首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rat liver peroxisomes contain in their matrix the α-subunit of the mitochondrial F1-ATPase complex. The identification of this protein in liver peroxisomes has been achieved by immunoelectron microscopy and subcellular fractionation. No β-subunit of the mitochondrial F1-ATPase complex was detected in the peroxisomal fractions obtained in sucrose gradients or in Nycodenz pelletted peroxisomes. The consensus peroxisomal targeting sequence (Ala-Lys-Leu) is found at the carboxy terminus of the mature α-subunit from bovine heart and rat liver mitochondria. Due to the dual subcellular localization of the α-subunit and to the structural homologies that exist between this protein and molecular chaperones [(1990) Biol. Chem. 265, 7713-7716] it is suggested that the protein should perform another functional role(s) in both organelles, plus to its characteristic involvement in the regulation of mitochondrial ATPase activity.  相似文献   

2.
Rat liver peroxisomes contain in their matrix the alpha-subunit of the mitochondrial F1-ATPase complex. The identification of this protein in liver peroxisomes has been achieved by immunoelectron microscopy and subcellular fractionation. No beta-subunit of the mitochondrial F1-ATPase complex was detected in the peroxisomal fractions obtained in sucrose gradients or in Nycodenz pelletted peroxisomes. The consensus peroxisomal targeting sequence (Ala-Lys-Leu) is found at the carboxy terminus of the mature alpha-subunit from bovine heart and rat liver mitochondria. Due to the dual subcellular localization of the alpha-subunit and to the structural homologies that exist between this protein and molecular chaperones [(1990) Biol. Chem. 265, 7713-7716] it is suggested that the protein should perform another functional role(s) in both organelles, plus to its characteristic involvement in the regulation of mitochondrial ATPase activity.  相似文献   

3.
Molecular Chaperones and Mitochondrial Protein Folding   总被引:7,自引:0,他引:7  
Precursor proteins destined for the mitochondrial matrix traverse inner and outer organelle membranes in an extended conformation. Translocation events are therefore integrally coupled to the processes of protein unfolding in the cytosol and protein refolding in the matrix. To successfully import proteins from the cytoplasm into mitochondria, cells have recruited a variety of molecular chaperone systems and folding catalysts. Within the organelles, mitochondrial Hsp70 (mt-Hsp70) is a major player in this process and exerts multiple functions. First, mt-Hsp70 binds together with cohort proteins to incoming polypeptide chains, thus conferring unidirectionality on the translocation process, and then assists in their refolding. A subset of imported proteins requires additional assistance by chaperonins of the Hsp60/Hsp10 family. Protein folding occurs within the cavity of these cylindrical complexes. A productive interaction of precursor proteins with molecular chaperones in the matrix is not only crucial for correct refolding and assembly, but also for processing of presequences, intramitochondrial sorting, and degradation of proteins. This review focuses on the role of mt-Hsp70 and Hsp60/Hsp10 in protein folding in the mitochondrial matrix and discusses recent findings on their molecular mechanism of action.  相似文献   

4.
Highly purified peroxisomal fractions from rat liver contain ATPase activity (18.8 ± 0.1 nmol/min per mg, n = 6). This activity is about 2% of that found in purified mitochondrial fractions. Measurement of marker enzyme activities and immunoblotting of the peroxisomal fraction with an antiserum raised against the β-subunit of mitochondrial ATPase indicates that the ATPase activity in the peroxisomal fractions can not be ascribed to contamination with mitochondria or other subcellular organelles. From the sensitivity of the ATPase present in the peroxisomal fraction towards a variety of ATPase inhibitors, we conclude that it displays both V-type and F-type features and is distinguishable from both the mitochondrial F1F0-ATPase and the lysosomal V-type ATPase.  相似文献   

5.
The sorting of homologous proteins between two separate intracellular organelles is a major unsolved problem. 3-Oxoacyl-CoA thiolase is localized in mitochondria and peroxisomes, and provides a good system for the study on the problem. Unlike most mitochondrial matrix proteins, mitochondrial 3-oxoacyl-CoA thiolase in rats is synthesized with no transient presequence and possess information for mitochondrial targeting and import in the mature protein. Two overlapping cDNA clones contained an open reading frame encoding a polypeptide of 397 amino acid residues (predicted Mr = 41,868), a 5' untranslated sequence of 164 bp, a 3' untranslated sequence of 264 bp and a poly(A) tract. The amino acid sequence of the mitochondrial thiolase is 37% identical with that of the mature portion of rat peroxisomal 3-oxoacyl-CoA thiolase precursor. These results suggest that the two thiolases have a common origin and obtained information for targeting to respective organelles during evolution. Two portions in the mitochondrial thiolase that may serve as a mitochondrial targeting signal are presented.  相似文献   

6.
The precursors of the F1-ATPase -subunits fromNicotiana plumbaginifolia andNeurospora crassa were imported into isolated spinach (Spinacia oleracea L.) leaf mitochondria. Both F1 precursors were imported and processed to mature size products. No import of the mitochondrial precursor proteins into isolated intact spinach chloroplasts was seen. Moreover, the precursor of the 33 kDa protein of photosynthetic water-splitting enzyme was not imported into the leaf mitochondria. This study provides the first experimental report ofin vitro import of precursor proteins into plant mitochondria isolated from photosynthetic tissue and enables studies of protein sorting between mitochondria and chloroplasts in a system which is homologous with respect to organelles. The results suggest a high organellar specificity in the plant cell for the cytoplasmically synthesized precursor proteins.  相似文献   

7.
Phosphorylation and dephosphorylation of the proteins residing in the outer mitochondrial membrane, mitoplasts and whole mitochondria of maize (Zea mays L.) were investigated in order to reveal the possible participation of these processes in mitochondrial signaling. A mitochondrial protein of around 57 kD was identified by immunocytochemistry as α-subunit of the F1-ATPase complex. In isolated mitochondria of maize, phosphorylation of this protein could be visualized only after treating mitochondria with endotholl, an inhibitor of the PP1a and PP2A protein phosphatases. A phosphorylated protein of 46.6 kD was identified as β-subunit of the F1-ATPase complex. Ca2+ is the most common second messenger participating in mitochondrial signaling. We conclude that the transmission of the Ca2+ signal to the plant mitochondria occurs via proteins of the outer mitochondrial membrane. The systems perceiving this signal could include the protein phosphatases residing in the outer mitochondrial membrane, which preferentially dephosphorylate the proteins in the inner membrane.  相似文献   

8.
The evidence accumulated to date indicates that protein compartmentalization is mediated through specific regions of proteins destined for translocation into subcellular organelles. Proteins targeted to mitochondria, chloroplasts or the endoplasmic reticulum have 'transit' sequences contained in amino-terminal peptide extensions. However, most peroxisomal proteins do not have amino-terminal extensions. Protein importation into mitochondria has been extensively studied and characterized. This post-translational process appears to involve receptors on the mitochondrial outer membrane, and is dependent upon the electrochemical gradient across the inner membrane. Translocation to one of the submitochondrial compartments is determined by the type of transit sequence contained in a mitochondrial protein. The majority of imported mitochondrial proteins are proteolytically altered prior to assembly into oligomeric enzyme complexes. Protein importation into peroxisomes is distinctly different from importation into mitochondria. Although both processes are post-translational, their only other similarity is a requirement for ATP. In this review, we present and compare recent evidence for both mitochondrial and peroxisomal protein importation.  相似文献   

9.
The tripeptide serine-lysine-leucine (SKL) occurs at the carboxyl terminus of many peroxisomal proteins and serves as a peroxisomal targeting signal. Saccharomyces cerevisiae has two isozymes of citrate synthase. The peroxisomal form, encoded by CIT2, terminates in SKL, while the mitochondrial form, encoded by CIT1, begins with an amino-terminal mitochondrial signal sequence and ends in SKN. We analyzed the importance of SKL as a topogenic signal for citrate synthase, using oleate to induce peroxisomes and density gradients to fractionate organelles. Our experiments revealed that SKL was necessary for directing citrate synthase to peroxisomes. C-terminal SKL was also sufficient to target a leaderless version of mitochondrial citrate synthase to peroxisomes. Deleting this tripeptide from the CIT2 protein caused peroxisomal citrate synthase to be missorted to mitochondria. These experiments suggest that the CIT2 protein contains a cryptic mitochondrial targeting signal.  相似文献   

10.
Aung K  Hu J 《The Plant cell》2011,23(12):4446-4461
Peroxisomes and mitochondria are multifunctional eukaryotic organelles that are not only interconnected metabolically but also share proteins in division. Two evolutionarily conserved division factors, dynamin-related protein (DRP) and its organelle anchor FISSION1 (FIS1), mediate the fission of both peroxisomes and mitochondria. Here, we identified and characterized a plant-specific protein shared by these two types of organelles. The Arabidopsis thaliana PEROXISOMAL and MITOCHONDRIAL DIVISION FACTOR1 (PMD1) is a coiled-coil protein tethered to the membranes of peroxisomes and mitochondria by its C terminus. Null mutants of PMD1 contain enlarged peroxisomes and elongated mitochondria, and plants overexpressing PMD1 have an increased number of these organelles that are smaller in size and often aggregated. PMD1 lacks physical interaction with the known division proteins DRP3 and FIS1; it is also not required for DRP3's organelle targeting. Affinity purifications pulled down PMD1's homolog, PMD2, which exclusively targets to mitochondria and plays a specific role in mitochondrial morphogenesis. PMD1 and PMD2 can form homo- and heterocomplexes. Organelle targeting signals reside in the C termini of these proteins. Our results suggest that PMD1 facilitates peroxisomal and mitochondrial proliferation in a FIS1/DRP3-independent manner and that the homologous proteins PMD1 and PMD2 perform nonredundant functions in organelle morphogenesis.  相似文献   

11.
The targeting and assembly of nuclear-encoded mitochondrial proteins are essential processes because the energy supply of humans is dependent upon the proper functioning of mitochondria. Defective import of mitochondrial proteins can arise from mutations in the targeting signals within precursor proteins, from mutations that disrupt the proper functioning of the import machinery, or from deficiencies in the chaperones involved in the proper folding and assembly of proteins once they are imported. Defects in these steps of import have been shown to lead to oxidative stress, neurodegenerative diseases, and metabolic disorders. In addition, protein import into mitochondria has been found to be a dynamically regulated process that varies in response to conditions such as oxidative stress, aging, drug treatment, and exercise. This review focuses on how mitochondrial protein import affects human health and disease.  相似文献   

12.
13.
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles.  相似文献   

14.
Peroxisomal ascorbate peroxidase (APX) sorts indirectly via a subdomain of the ER (peroxisomal ER) to the boundary membrane of peroxisomes in tobacco Bright Yellow 2 cells. This novel subdomain characteristically appears as fluorescent reticular/circular compartments distributed variously in the cytoplasm. Further characterizations are presented herein. A peptide possessing the membrane targeting information for peroxisomal APX was fused to GFP (GFP-APX). Transiently expressed GFP-APX sorted to peroxisomes and to reticular/circular compartments; in both cases, the GFP moiety faced the cytosol. Of particular interest, both homotypic and heterotypic aggregates of peroxisomes, mitochondria, and/or plastids were formed. The latter two organelles comprised the circular portion of the reticular/circular compartments, apparently as a consequence of oligomerization (zippering) of the GFP moieties after insertion into the outer membranes of the affected organelles. These results, coupled with the accumulation of endogenous peroxisomal APX in cytoplasmic, noncircular compartment(s) following treatment with brefeldin A, indicate that authentic peroxisomal ER is composed only of a reticular compartment(s). Equally important, the data show that overexpressed, membrane-targeted GFP fusion proteins have a propensity to form organelle aggregates that may lead to misinterpretations of sorting pathways of trafficked proteins.  相似文献   

15.
Cellular proteins and organelles such as peroxisomes are under continuous quality control. Upon synthesis in the cytosol, peroxisomal proteins are kept in an import-competent state by chaperones or specific proteins with an analogous function to prevent degradation by the ubiquitin–proteasome system. During protein translocation into the organelle, the peroxisomal targeting signal receptors (Pex5, Pex20) are also continuously undergoing quality control to enable efficient functioning of the translocon (RADAR pathway). Even upon maturation of peroxisomes, matrix enzymes and peroxisomal membranes remain subjected to quality control. As a result of their oxidative metabolism, peroxisomes are producers of reactive oxygen species (ROS), which may damage proteins and lipids. To counteract ROS-induced damage, yeast peroxisomes contain two important antioxidant enzymes: catalase and an organelle-specific peroxiredoxin. Additionally, a Lon-type protease has recently been identified in the peroxisomal matrix, which is capable of degrading nonfunctional proteins. Finally, cellular housekeeping processes keep track of the functioning of peroxisomes so that dysfunctional organelles can be quickly removed via selective autophagy (pexophagy). This review provides an overview of the major processes involved in quality control of yeast peroxisomes.  相似文献   

16.
Sorting pathways of mitochondrial inner membrane proteins   总被引:14,自引:0,他引:14  
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa F0-ATPase has been studied as an example. F0 subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokaryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway.  相似文献   

17.
Targeting sequences on peroxisomal membrane proteins have not yet been identified. We have attempted to find such a sequence within PMP47, a protein of the methylotrophic yeast, Candida boidinii. This protein of 423 amino acids shows sequence similarity with proteins in the family of mitochondrial carrier proteins. As such, it is predicted to have six membrane-spanning domains. Protease susceptibility experiments are consistent with a six-membrane-spanning model for PMP47, although the topology for the peroxisomal protein is inverted compared with the mitochondrial carrier proteins. PMP47 contains two potential peroxisomal targeting sequences (PTS1), an internal SKL (residues 320- 322) and a carboxy terminal AKE (residues 421-423). Using a heterologous in vivo sorting system, we show that efficient sorting occurs in the absence of both sequences. Analysis of PMP47- dihydrofolate reductase (DHFR) fusion proteins revealed that amino acids 1-199 of PMP47, which contain the first three putative membrane spans, do not contain the necessary targeting information, whereas a fusion with amino acids 1-267, which contains five spans, is fully competent for sorting to peroxisomes. Similarly, a DHFR fusion construct containing residues 268-423 did not target to peroxisomes while residues 203-420 appeared to sort to that organelle, albeit at lower efficiency than the 1-267 construct. However, DHFR constructs containing only amino acids 185-267 or 203-267 of PMP47 were not found to be associated with peroxisomes. We conclude that amino acids 199-267 are necessary for peroxisomal targeting, although additional sequences may be required for efficient sorting to, or retention by, the organelles.  相似文献   

18.
We studied the role of mitochondrial cyclophilin 20 (CyP20), a peptidyl-prolyl cis-trans isomerase, in preprotein translocation across the mitochondrial membranes and protein folding inside the organelle. The inhibitory drug cyclosporin A did not impair membrane translocation of preproteins, but it delayed the folding of an imported protein in wild-type mitochondria. Similarly, Neurospora crassa mitochondria lacking CyP20 efficiently imported preproteins into the matrix, but folding of an imported protein was significantly delayed, indicating that CyP20 is involved in protein folding in the matrix. The slow folding in the mutant mitochondria was not inhibited by cyclosporin A. Folding intermediates of precursor molecules reversibly accumulated at the molecular chaperones Hsp70 and Hsp60 in the matrix. We conclude that CyP20 is a component of the mitochondrial protein folding machinery and that it cooperates with Hsp70 and Hsp60. It is speculated that peptidyl-prolyl cis-trans isomerases in other cellular compartments may similarly promote protein folding in cooperation with chaperone proteins.  相似文献   

19.
Mitochondria and peroxisomes can be fragmented by the process of fission. The fission machineries of both organelles share a set of proteins. GDAP1 is a tail‐anchored protein of mitochondria and induces mitochondrial fragmentation. Mutations in GDAP1 lead to Charcot‐Marie‐Tooth disease (CMT), an inherited peripheral neuropathy, and affect mitochondrial dynamics. Here, we show that GDAP1 is also targeted to peroxisomes mediated by the import receptor Pex19. Knockdown of GDAP1 leads to peroxisomal elongation that can be rescued by re‐expressing GDAP1 and by missense mutated forms found in CMT patients. GDAP1‐induced peroxisomal fission is dependent on the integrity of its hydrophobic domain 1, and on Drp1 and Mff, as is mitochondrial fission. Thus, GDAP1 regulates mitochondrial and peroxisomal fission by a similar mechanism. However, our results reveal also a more critical role of the amino‐terminal GDAP1 domains, carrying most CMT‐causing mutations, in the regulation of mitochondrial compared to peroxisomal fission.  相似文献   

20.
Mitochondrial and glyoxysomal malate dehydrogenase (mMDH; gMDH; L-malate: NAD+ oxidoreductase; EC 1.1.1.37) of watermelon (Citrullus vulgaris) cotyledons are synthesized with N-terminal cleavable presequences which are shown to specify sorting of the two proteins. The two presequences differ in length (27 or 37 amino acids) and primary structure. Precursor proteins of the two isoenzymes with site-directed mutations in their presequences and hybrid precursor proteins with reciprocally exchanged presequences were analyzed for proper import using two approaches, namely in vitro using isolated watermelon organelles or in vivo after synthesis in the heterologous host, Hansenula polymorpha. The mitochondrial presequence is essential and sufficient to target the mature glyoxysomal isoenzyme into mitochondria (Gietl et al., 1994). As to the function of the mitochondrial presequence a substitution of ?3R (considered important for one step precursor cleavage in yeast and mammals) with ?3L permitted import into mitochondria but cleavage of the transit peptide and conversion into active mature enzyme was impeded. Substitution of ?13R?12S (in a sequence reminiscent of the octapeptide motif serving as a substrate for the mammalian and yeast intermediate peptidase) into ?13L12F permitted mitochondrial import and processing like the wild type transit peptide. Purified rat mitochondrial processing protease, which can effect single step cleavage of mitochondrial protein precursors, cleaves in vitro translated watermelon mMDH precursor into its mature form. The glyoxysomal presequence is essential and sufficient to target the mature mitochondrial isoenzyme into peroxisomes of Hansenula polymorpha, but these peroxisomes lack a processing enzyme to cleave the presequence (Gietl et al., 1994). We here show that isolated watermelon organelles also import the hybrid proteins in vitro and process the glyoxysomal presequence. Site directed mutations within the conserved RI-X5-HL-motif impede efficiency of import and cleavage by watermelon organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号