首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little JB 《Mutation research》2006,597(1-2):113-118
This report reviews briefly some of the findings reported over the past 2 years that enhance our understanding of the radiation-induced bystander effect. These developments include: technicological advances; the role of oxidative stress; the effect of cytoplasmic irradiation; cell-to-cell communication; and evidence that Connexin 43 mediated intercellular communication is induced by radiation exposure. A few overriding unanswered questions are discussed. These include: what is the signal(s) transmitted from irradiated to bystander cells; what is the relationship between the bystander response and other non-targeted effects of radiation; are there beneficial effects associated with the bystander response; and what is the significance of the bystander effect for radiation protection?  相似文献   

2.
An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons.  相似文献   

3.
BACKGROUND: Direct cell-to-cell contact appears to be a prerequisite for the proliferative response of bystander WB-F344 cells co-cultured with irradiated cells; however, neither gap junctional intercellular communication nor long-range factors released into the medium appear to be involved (Cytometry 2003;56A:71-80). The present work investigated whether the proliferative bystander response depends on the number of irradiated cells (cells exposed to external gamma-rays or cells exposed to short-range beta-particles emitted by DNA-incorporated (3)H-thymidine) that are adjacent to unirradiated bystander cells. METHODS: Subconfluent monolayers of rat liver epithelial cells (WB-F344) were incubated in the presence of (methyl-(3)H)thymidine at a concentration of 5.8 kBq/ml for 18 h. Radiolabeled cells containing 0.7 x 10(-3) Bq/cell (absorbed dose: 0.14 Gy) were plated together with unlabeled cells in proportions of 6% and 94%, 12% and 88%, 25% and 75%, 50% and 50%, and 75% and 25%, respectively, keeping constant the total number of plated cells. In a parallel experiment, cells acutely exposed to 5 Gy of (137)Cs gamma-rays were plated with unirradiated cells in the same proportions. In both experiments, cells were co-cultured for 24 h followed by a flow cytometric study of their proliferation. The two cell populations in the co-cultures were distinguished by staining one population with carboxyfluorescein diacetate, succinimidyl ester, which metabolizes intracellularly. RESULTS: Increasing the fraction of irradiated cells relative to unirradiated bystander cells led to an increase in proliferation of bystander cells. Specifically, in co-cultures in which irradiated cells were initially mixed with unirradiated cells in proportions of 50% and 50% and of 75% and 25%, respectively, bystander cells showed a statistically significant increase of their proliferation compared with the controls. CONCLUSIONS: The proliferative response of WB-F344 bystander cells is modulated by the number of adjacent cells that are exposed to ionizing radiation from external gamma-rays or intracellularly emitted (3)H beta-particles.  相似文献   

4.
There is strong evidence that biological response to ionizing radiation has a contribution from unirradiated "bystander" cells that respond to signals emitted by irradiated cells. We discuss here an approach incorporating a radiobiological bystander response, superimposed on a direct response due to direct energy deposition in cell nuclei. A quantitative model based on this approach is described for alpha-particle-induced in vitro oncogenic transformation. The model postulates that the oncogenic bystander response is a binary "all or nothing" phenomenon in a small sensitive subpopulation of cells, and that cells from this sensitive subpopulation are also very sensitive to direct hits from alpha particles, generally resulting in a directly hit sensitive cell being inactivated. The model is applied to recent data on in vitro oncogenic transformation produced by broad-beam or microbeam alpha-particle irradiation. Two parameters are used in analyzing the data for transformation frequency. The analysis suggests that, at least for alpha-particle-induced oncogenic transformation, bystander effects are important only at small doses-here below about 0.2 Gy. At still lower doses, bystander effects may dominate the overall response, possibly leading to an underestimation of low-dose risks extrapolated from intermediate doses, where direct effects dominate.  相似文献   

5.
It has long been accepted that radiation-induced genetic effects require that DNA be hit and damaged directly by the radiation. Recently, evidence has accumulated that in cell populations exposed to low doses of alpha particles, biological effects occur in a larger proportion of cells than are estimated to have been traversed by alpha particles. The end points observed include chromosome aberrations, mutations and gene expression. The development of a fast single-cell microbeam now makes it possible to expose a precisely known proportion of cells in a population to exactly defined numbers of alpha particles, and to assay for oncogenic transformation. The single-cell microbeam delivered no, one, two, four or eight alpha particles through the nuclei of all or just 10% of C3H 10T1/2 cells. We show that (a) more cells can be inactivated than were actually traversed by alpha particles and (b) when 10% of the cells on a dish are exposed to alpha particles, the resulting frequency of induced transformation is not less than that observed when every cell on the dish is exposed to the same number of alpha particles. These observations constitute evidence suggesting a bystander effect, i.e., that unirradiated cells are responding to damage induced in irradiated cells. This bystander effect in a biological system of relevance to carcinogenesis could have significant implications for risk estimation for low-dose radiation.  相似文献   

6.
This paper discusses two phenomena of importance at low doses that have an impact on the shape of the dose-response relationship. First, there is the bystander effect, the term used to describe the biological effects observed in cells that are not themselves traversed by a charged particle, but are neighbors of cells that are; this exaggerates the effect of small doses of radiation. Second, there is the adaptive response, whereby exposure to a low level of DNA stress renders cells resistant to a subsequent exposure; this reduces the effect of low doses of radiation. The present work was undertaken to assess the relative importance of the adaptive response and the bystander effect induced by radiation in C3H 10T(1/2) cells in culture. When the single-cell microbeam delivered from 1 to 12 alpha particles through the nuclei of 10% of C3H 10T(1/2) cells, more cells were inactivated than were actually traversed by alpha particles. The magnitude of this bystander effect increased with the number of particles per cell. An adaptive dose of 2 cGy of gamma rays, delivered 6 h beforehand, canceled out about half of the bystander effect produced by the alpha particles.  相似文献   

7.
Chaudhry MA 《Mutation research》2006,597(1-2):98-112
In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell communication processes in bystander cells receiving media from irradiated cells supports the active involvement of these processes in inducing bystander effect.  相似文献   

8.
Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing.  相似文献   

9.
The radiation-induced bystander effect for clonogenic survival   总被引:2,自引:0,他引:2  
It has long been accepted that the radiation-induced heritable effects in mammalian cells are the result of direct DNA damage. Recent evidence, however, suggests that when a cell population is exposed to a low dose of alpha particles, biological effects occur in a larger proportion of cells than are estimated to have been traversed by alpha particles. Experiments involving the Columbia University microbeam, which allows a known fraction of cells to be traversed by a defined number of alpha particles, have demonstrated a bystander effect for clonogenic survival and oncogenic transformation in C3H 10T(1/2) cells. When 1 to 16 alpha particles were passed through the nuclei of 10% of a C3H 10T(1/2) cell population, more cells were unable to form colonies than were actually traversed by alpha particles. Both hit and non-hit cells contributed to the outcome of the experiments. The present work was undertaken to assess the bystander effect of radiation in only non-hit cells. For this purpose, Chinese hamster V79 cells transfected with hygromycin- or neomycin-resistance genes were used. V79 cells stably transfected with a hygromycin resistance gene and stained with a nuclear dye were irradiated with the charged-particle microbeam in the presence of neomycin-resistant cells. The biological effect was studied in the neomycin-resistant V79 cells after selective removal of the hit cells with geneticin treatment.  相似文献   

10.
This research incorporates new biological concepts to improve the predictive ability of a state-vector model with respect to dose-response data on in vitro oncogenic transformation, including mechanisms of DNA damage, DNA repair, cell death, cell proliferation and intercellular communication. Experimentally recognized biological processes, including background transformation, compensatory proliferation and bystander cell-killing effect were formulated mathematically and included as model parameters. These were then adjusted with an optimization method to reproduce in vitro transformation frequency data from C3H10T1/2 mouse cells exposed to acute doses of X-rays. A plateau observed in the data at low doses is reproduced well and a dose-dependent increase above 1Gy is predicted almost precisely. Extension of the model predictions to the dose range 0-100mGy indicates that transformation frequencies are practically constant over this low dose region. Results suggest a protective, rather than detrimental, bystander cell-killing effect. Further analysis of model sensitivity to this bystander parameter, though, revealed uncertainties with respect to its biological plausibility in the model.  相似文献   

11.
Radiation-induced damage to living cells results from either a direct hit to cellular DNA, or from indirect action which leads to DNA damage from radiation produced radicals. However, in recent years there is evidence that biological effects such as cell killing, mutation induction, chromosomal damage and modification of gene expression can occur in a cell population exposed to low doses of alpha particles. In fact these doses are so low that not all cells in the population will be hit directly by the radiation. Using a precision alpha-particle microbeam, it has been recently demonstrated that irradiated target cells can induce a bystander mutagenic response in neighboring "bystander" cells which were not directly hit by alpha particles. Furthermore, these results suggest that gap-junction mediated cell-to-cell communication plays a critical role in this bystander phenomenon. The purpose of this section is to describe recent studies on bystander biological effects. The recent work described here utilized heavy charged particles for irradiation, and investigated the role of gap-junction mediated cell-cell communication in this phenomenon.  相似文献   

12.
Mammalian cell cultures offer powerful tools for evaluating qualitatively and quantitatively the oncogenic potential of radiation over a wide range of doses with particular importance at the low dose range that is relevant to human exposure and risk. Our studies have shown that early events in the process of radiation induced transformation in both rodent and human cells requires initial replication for fixation of transformation as a hereditary property of the cells and further clonal expansion for full expression. Early events (fixation) are inhibited by cell–cell contact and high cell density but can be modified at low temperature where repair processes are slowed. Cell–cell contact and communication in tissue organization may be in part responsible for our findings that radiation oncogenesis induced in utero in hamsters is expressed at a lower frequency than that induced in vitro. Quantitative studies carried out on hamster embryo cells indicate that neutrons are more effective in their carcinogenic potential than x-rays but also more toxic, that splitting the dose of x-rays at low doses leads to enhanced transformation, but that at high doses protracted radiation has a sparing effect. At all dose ranges survival was increased by protracting the radiation dose, thus suggesting that different repair processes must be involved for survival and transformation. Similar observations were seen when the protease inhibitor Antipain was found to enhance transformation in rodent and human cells when present at the time of radiation, but was protective when added after radiation. Survival was not modified under any of those conditions, and Antipain did not affect DNA replication and repair. In our qualitative studies, once cells are transformed by radiation, they exhibit a wide range of structural and functional phenotypic changes, some of which are membrane-associated and are expressed within days after induction. Our current studies on nutritional and hormonal influences on radiation transformation indicate the following: Pyrolysate products from broiled protein foods act in synergism with radiation to produce transformation, whereas vitamin A analogs are powerful, preventive agents. Retinoids inhibit both x-ray-induced transformation and its promotion by TPA: these modifications (enhancement by TPA, inhibition by retinoids) are not reflected in sister chromatid exchanges, but are reflected in the level of membrane associated enzymes Na/K ATPase. Whereas retinoids modify late events (expression, promotion), we find that thyroid hormone plays a crucial role in the early phases of radiation and chemically induced transformation. Under hypothyroid conditions no transformation is observed. The addition of triiodothyronine at physiological levels results in a transformation rate that is dose-related. Our recent success in transforming human skin fibroblasts will enable quantitative and qualitative studies of radiation carcinogenesis in a system relevant to man.  相似文献   

13.
Other investigators have demonstrated by transfer of medium from irradiated cells and by irradiation with low-fluence alpha particles or microbeams that cells do not have to be directly exposed to ionizing radiation to be detrimentally affected, i.e. bystander effects. In this study, we demonstrate by transfer of medium from X-irradiated human CGL1 hybrid cells that the killing of bystander cells reduces the plating efficiency of the nonirradiated CGL1 cells by 33 +/- 6%. In addition, we show that the amount of cell death induced by bystander effects is not dependent on X-ray dose, and that the induction of apoptosis does not appear to be responsible for the cell death. Furthermore, we found that the reduction in plating efficiency in bystander cells is evident for over 18 days, or 22 cell population doublings, after medium transfer, despite repeated refeeding of the cell cultures. Finally, we report the novel observation that bystander effects induced by the transfer of medium from irradiated cells can induce neoplastic transformation. Exposing unirradiated CGL1 cells to medium from cells irradiated with 5 or 7 Gy increased the frequency of neoplastic transformation significantly from 6.3 x 10(-6) in unirradiated controls to 2.3 x 10(-5) (a factor of nearly four). We conclude that the bystander effect induces persistent, long-term, transmissible changes in the progeny of CGL1 cells that result in delayed death and neoplastic transformation. The data suggest that neoplastic transformation in bystander cells may play a significant role in radiation-induced neoplastic transformation at lower doses of X rays.  相似文献   

14.
A stochastic model of cancer initiation is considered. The model is used to evaluate whether a bystander effect may be important in the pre-malignant and malignant stages of carcinogenesis, and furthermore, on the basis of epidemiological data, to estimate the mutation rates of genes involved in the development of oral leukoplakias. The bystander effect is defined here as the capability of oncogenic mutations to increase the mutation probability of neighbouring (bystander) cells, thus leading potentially to a cascade of neighbouring mutated and neoplastic cells as a pre-stage in the development to leukoplakias and cancer. We find that incidence data for oral cancer are indeed in accordance with a significant bystander effect, operating either alone or in combination with genomic instability in the early stages of carcinogenesis, i.e. the development of neoplasia. Simulations performed gave a picture of how mutations and neoplasia may spread in a tissue, to form characteristic leukoplakias with a core of neoplastic cells. The model also showed that the probability of finding at least one neoplastic cell in the tissue after a given number of years is more sensitive to changes in genomic instability within the cell itself than to changes in a bystander effect. Based on epidemiological data we also calculate the maximum number of oncogenic genes that may be involved in the bystander effect and development of genomic instability. Even if capable of explaining the initial development of oncogenic mutations towards neoplastic cells, the bystander model could not reproduce the observed incidence rates of leukoplakia without assuming a carcinogen mutation probability per cell per year of neoplastic cells practically equal to one. This means that the bystander effect, to be of substantial importance in the final development of neoplastic cells towards leukoplakias, requires a very significant increase in mutation probabilities for bystanders to neoplastic cells. Alternatively, additional mechanisms such as abnormal cell differentiation and uncontrolled proliferation and apoptotis in the neoplastic stage may be of major importance during the development to cancerization.  相似文献   

15.
16.
Recently (Cytometry 2003, 56A, 71-80), we reported that direct cell-to-cell contact is required for stimulating proliferation of bystander rat liver cells (WB-F344) cocultured with irradiated cells, and neither functional gap junction intercellular communication nor long-range extracellular factors appear to be involved in this proliferative bystander response (PBR). The molecular basis for this response is unknown. Confluent monolayers of WB-F344 cells were exposed to 5-Gray (Gy) of gamma-rays. Irradiated cells were mixed with unirradiated cells and co-cultured for 24 h. Cells were harvested and protein expression was examined using 2-DE. Protein expression was also determined in cultures of unirradiated and 5-Gy irradiated cells. Proteins were identified by MS. Nucleophosmin (NPM)-1, a multifunctional nucleolar protein, was more highly expressed in bystander cells than in either unirradiated or 5-Gy irradiated cells. Enolase-alpha, a glycolytic enzyme, was present in acidic and basic variants in unirradiated cells. In bystander and 5-Gy irradiated cells, the basic variant was weakly expressed, whereas the acidic variant was overwhelmingly present. These data indicate that the presence of irradiated cells can affect NPM-1 and enolase-alpha in adjacent bystander cells. These proteins appear to participate in molecular events related to the PBR and suggest that this response may involve cellular defense, proliferation, and metabolism.  相似文献   

17.
BACKGROUND: In a recent study, we showed that cells irradiated with gamma-rays stimulate cell growth of unirradiated (bystander) cells, when the two populations are co-cultured as a mixture. Direct cell-to-cell contact appears to be a prerequisite for the proliferative response of the bystander cells. The aim of the current work is to investigate the possible proliferative bystander effects caused by intracellular irradiation with incorporated radionuclides, specifically the short-range beta particle emitter, tritium ((3)H). METHODS: Subconfluent monolayers of rat liver epithelial cells (WB-F344) were incubated in the presence of (methyl-(3)H)thymidine ((3)HTdR) at concentrations ranging between 5.2 kBq/ml and 57.8 kBq/ml for 18 h. Radiolabeled cells, containing between 0.7 x 10(-3) Bq/cell and 8.8 x 10(-3) Bq/cell were mixed with unlabeled (i.e., bystander) cells in a ratio of 1:1 and cultured together for 24 h followed by an flow cytometry (FCM) study of their proliferation. In order to discriminate the two populations of co-cultured cells, one cell population (unlabeled bystander cells) was stained with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE), which metabolizes intracellularly. The absorbed doses received by the radiolabeled cells that contained 0.7 x 10(-3), 2.5 x 10(-3), and 8.8 x 10(-3) Bq/cell were 0.14, 0.49, and 1.7 Gy, respectively. RESULTS: Cells that were not treated with tritiated thymidine (unlabeled cells), in the presence of radiolabeled cells that received absorbed doses from 0.14-1.7 Gy, showed enhanced cell growth by approximately 9 to 10%. CONCLUSIONS: Cells labeled with (3)HTdR can induce increased proliferation in neighboring unlabeled bystander cells. FCM provides an excellent basis for characterization of proliferative bystander effects in co-culture systems.  相似文献   

18.
Ultraviolet irradiation of cells can induce a state of genomic instability that can persist for several cell generations after irradiation. However, questions regarding the time course of formation, relative abundance for different types of ultraviolet radiation, and mechanism of induction of delayed mutations remain to be answered. In this paper, we have tried to address these questions using the hypoxanthine phosphoribosyl transferase (HPRT) mutation assay in V79 Chinese hamster cells irradiated with ultraviolet A or B radiation. Delayed HPRT(-) mutations, which are indications of genomic instability, were detected by incubating the cells in medium containing aminopterin, selectively killing HPRT(-) mutants, and then treating the cells with medium containing 6-thioguanine, which selectively killed non-mutant cells. Remarkably, the delayed mutation frequencies found here were much higher than reported previously using a cloning method. Cloning of cells immediately after irradiation prevents contact between individual cell clones. In contrast, with the present method, the cells are in contact and are mixed several times during the experiment. Thus the higher delayed mutation frequency measured by the present method may be explained by a bystander effect. This hypothesis is supported by an experiment with an inhibitor of gap junctional intercellular communication, which reduced the delayed mutation frequency. In conclusion, the results suggest that a bystander effect is involved in ultraviolet-radiation-induced genomic instability and that it may be mediated in part by gap junctional intercellular communication.  相似文献   

19.
Sokolov MV  Neumann RD 《PloS one》2010,5(12):e14195

Background

The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.

Methodology/Principal Findings

Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05).

Conclusions/Significance

These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.  相似文献   

20.
Effects of millimeter waves (MMW) at the frequency of 51.755 GHz were studied in logarithmic and stationary E. coli cells at various cell densities. The changes in the genome conformational state (GCS) were analyzed by the method of anomalous viscosity time dependence (AVTD). Before lysis, the cells were adjusted to the cell density of 4x10(7) cells/ml and all AVTD measurements were run at this cell density. Stationary cells responded to MMW by increase in AVTD, while the same MMW exposure decreased AVTD in logarithmic cells. MMW effects depended on cell density during exposure and were stronger for stationary cells. The observed dependence on cell density suggested a cell-to-cell communication between cells during exposure to microwaves. Decrease in power density (PD) resulted in more striking differences between responses at different cell densities. The data provided evidence that intercellular communication in response to MMW depended on cell status and PD of microwaves. The MMW effects were studied in more detail at low intensity of 10(-17) W/cm(2) in the range of cell densities 4x10(7) to 8x10(8) cells/ml. The obtained sigmoid-like dependence of MMW effect on cell density saturated at approximately 5x10(8) cells/ml. The dependence of MMW effect on cell density was very similar in this study and in previous studies with weak extremely low frequency (ELF) electromagnetic fields (EMF). The data suggested that cell-to-cell communication might be involved in response of cells to weak EMF of various frequency ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号