamentous growth via a Galpha protein-cAMP-PKA signal transduction cascade.  相似文献   

14.
15.
C J Gimeno  P O Ljungdahl  C A Styles  G R Fink 《Cell》1992,68(6):1077-1090
Diploid S. cerevisiae strains undergo a dimorphic transition that involves changes in cell shape and the pattern of cell division and results in invasive filamentous growth in response to starvation for nitrogen. Cells become long and thin and form pseudohyphae that grow away from the colony and invade the agar medium. Pseudohyphal growth allows yeast cells to forage for nutrients. Pseudohyphal growth requires the polar budding pattern of a/alpha diploid cells; haploid axially budding cells of identical genotype cannot undergo this dimorphic transition. Constitutive activation of RAS2 or mutation of SHR3, a gene required for amino acid uptake, enhance the pseudohyphal phenotype; a dominant mutation in RSR1/BUD1 that causes random budding suppresses pseudohyphal growth.  相似文献   

16.
17.
M C Lorenz  J Heitman 《Genetics》1998,150(4):1443-1457
Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth.  相似文献   

18.
19.
Under specific environmental conditions, the yeast Saccharomyces cerevisiae can undergo a morphological switch to a pseudohyphal growth pattern. Pseudohyphal differentiation is generally studied upon induction by nitrogen limitation in the presence of glucose. It is known to be controlled by several signaling pathways, including mitogen-activated protein kinase, cyclic AMP-protein kinase A (cAMP-PKA), and Snf1 kinase pathways. We show that the alpha-glucoside sugars maltose and maltotriose, and especially sucrose, are more potent inducers of filamentation than glucose. Sucrose even induces filamentation in nitrogen-rich media and in the mep2Δ/mep2Δ ammonium permease mutant on ammonium-limiting medium. We demonstrate that glucose also inhibits filamentation by means of a pathway parallel to the cAMP-PKA pathway. Deletion of HXK2 shifted the pseudohyphal growth pattern on glucose to that of sucrose, while deletion of SNF4 abrogated filamentation on both sugars, indicating a negative role of glucose repression and a positive role for Snf1 activity in the control of filamentation. In all strains and in all media, sucrose induction of filamentation is greatly diminished by deletion of the sucrose/glucose-sensing G-protein-coupled receptor Gpr1, whereas it has no effect on induction by maltose and maltotriose. The competence of alpha-glucoside sugars to induce filamentation is reflected in the increased expression of the cell surface flocculin gene FLO11. In addition, sucrose is the only alpha-glucoside sugar capable of rapidly inducing FLO11 expression in a Gpr1-dependent manner, reflecting the sensitivity of Gpr1 for this sugar and its involvement in rapid sucrose signaling. Our study identifies sucrose as the most potent nutrient inducer of pseudohyphal growth and shows that glucose inactivation of Snf1 kinase signaling is responsible for the lower potency of glucose.  相似文献   

20.
Summary The use of microorganisms in biotechnology is an important economic area of interest in Brazil, especially the use of Saccharomyces cerevisiae in the baking and alcohol fermentation industries. Dimorphism in S. cerevisiae (cell morphology alterations from budding cells to filamentous structures) has been observed in conditions of nitrogen and carbon deprivation and in the presence of fusel alcohols. This can be described as a defense mechanism that allows the yeast to forage for nutrients through cell elongation, hyphal formation and invasive growth. In this work fifteen industrial strains of S. cerevisiae (including haploid and diploid strains) isolated from the fermentative process for alcohol production were characterized for filamentation on solid culture media under growth conditions of carbon- and nitrogen-deprivation and in the presence of fusel alcohols. The majority of strains showed filamentation induced by isoamyl alcohol, butanol, isopropanol and isobutanol, but not by methanol. In rich medium (YEPD), both haploid and diploid strains showed invasive growth, although this kind of filamentous growth was more common in haploid strains. Similar results were observed when fructose or mannose was used as the sole carbon source. In nitrogen-deficient medium (SLAD) the strains did not filament. The results obtained indicate that the filamentation induced by higher alcohols and carbon deprivation (specially carbon) is a common process in industrial strains of S. cerevisiae contributing towards their maintenance/survival in adverse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号