首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The peroxisome proliferators clofibric acid and di-(2-ethylhexyl)-phthalate (DEHP) preferentially induced the 12-hydroxylation, compared to the 11-hydroxylation, of lauric acid in rat liver microsomes. A marked increase in the affinity of spectral interaction of this substrate with cytochrome P-450 was also observed. In addition, both clofibric acid and DEHP treatment produced a marked effect on the profile of site- and stereo-specific microsomal metabolites of testosterone. These results demonstrate that both peroxisome proliferators induce similar form(s) of cytochrome P-450 which are active in the metabolism of endogenous substrates of cytochrome P-450. The possible relevance of these findings to the hepatotoxicity of peroxisome proliferators is discussed.  相似文献   

2.
3.
Induction of microsomal 1-acyl-glycerophosphocholine (GPC) acyltransferase in rat tissues by four peroxisome proliferators, clofibric acid, tiadenol, DEHP and PFOA, was examined. Among the nine tissues examined, kidney, liver and intestinal mucosa responded to the challenges by the peroxisome proliferators to induce the enzyme. The treatment of rats with various dose of clofibric acid, tiadenol, DEHP or PFOA resulted in an induction of kidney microsomal 1-acyl-GPC acyltransferase in a dose-dependent manner. Despite the structural dissimilarity of peroxisome proliferators, the induction of microsomal 1-acyl-GPC acyltransferase was highly correlated with the induction of peroxisomal beta-oxidation. The activity of microsomal 1-acyl-GPC acyltransferase was not affected by changes in hormonal (adrenalectomy, diabetes, hyperthyroidism and hypothyroidism) and nutritional (starvation, starvation-refeeding, fat-free-diet feeding and high-fat-diet feeding) states. The induction of renal microsomal 1-acyl-GPC acyltransferase was seen in mice subsequent to the administration of clofibric acid and tiadenol and in guinea pigs subsequent to the administration of tiadenol. These results may indicate that kidney microsomal 1-acyl-GPC acyltransferase is a highly specific parameter responsive to the challenges by peroxisome proliferators and may suggest that the possibility that the inductions by peroxisome proliferators of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation in kidney are co-regulated.  相似文献   

4.
Rat hepatocytes were cultured for 72 h with or without the addition of 0.5 mM clofibric acid. The activities of individual enzymes of the peroxisomal beta-oxidation pathway (acyl-CoA oxidase, enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional protein, and 3-ketoacyl-CoA thiolase) decreased in the control culture, but markedly increased synchronously in the clofibric acid-treated culture. The levels of mRNAs coding for these enzymes and the rates of synthesis of the enzymes were also elevated in the clofibric acid-treated culture, although no proportional relationship was observed between the time-dependent changes of these parameters. The increase in mRNAs was much higher than the increase in the rate of synthesis of the enzymes. The activity of catalase, its mRNA level and the rate of its synthesis were slightly affected. The effects of clofibric acid on the peroxisomal beta-oxidation enzymes and catalase in primary cultured hepatocytes were very similar to those observed in vivo. These results, therefore, suggest that primary culture of hepatocytes should provide a useful means for investigating the mechanism of induction of peroxisomal enzymes and the mechanism of action of peroxisome proliferators.  相似文献   

5.
Peroxisome proliferator-activated receptor alpha (PPARalpha), a key regulator of fatty acid oxidation, is essential for adaptation to fasting in rats and mice. However, physiological functions of PPARalpha in other species, including humans, are controversial. A group of PPARalpha ligands called peroxisome proliferators (PPs) causes peroxisome proliferation and hepatocarcinogenesis only in rats and mice. To elucidate the role of PPARalpha in adaptation to fasting in nonproliferating species, we compared gene expressions in pig liver from fasted and clofibric acid (a PP)-fed groups against a control diet-fed group. As in rats and mice, fasting induced genes involved with mitochondrial fatty acid oxidation and ketogenesis in pigs. Those genes were also induced by clofibric acid feeding, indicating that PPARalpha mediates the induction of these genes. In contrast to rats and mice, little or no induction of genes for peroxisomal or microsomal fatty acid oxidation was observed in clofibric acid-fed pigs. Histology showed no significant hyperplasia or hepatomegaly in the clofibric acid-fed pigs, whereas it showed a reduction of glycogen by clofibric acid, an effect of PPs also observed in rats. Copy number of PPARalpha mRNA was higher in pigs than in mice and rats, suggesting that peroxisomal proliferation and hyperresponse of several genes to PPs seen only in rats and mice are unrelated to the abundance of PPARalpha. In conclusion, PPARalpha is likely to play a central role in adaptation to fasting in pig liver as in rats and mice.  相似文献   

6.
Using dietary administration, mice were exposed to eight substances known to cause peroxisome proliferation (i.e. clofibrate clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, ICI-55.897, S-8527 and Wy-14.643) or the related substance p-chlorophenoxyacetic acid (group A). Other animals received di(2-ethylhexyl)phthalate, mono(2-ethylhexyl)phthalate, 2-ethylhexanoic acid, or one of 12 other metabolically and/or structurally related compounds (group B). The effects of these treatments on liver cytosolic and microsomal epoxide hydrolases, microsomal cytochrome P-450, cytosolic glutathione transferase activity, the liver-somatic index and the protein contents of the microsomal and cytosolic fractions prepared from liver were subsequently monitored. In general, peroxisome proliferation was accompanied by increases in cytosolic epoxide hydrolase activity. Many peroxisome proliferators also caused increases in microsomal epoxide hydrolase activity, although the correlation was poorer in this case. Immunochemical quantitation by radial immunodiffusion demonstrated that the increases observed in both of these enzyme activities reflected equivalent increases in enzyme protein, i.e. that induction truly occurred. Induction of total microsomal cytochrome P-450 was obtained after dietary exposure to clofibrate, clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, Wy-14.643, di(2-ethylhexyl)phthalate and di(2-ethylhexyl)phosphate. The most pronounced effects on cytosolic glutathione transferase activity were the decreases obtained after treatment with clofibrate, clofibric acid and Wy-14.643. Our results, together with those reported by others, suggest that the processes of peroxisome proliferation and induction of cytosolic epoxide hydrolase are intimately related. One possible explanation for this is presented.  相似文献   

7.
Rats, mice and guinea-pigs were administered p-chlorophenoxyisobutyric acid (clofibric acid) or 2,2'-(decamethylenedithio)diethanol (tiadenol). The treatments of rats and mice with either clofibric acid or tiadenol increased markedly the activities of stearoyl-CoA desaturase, palmitoyl-CoA chain elongation, 1-acylglycerophosphate (1-acyl-GP) acyltransferase and 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase, but not 2-acylglycerophosphocholine (2-acyl-GPC) acyltransferase in liver microsomes. The treatment of guinea-pigs with clofibric acid did not cause any change in the activities of these enzymes. The treatment of guinea-pigs with tiadenol caused a slight, but significant, increase in the activities of 1-acyl-GP acyltransferase and 1-acyl-GPC acyltransferase. The treatment of rats and mice with either clofibric acid or tiadenol increased markedly the proportion of 18:1 and decreased greatly the proportion of 18:0 in liver microsomal phosphatidylcholine. However, there is a considerable difference in the effects of the two peroxisome proliferators on the composition of polyunsaturated fatty acids in phosphatidylcholine between rats and mice. The treatment of guinea-pigs with either of the two peroxisome proliferators caused no change in acyl composition of phosphatidylcholine. The possible role of stearoyl-CoA desaturation in the regulation of acyl composition of phosphatidylcholine was discussed.  相似文献   

8.
The UDP glycosyltransferases (UGT) attach sugar residues to small lipophilic chemicals to alter their biological properties and enhance elimination. Of the four families present in mammals, two families, UGT1 and UGT2, use UDP glucuronic acid to glucuronidate bilirubin, steroids, bile acids, drugs, and many other endogenous chemicals and xenobiotics. UGT8, in contrast, uses UDP galactose to galactosidate ceramide, an important step in the synthesis of glycosphingolipids and cerebrosides. The function of the fourth family, UGT3, is unknown. Here we report the cloning, expression, and functional characterization of UGT3A1. This enzyme catalyzes the transfer of N-acetylglucosamine from UDP N-acetylglucosamine to ursodeoxycholic acid (3alpha, 7beta-dihydroxy-5beta-cholanoic acid). The enzyme uses ursodeoxycholic acid and UDP N-acetylglucosamine in preference to other primary and secondary bile acids, and other UDP sugars such as UDP glucose, UDP glucuronic acid, UDP galactose, and UDP xylose. In addition to ursodeoxycholic acid, UGT3A1 has activity toward 17alpha-estradiol, 17beta-estradiol, and the prototypic substrates of the UGT1 and UGT2 forms, 4-nitrophenol and 1-naphthol. A polymorphic UGT3A1 variant containing a C121G substitution was catalytically inactive. UGT3A1 is found in the liver and kidney, and to a lesser, in the gastrointestinal tract. These data describe the first characterization of a member of the UGT3 family. Its activity and distribution suggest that UGT3A1 may have an important role in the metabolism and elimination of ursodeoxycholic acid in therapies for ameliorating the symptoms of cholestasis or for dissolving gallstones.  相似文献   

9.
The alterations by peroxisome proliferators of metabolism of linoleic acid in rat liver were studied. Administration of P-chlorophenoxyisobutyric acid (clofibric acid) enhanced in vivo conversion of linoleic acid to its desaturated and/or elongated metabolites, 6,9,12-octadecatrienoic acid, 8,11,14-eicosatrienoic acid, and arachidonic acid, whereas the formation of 11,14-eicosadienoic acid was decreased. These changes observed in vivo were confirmed in vitro to be due to the increases in activities of delta 6 desaturation of linoleic acid to 6,9,12-octadecatrienoic acid (18.4 times), delta 8 desaturation of 11,14-eicosadienoic acid to 8,11,14-eicosatrienoic acid (3.4 times), and delta 5 desaturation of 8,11,14-eicosatrienoic acid to arachidonic acid (4.1 times). No considerable changes in activities of chain elongation of either linoleic acid or 6,9,12-octadecatrienoic acid were observed. The increases in the activities of three desaturations by clofibric acid were prevented by the treatment of rats with cycloheximide. The inductions of delta 6 and delta 5 desaturations were brought about by the treatment of rats with 2,2'-(decamethylenedithio)diethanol or di-(2-ethylhexyl)-phthalate, peroxisome proliferators structurally unrelated to clofibric acid, as well. These changes in metabolism of linoleic acid by clofibric acid were consistent with the changes in mass proportion of omega 6 fatty acids in hepatic lipid. Physiological significance of the marked changes in linoleic acid metabolism by peroxisome proliferators was discussed.  相似文献   

10.
Acyl-Coenzyme A thioesters of the hypolipidaemic and cancerinogenic peroxisome proliferators clofibric acid, nafenopin, ciprofibrate, bezafibrate and tibric acid were found to greatly increase the activity of rat brain protein kinase C. Maximal activation required the simultaneous presence of Ca+2, phosphatidylserine and diolein, thus differentiating their action from that of other tumor promoters such as phorbol esters. Under similar conditions the unesterified drugs were comparatively ineffective. Similar results were obtained using the rat liver enzyme. The data suggest that acylcoenzyme A thioesters of hypolipidaemic drugs, may play a role in the induction of liver tumors by these compounds, through the potentiation of protein kinase C.  相似文献   

11.
Recently we have reported that bilirubin UDP-glucuronosyltransferase (UGT1A1) is induced in rat liver by chronic ethanol treatment. Several studies have shown that Kupffer cells play a central role in the mediation of various hepatic effects of chronic alcohol consumption. In the present work, the participation of Kupffer cells in the ethanol dependent induction of UGT1A1 was investigated. A group of rats was pretreated with gadolinium chloride, a known Kupffer-cell-depleting agent. We compared the effect of chronic ethanol ingestion on UGT1A1 expression in the liver of normal and gadolinium chloride treated rats. The effect of ethanol on bilirubin glucuronidation was completely prevented in Kupffer cell deficient rats. The western and northern blot analyses showed that the increase of both the protein and mRNA of UGT1A1 was prevented in these animals. These results suggest that Kupffer cells play a major role in the mediation of ethanol-stimulated induction of UGT1A1 in liver parenchymal cells.  相似文献   

12.
13.
Gunn rat is a hyperbilirubinemic rat strain that is inherently deficient in the activity of UDP-glucuronosyltransferase form 1A1 (UGT1A1). A premature termination codon is predicted to produce truncated UGT1 proteins that lack the COOH-terminal 116 amino acids in Gunn rat. Pulse-chase experiments using primary cell cultures showed that the truncated UGT1A1 protein in Gunn rat hepatocytes was synthesized similarly to wild-type UGT1A1 protein in normal Wistar rat hepatocytes. However, the truncated UGT1A1 protein was degraded rapidly with a half-life of about 50 min, whereas the wild-type UGT1A1 protein had a much longer half-life of about 10 h. The rapid degradation of truncated UGT1A1 protein was inhibited partially but not completely by treating Gunn rat hepatocytes with proteasome inhibitors such as carbobenzoxy-Leu-Leu-leucinal and lactacystin. By contrast, neither the lysosomal cysteine protease inhibitor nor the calpain inhibitor slowed the degradation. Our findings show that the absence of UGT1 protein from Gunn rat hepatocytes is due to rapid degradation of the truncated UGT1 protein by the proteasome and elucidate the molecular basis underlying the deficiency in bilirubin glucuronidation.  相似文献   

14.
Treatment of rats with dehydroepiandrosterone (300 mg/kg body weight, per os, 14 days) caused a remarkable increase in the number of peroxisomes and peroxisomal beta-oxidation activity in the liver. The activities of carnitine acetyltransferase, microsomal laurate 12-hydroxylation, cytosolic palmitoyl-CoA hydrolase, malic enzyme and some other enzymes were also increased. The increases in these enzyme activities were all greater in male rats than in female rats. Immunoblot analysis revealed remarkable induction of acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme in the liver and to a smaller extent in the kidney, whereas no significant induction of these enzymes was found in the heart. The increase in the hepatic peroxisomal beta-oxidation activity reached a maximal level at day 5 of the treatment of dehydroepiandrosterone and the increased activity rapidly returned to the normal level on discontinuation of the treatment. The increase in the activity was also dose-dependent, which was saturable at a dose of more than 200 mg/kg body weight. All these features in enzyme induction caused by dehydroepiandrosterone correlate well with those observed in the treatment of clofibric acid, a peroxisome proliferator. Co-treatment of dehydroepiandrosterone and clofibric acid showed no synergism in the enhancement of peroxisomal beta-oxidation activity, suggesting the involvement of a common process in the mechanism by which these compounds induce the enzymes. These results indicate that dehydroepiandrosterone is a typical peroxisome proliferator. Since dehydroepiandrosterone is a naturally occurring C19 steroid in mammals, the structure of which is novel compared with those of peroxisome proliferators known so far, this compound could provide particular information in the understanding of the mechanisms underlying the induction of peroxisome proliferation.  相似文献   

15.
Liver-type fatty acid binding protein (L-FABP) has been proposed to be involved in the transport of fatty acids and peroxisome proliferators from the cytosol into the nucleus for interaction with the peroxisome proliferator-activated receptors (PPARs). On the basis of this premise, we investigated by isothermal titration calorimetry the binding of myristic, stearic, oleic, and docosahexaenoic acids to three orthologous L-FABPs and compared these results to those obtained for several xenobiotics [Wy14,643, bezafibrate, 5,8,11,14-eicosatetraynoic acid (ETYA), and BRL48,482] known for their peroxisome proliferating activity in rodents. Recombinant human, murine, and bovine L-FABPs were analyzed and the thermodynamic data were obtained. Our studies showed that fatty acids bound with a stoichiometry of 2:1, fatty acid to protein, with dissociation constants for the first binding site in the nanomolar range. With dissociation constants above 1 microM the drug peroxisome proliferators showed weaker binding, with the exception of arachidonate analogue ETYA, which bound with a similar affinity as the natural fatty acid. Some of the thermodynamic data obtained for fatty acid binding could be explained by differences in protein structure. Moreover, our results revealed that binding affinities were not determined by ligand solubility in the aqueous phase.  相似文献   

16.
The effects of two peroxisome proliferators, p-chlorophenoxyisobutyric acid (clofibric acid) and 2,2'-(decamethylenedithio)diethanol (tiadenol), on cytosolic long-chain acyl-CoA hydrolase and peroxisomal beta-oxidation were studied in several organs of rat. Among organs of control rats, the brain had the highest activity of long-chain acyl-CoA hydrolase, followed by testis, and a low activity was found in other tissues. Administration of the peroxisome proliferators caused a marked increase in activity of long-chain acyl-CoA hydrolase in both liver and intestinal mucosa and a slight increase in the activity in kidney, but little affected acyl-CoA hydrolase activity in either brain, testis, heart, spleen and skeletal muscle. In accordance with the change in the activity of acyl-CoA hydrolase, the activity of peroxisomal beta-oxidation was markedly increased in liver, intestinal mucosa and kidney, and a slight increase was found in brain and testis, whereas peroxisome proliferators little affected the activity in other organs tested. Gel filtration of cytosol from intestinal mucosa showed that clofibric acid caused an appearance of a new peak in intestinal mucosa. Although cytosol of liver, intestinal mucosa, brain and testis contained two 4-nitrophenyl acetate esterases with different molecular weights (about 105,000 and about 55,000), these esterases are different from cytosolic long-chain acyl-CoA hydrolases of these four organs in respect of molecular weight. The administration of clofibric acid little affected cytosolic 4-nitrophenyl acetate esterases. Comparative studies on cytosolic long-chain acyl-CoA hydrolases from these four organs showed that liver hydrolase I (molecular weight of about 80,000) had properties similar to those of brain and testis enzymes. On the other hand, intestinal mucosa enzyme was different from either hepatic hydrolase I or II (molecular weight of about 40,000). The results from the present study suggest that inductions of peroxisomal beta-oxidation and cytosolic long-chain acyl-CoA hydrolases are essential responses of rats to peroxisome proliferators not only in liver but also in intestinal mucosa and that induced hydrolases are not attributable to non-specific esterases.  相似文献   

17.
Trifluoperazine, a calmodulin antagonist, suppressed the clofibric acid-evoked induction of the peroxisomal cyanide-insensitive fatty acyl-CoA oxidizing system and carnitine acetyltransferase in rat liver and also in cultured rat hepatocytes. H-7, a potent inhibitor of protein kinase C, also suppressed the induction of these enzymes by clofibric acid, bezafibrate, Wyl4,643 or mono(2-ethylhexyl)phthalate in cultured rat hepatocytes. This suppressive effect was also confirmed by the protein composition of hepatocytes treated with clofibric acid and these antagonists, where the increase in the amount of peroxisomal bifunctional enzyme by peroxisome proliferator was markedly suppressed by above two antagonists. Profile of the time-dependent changes in the activities of the two enzymes after clofibric acid treatment showed that there might be two phases in the induction process. The initial phase (0-3 days after the treatment) showed a relative low inducing rate and subsequent phase (3-5 days after the treatment) showed an abrupt induction. The suppressive effect of the above two antagonists was significant in the later phase. In a time course study of the induction process of peroxisomal catalase, bifunctional enzyme or 69 kDa integral membrane protein using immunochemical detection, the induction of the membrane protein by clofibric acid was delayed compared with that of the bifunctional enzyme, where the induction was inhibited almost completely by nicardipine. These experimental results suggest that calmodulin- and protein kinase C-dependent processes play an important role in the process of marked induction of peroxisomal enzymes and membrane protein by drugs in rat liver.  相似文献   

18.
A major component of phase II drug metabolism is the covalent addition of glucuronic acid to metabolites and xenobiotics. This activity is carried out by UDP-glucuronosyltransferases (UGT) which bind the UDP-glucuronic acid donor and catalyze the covalent addition of glucuronic acid sugar moieties onto a wide variety of substrates. UGTs play important roles in drug detoxification and were recently shown to act in an inducible form of multi-drug resistance in cancer patients. Despite their biological importance, structural understanding of these enzymes is limited. The C-terminal domain is identical for all UGT1A family members and required for binding to UDP-glucuronic acid as well as involved in contacts with substrates. Here, we report the backbone assignments for the C-terminal domain of UGT1A. These assignments are a critical tool for the development of a deeper biochemical understanding of substrate specificity and enzymatic activity.  相似文献   

19.
UDP-glucuronosyltransferase 1A1 (UGT1A1) plays an important physiological role by contributing to the metabolism of endogenous substances such as bilirubin in addition to xenobiotics and drugs. The UGT1A1 gene has been shown to be inducible by nuclear receptors steroid xenobiotic receptor (SXR) and the constitutive active receptor, CAR. In this report, we show that in human hepatoma HepG2 cells the UGT1A1 gene is also inducible with aryl hydrocarbon receptor (Ah receptor) ligands such as 2,3,7,8-tetrachlodibenzo-p-dioxin (TCDD), beta-naphthoflavone, and benzo[a]pyrene metabolites. Induction was monitored by increases in protein and catalytic activity as well as UGT1A1 mRNA. To examine the molecular interactions that control UGT1A1 expression, the gene was characterized and induction by Ah receptor ligands was regionalized to bases -3338 to -3287. Nucleotide sequence analysis of this UGT1A1 enhancer region revealed a xenobiotic response element (XRE) at -3381/-3299. The dependence of the XRE on UGT1A1-luciferase activity was demonstrated by a loss of Ah receptor ligand inducibility when the XRE core region (CACGCA) was deleted or mutated. Gel mobility shift analysis confirmed that TCDD induction of nuclear proteins specifically bound to the UGT1A1-XRE, and competition experiments with Ah receptor and Arnt antibodies demonstrated that the nuclear protein was the Ah receptor. These observations reveal that the Ah receptor is involved in human UGT1A1 induction.  相似文献   

20.
UDP-glucuronosyltransferases (UGTs) are membrane-bound proteins localized to the endoplasmic reticulum and catalyze the formation of beta-d-glucopyranosiduronic acids (glucuronides) using UDP-glucuronic acid and acceptor substrates such as drugs, steroids, bile acids, xenobiotics, and dietary nutrients. Recent biochemical evidence indicates that the UGT proteins may oligomerize in the membrane, but conclusive evidence is still lacking. In the present study, we have used fluorescence resonance energy transfer (FRET) to study UGT1A oligomerization in live cells. This technique demonstrated that UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 self-oligomerize (homodimerize). Heterodimer interactions were also explored, and it was determined that UGT1A1 was capable of binding with UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10. In addition to the in vivo FRET analysis, UGT1A protein-protein interactions were demonstrated through co-immunoprecipitation experiments. Co-expression of hemagglutinin-tagged and cyan fluorescent protein-tagged UGT1A proteins, followed by immunoprecipitation with anti-hemagglutinin beads, illustrated the potential of each UGT1A protein to homodimerize. Co-immunoprecipitation results also confirmed that UGT1A1 was capable of forming heterodimer complexes with all of the UGT1A proteins, corroborating the FRET results in live cells. These preliminary studies suggest that the UGT1A family of proteins form oligomerized complexes in the membrane, a property that may influence function and substrate selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号