首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
Two cholera cases were diagnosed using an enzyme-labeled oligonucleotide probe (ELONP) hybridization test for detection of cholera toxin gene (ctx) in a clinical laboratory at Osaka Airport Quarantine Station. The ELONP test with suspicious colonies of Vibrio cholerae O1 grown on TCBS or Vibrio agar plates gave positive result for ctx within 3 hr. We also tried to apply the ELONP test for direct detection of ctx in their stool and their non-selective culture. Specimens from Case #1, which contained 5.9 × 105 CFU/g of V. cholerae O1 in the stool, cultured for 7–8 hr or longer in alkaline peptone water or Marine broth at 37C, became positive for ctx. On the other hand, specimens from Case #2, which contained 8.7 × 108 CFU/ml (of V. cholerae O1 in the stool), gave positive result in this stool itself without any further culture. These data suggest that the ELONP test provides successfully a more rapid and accurate means of identifying “toxigenic” V. cholerae O1 in a clinical laboratory.  相似文献   

2.
Vibrio cholerae O139 (synonym Bengal), a novel serovar of V. cholerae, is the causative agent of large outbreaks of cholera-like illness currently sweeping India and Bangladesh. Eight randomly selected V. cholerae O139 isolates were studied for their biological properties, which were compared with those of V. cholerae O1 and other V. cholerae non-O1. The V. cholerae O139 isolates were characterized by the production of large amount of cholera toxin, hemagglutination, weak hemolytic properties, resistance to polymyxin B, lysogeny with, and production of, kappa type phage (4/8 isolates only), and resistance to both classical and El Tor-specific phages. Thus, V. cholerae O139 isolates had an overall similarity with V. cholerae O1 El Tor.  相似文献   

3.
In July 1994, 6 cholera cases due to Vibrio cholerae O1 El Tor Ogawa sporadically appeared in Okinawa. All 6 patients had no history of traveling abroad. In the period of this cholera outbreak, a strain of V. cholerae O1 El Tor Ogawa was detected from an imported fish at the Naha port quarantine station. The isolates were characterized to clarify whether or not, they belonged to a common clone. Phenotypes were identical except that one strain revealed cured Celebes and the others were original Celebes in kappa phage typing. The restriction fragment patterns of DNA of the isolates hybridized with an enzyme-labeled oligonucleotide probe for cholera toxin gene (ctx) were identical. Randomly amplified polymorphic DNA of the isolates were identical when a primer was used, but 2 patterns were seen when another primer was used. Pulsed-field gel electrophoresis of the chromosomal DNA digested with NotI restriction enzyme showed 3 patterns. The DNA fragment pattern of the strain isolated from the imported fish was different from the clinical isolates. These results suggested that there was no epidemiological relation among the strains of V. cholerae O1 isolated during this period.  相似文献   

4.
The pili of a strain of Vibrio cholerae O139 were purified and characterized. They were morphologically, electrophoretically and immunologically indistinguishable from the pili with 16 kDa subunit protein of V. cholerae O1. All 22 strains of V. cholerae O139 examined possessed the pili. The pili were different in hemagglutination inhibition pattern from V. cholerae O1 16K pili.  相似文献   

5.
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.  相似文献   

6.
In this study, pulsed-field gel electrophoresis (PFGE) was applied to determine if the Vibrio cholerae O1 strains which reappeared after being temporarily displaced in Calcutta by the O139 serogroup were different from those isolated before the advent of the O139 serogroup. NotI digestion generated a total of 11 different patterns among the 24 strains of V. cholerae randomly selected to represent different time frames. Among the V. cholerae O1 strains isolated after July 1993, 4 PFGE banding patterns designated as H through K were observed with pattern H dominating. Pattern H was distinctly different from all other patterns encountered in this study including patterns A, B and C of V. cholerae O1 El Tor, which dominated before November 1992, and pattern F, which was the dominant V. cholerae O139 pattern. Further, pattern H was also different from the NotI banding patterns of the representative strains of the 4 toxigenic clonal groups of V. cholerae O1 El Tor currently prevailing in different parts of the world. NotI fragments of the new clone of V. cholerae O1 did not hybridize with an O139 specific DNA probe, indicating that there was no O139 genetic material in the new clone of V. cholerae O1. Hybridization data with an O1-specific DNA probe again differentiated between the clones of V. cholerae O1 existing before the genesis of the O139 serogroup and the O1 strains currently prevalent.  相似文献   

7.
Chemical and serological studies were performed with the lipopolysaccharide (LPS) from Vibrio cholerae O144 (O144). The LPS of O144 contained D -glucose, D -galactose, L -glycero-D -manno-heptose, D -fructose, D -quinovosamine (2-amino-2,6-dideoxy-D -gluco-pyranose) and L -perosamine (4-amino-4,6-dideoxy-L -manno-pyranose). The perosamine, a major component sugar of the LPS from O144, was in an L -configuration, as is also the case in the LPS from V. cholerae O76 (O76), in contrast to the D -configuration of the perosamine in the LPS of V. cholerae O1. A structural analysis revealed that the O polysaccharide chain of the LPS from O144 is an α(1 → 2)-linked homopolymer of (R)-(-)-2-hydroxypropionyl-L -perosamine. The serological cross-reactivity between O144 and O76 was clearly revealed by cross-agglutination and cross-agglutinin absorption tests with whole cells, as well as by passive hemolysis tests with sheep red-blood cells that had been sensitized with the LPS from O144 and O76. In contrast, in passive hemolysis tests, the LPS of O144 did not cross-react serologically with the LPSs from other strains such as V. cholerae O1 (Ogawa and Inaba), V. cholerae O140, Vibrio bio-serogroup 1875 (Original and Variant) and Yersinia enterocolitica O9. The LPSs from these strains consist of O polysaccharide chains composed of α(1 → 2)-linked homopolymers of D -perosamine with various N-acyl groups, and they share the Inaba antigen factor C of V. cholerae O1 in common. The results obtained in this study demonstrate that the absolute configuration of the perosamine residue in homopolymers plays a very important role in the expression of the serological specificity of the Inaba antigen factor C of V. cholerae O1.  相似文献   

8.
Production of cholera toxin (CT) in AKI medium and conservation of CT gene (ctx) of 49 strains of Vibrio cholerae O1 were compared by reversed passive latex agglutination (RPLA) and polymerase chain reaction (PCR). The production of CT agreed with conservation of the ctx in 48 out of the 49 strains. Ten strains were positive, and 38 strains were negative by both methods. Only one strain was negative in RPLA and positive in PCR. This suggested that the combination of AKI-SW and RPLA is comparable to PCR to identify CT-producing V. cholerae O1.  相似文献   

9.
In cultures of Vibrio cholerae strains of Ogawa serotype, variant strains which had undergone serotype conversion from Ogawa to Inaba were identified. The rfbT genes cloned from the parent strains were found to produce a 31-kDa protein in the maxicell system, and to cause serotype conversion when introduced into E. coli cells expressing Inaba serotype specificity. On the other hand, rfbT genes cloned from the variant strains neither produced the 31-kDa protein nor caused serotype conversion. Nucleotide sequence of these rfbT genes as well as those of two clinical Vibrio cholerae strains of Inaba serotype revealed that mutations causing premature termination of their rfbT genes were invariably present in strains expressing Inaba serotype specificity. The result strongly suggested that genetic alteration of the rfbT gene is responsible for serotype conversion of Vibrio cholerae O1.  相似文献   

10.
Biological activities of lipopolysaccharide (LPS) isolated from Vibrio cholerae O139, a new causative agent for recent cholera epidemic in Indian subcontinent, were investigated in comparison with those of LPS from O1 V. cholerae. V. cholerae O139 LPS exerted mitogenic activity, lethal toxicity and Shwartzman reaction to the same extent as those observed for O1 V. cholerae LPS, although these activities except for lethal toxicity were obviously lower than those of Salmonella typhimurium LT-2 LPS used as a reference. It was, therefore, suggested that O139 LPS does not contribute to the high infective and pathogenic potentials of the V. cholerae O139 strain as in the case of O1 V. cholerae.  相似文献   

11.
Structural and serological studies were performed with the lipopolysaccharide (LPS) expressed by Escherichia coli K12 strains No. 30 and No. 64, into which cosmid clones derived from Vibrio cholerae O1 NIH 41 (Ogawa) and NIH 35A3 (Inaba) had been introduced, respectively. The two recombinant strains, No. 30 (Ogawa) and No. 64 (Inaba), produced LPS that included, in common, the O-polysaccharide chain composed of an α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine (4-amino-4,6-dideoxy-D -manno-pyranose) homopolymer attached to the core oligosaccharide of the LPS of E. coli K12. Structural analysis revealed the presence of N-(3-deoxy-L -glycero-tetronyl)-2-O-methyl-D -perosamine at the non-reducing terminus of the O-polysaccharide chain of LPS from No. 30 (Ogawa) but not from No. 64 (Inaba). Serological analysis revealed that No. 30 (Ogawa) and No. 64 (Inaba) LPS were found to share the group antigen factor A of V. cholerae O1. They were distinguished by presence of the Ogawa antigen factor B [co-existing with relatively small amounts of the Inaba antigen factor (c)] in the former LPS and the Inaba antigen factor C in the latter LPS. It appears, therefore, that No. 30 (Ogawa) and No. 64 (Inaba) have O-antigenic structures that are fully consistent with the AB(c) structure for the Ogawa and the AC structure for the Inaba O-forms of V. cholerae O1, respectively. Thus, the present study clearly confirmed our previous finding that the Ogawa antigenic factor B is substantially related to the 2-O-methyl group at the non-reducing terminus of the α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine homopolymer that forms the O-polysaccharide chain of LPS of V. cholerae O1 (Ogawa).  相似文献   

12.
Vibrio cholerae O1 El Tor, the pathogen responsible for the current cholera pandemic, became pathogenic by acquiring virulent factors including Vibrio seventh pandemic islands (VSP)‐I and ?II. Diversity of VSP‐II is well recognized; however, studies addressing attachment sequence left (attL) sequences of VSP‐II are few. In this report, a wide variety of V. cholerae strains were analyzed for the structure and distribution of VSP‐II in relation to their attachment sequences. Of 188 V. cholerae strains analyzed, 81% (153/188) strains carried VSP‐II; of these, typical VSP‐II, and a short variant was found in 36% (55/153), and 63% (96/153), respectively. A novel VSP‐II was found in two V. cholerae non‐O1/non‐O139 strains. In addition to the typical 14‐bp attL, six new attL‐like sequences were identified. The 14‐bp attL was associated with VSP‐II in 91% (139/153), whereas the remaining six types were found in 9.2% (14/153) of V. cholerae strains. Of note, six distinct types of the attL‐like sequence were found in the seventh pandemic wave 1 strains; however, only one or two types were found in the wave 2 or 3 strains. Interestingly, 86% (24/28) of V. cholerae seventh pandemic strains harboring a 13‐bp attL‐like sequence were devoid of VSP‐II. Six novel genomic islands using two unique insertion sites to those of VSP‐II were identified in 11 V. cholerae strains in this study. Four of those shared similar gene clusters with VSP‐II, except integrase gene.
  相似文献   

13.
A substance cryoprotective for Vibrio cholerae on the prawn shell surface was purified by ammonium sulfate precipitation and gel filtration. It was a protein of 81 kDa and called cryoprotective protein (CPP). The cryoprotective activity of this protein for V. cholerae was sensitive to heat at 100 C and trypsin treatment. In the presence of Mg ion the protein can bind to the bacterial cell surface. V. cholerae can adhere to the shell surface of the prawn. The number of adhered bacteria was reduced by treating the shell with anti-CPP serum, heat or by trypsin. The presence of Mg ion promoted the adherence. These results suggest that the CPP could serve as an adherence site for V. cholerae on the shell surface.  相似文献   

14.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

15.
Vibrio cholerae non‐O1, non‐O139 (VC_NAG) organisms are universally present in the aquatic environment and regarded as non‐pathogenic bacteria. However, considering that they do occasionally induce gastroenteritis, a study of their virulence and antibiotic resistance genes is important. The presence of enteropathogenic genes, including ctxA, VC_NAG‐specific heat‐stable toxin gene (st), hemolysin (hly), and zona occludens toxin (zot) was determined by PCR in 100 VC_NAG strains isolated in southern Vietnam in 2010–2013 from 94 environmental and six human origins. These 100 VC_NAG strains were also tested phenotypically and genotypically for the presence of the New Delhi metallo‐β‐lactamase (NDM‐1). Of the 100 VC_NAG strains tested, six were positive for ctxA; five from the environment and one of human origin. The st gene was detected in 17 isolates, 15 and two of which were of environmental and human origins, respectively. Gene hly was detected in 19 VC_NAG strains examined, two of which were isolated from humans and 17 from environments. The zot gene was not detected in any of the strains tested. Three VC_NAG strains of environmental origin were confirmed to produce NDM‐1 and the blaNDM‐1 gene was detected in those strains by PCR. Of note, one of the three NDM‐1‐producing VC_NAG strains was confirmed to carry ctxA, st and hly genes concurrently. This is the first report of isolation of NDM‐1‐producing VC_NAG strains in Vietnam.  相似文献   

16.
A filamentous phage was isolated from carrier strain AI-1841 of Vibrio cholerae O139 Bengal and thus was termed fs phage. The phage was measured to be approximately 1 μm in length and 6 nm in width. One end of the phage was slightly tapered and had a fibrous appendage. The plaques developed on strain AI-4450 of V. cholerae O139 were small and turbid. The phage grew in strain AI-4450 and reached a size of 108 to 109 pfu/ml at 5 hr after infection without inducing any lysis of the host bacteria. The group of phages attached on rod-shaped materials like fimbriae of this bacteria, with their fibrous appendages at the pointed end, were often found in the phage-infected culture. The anti-fimbrial serum effectively inhibited the infection of fs phage to the host strain AI-4450. We thus concluded that the phage can be adsorbed on fimbriae with a fibrous appendage on the pointed end of the phage filament.  相似文献   

17.
An environmental isolate of V. mimicus, strain E-33, has been reported to produce and secrete a hemolysin of 63 kDa. The hemolysin is enterotoxic in test animals. The nucleotide sequence of the structural gene of the hemolysin was determined. We found a 2,232 bp open reading frame, which codes a peptide of 744 amino acids, with a calculated molecular weight of 83,903 Da. The sequence for the structural gene was closely related to the V. cholerae el tor hlyA gene, coding an exocellular hemolysin. The amino terminal amino-acid sequence of the 63 kDa hemolysin, purified from V. mimicus, was determined by the Edman degradation method and found to be NH2-S-V-S-A-N-N-V-T-N-N-N-E-T. This sequence is identical from S-152 to T-164 predicted from the nucleotide sequence. So, it seems that the mature hemolysin in V. mimicus is processed upon deleting the first 151 amino acids, and the molecular mass is 65,972 Da. Analyzing the deduced amino-acid sequence, we also found a potential signal sequence of 24 amino acids at the amino terminal. Our results suggest that, like V. cholerae hemolysin, two-step processing also exists in V. mimicus hemolysin.  相似文献   

18.
Aims: To study the genetic relatedness between V. cholerae isolates from Iran and other countries based on housekeeping gene recA sequence analysis. Methods and Results: A 995‐bp region of the recA gene from 24 V. cholerae isolates obtained from human and surface water origins in Iran over a 5‐year period was sequenced and compared with the sequence data from the isolates belonging to other places. Cluster analysis of the constructed dendrogram based on recA sequence divergence for our clinical isolates showed one sequence type (ST), whereas environmental isolates revealed eight STs. Interestingly, one of our environmental isolates was intermixed with clinical isolates in the largest cluster containing the epidemic strains. Our 24 isolates plus 198 global isolates available in the GenBank showed 77 sequence types (STs) with at least one nucleotide difference. Conclusions: Our result suggested that recA sequencing is a reliable analysis method for understanding the relatedness of the local isolates with the isolates obtained elsewhere. Significance and Impact of the Study: Understanding the genetic relatedness between V. cholerae isolates could give insights into the health care system for better control and prevention of the cholera.  相似文献   

19.
The distribution of Vibrio cholerae O1 pili consisting of 16 kDa subunit protein (16K-pili) was examined by Western blotting, using 211 strains from various origins and specific anti-16K-pili sera. The 16 kDa protein was detected in all 211 strains. The pili were purified from 3 El Tor and 3 classical strains, and characterized by hemagglutination and inhibition tests. All purified pili were hemagglutinative. However, the hemagglutinating activity of classical pili disappeared after exposure to 5 M urea and the agglutination induced by the classical pili was inhibited by D -mannose, alpha-methylmannoside, D -glucose and N-acetylglucosamine. On the contrary, El Tor pili were resistant to these sugars and urea.  相似文献   

20.
Vibrio cholerae O139 isolated from different countries, as well as from different locations within a country, were examined using macrorestriction DNA analysis to determine the clonality of the O139 strains. NotI digests of genomic DNA of representative strains from Nepal, India, Bangladesh, China, Thailand, and Malaysia revealed very similar but not identical patterns. Examinations of the banding patterns generated by pulsed-field gel electrophoresis of strains isolated within countries revealed complete homogeneity. These results further reiterate the spread of an identical clone of V. cholerae O139 although it appears that genetic polymorphism among the O139 strains is becoming apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号