首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Susanne von Caemmerer 《Planta》1989,178(4):463-474
A model of leaf, photosynthesis has been developed for C3–C4 intermediate species found in the generaPanicum, Moricandia, Parthenium andMollugo where no functional C4 pathway has been identified. Model assumptions are a functional C3 cycle in both mesophyll and bundle-sheath cells and that glycine formed in the mesophyll, as a consequence of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco, EC 4.1.1.39), diffuses to the bundle sheath, where most of the photorespiratory CO2 is released. The model describes the observed gas-exchange characteristics of these C3–C4 intermediates, such as low CO2-compensation points () at an O2 pressure of 200 mbar, a curvilinear response of to changing O2 pressures, and typical responses of CO2-assimilation rate to intercellular CO2 pressure. The model predicts that bundle-sheath CO2 concentration is highest at low mesophyll CO2 pressures and decreases as mesophyll CO2 pressure increases. A partitioning of 5–15% of the total leaf Rubisco into the bundle-sheath cells and a bundlesheath conductance similar to that proposed for C4 species best mimics the gas-exchange results. The model predicts C3-like carbon-isotope discrimination for photosynthesis at atmospheric levels of CO2, but at low CO2 pressures it predicts a higher discrimination than is typically found during C3 photosynthesis at lower CO2 pressures.Abbreviations and symbols PEP phosphoenolpyruvate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) - RuBP ribulose-1,5-bisphosphate - p(CO2) partial pressure of CO2 - p(O2) partial pressure of O2. See also p. 471  相似文献   

2.
Vogan PJ  Sage RF 《Oecologia》2012,169(2):341-352
This study evaluates acclimation of photosynthesis and stomatal conductance in three evolutionary lineages of C(3), C(3)-C(4) intermediate, and C(4) species grown in the low CO(2) and hot conditions proposed to favo r the evolution of C(4) photosynthesis. Closely related C(3), C(3)-C(4), and C(4) species in the genera Flaveria, Heliotropium, and Alternanthera were grown near 380 and 180 μmol CO(2) mol(-1) air and day/night temperatures of 37/29°C. Growth CO(2) had no effect on photosynthetic capacity or nitrogen allocation to Rubisco and electron transport in any of the species. There was also no effect of growth CO(2) on photosynthetic and stomatal responses to intercellular CO(2) concentration. These results demonstrate little ability to acclimate to low CO(2) growth conditions in closely related C(3) and C(3)-C(4) species, indicating that, during past episodes of low CO(2), individual C(3) plants had little ability to adjust their photosynthetic physiology to compensate for carbon starvation. This deficiency could have favored selection for more efficient modes of carbon assimilation, such as C(3)-C(4) intermediacy. The C(3)-C(4) species had approximately 50% greater rates of net CO(2) assimilation than the C(3) species when measured at the growth conditions of 180 μmol mol(-1) and 37°C, demonstrating the superiority of the C(3)-C(4) pathway in low atmospheric CO(2) and hot climates of recent geological time.  相似文献   

3.
Ekblad  Alf  Högberg  Peter 《Plant and Soil》2000,219(1-2):197-209
The main aim of this study was to test various hypotheses regarding the changes in 13C of emitted CO2 that follow the addition of C4-sucrose to the soil of a C3-ecosystem. It forms part of an experimental series designed to assess whether or not the contributions from C3-respiration (root and microbial) and C4-respiration (microbial) to total soil respiration can be calculated from such changes. A series of five experiments, three on sieved (root-free) mor-layer material, and two in the field with intact mor-layer (and consequently with active roots), were performed. Both in the experiments on sieved mor-layer and the field experiments, we found a C4-sucrose-induced increase in C3-respiration that accounted for between 30% and 40% of the respiration increase 1 h after sucrose addition. When the course of C3-, C4- and total respiration was followed in sieved material over four days following addition of C4-sucrose, the initially increased respiration of C3-C was transient, passing within less than 24 h. In a separate pot experiment, neither ectomycorrhizal Pinus sylvestrisL. roots nor non-mycorrhizal roots of this species showed respiratory changes in response to exogenous sucrose. No shift in the 13C of the evolved CO2 after adding C3-sucrose to sieved mor-layer material was found, confirming that the sucrose-induced increase in respiration of endogenous C was not an artefact of discrimination against 13C during respiration. Furthermore, we conclude that the C4-sucrose induced transient increase in C3-respiration is most likely the result of accelerated turnover of C in the microbial biomass. Thus, neither respiration of mycorrhizal roots, nor processes discriminating against 13C were likely sources of error in the field. The estimated 13C of evolved soil CO2 in three field experiments lay between –25.2 and –23.6. The study shows that we can distinguish between CO2 evolved from microbial mineralisation of added C4-sucrose, and CO2 evolved from endogenous carbon sources (roots and microbial respiration).  相似文献   

4.
Flaveria属C4种和C3—C4中间型种杂交一代的CO2交换特性   总被引:2,自引:0,他引:2  
  相似文献   

5.
The dependence of the CO2 compensation concentration on O2 partial pressure and the dependence of differential uptake of 14CO2 and 12CO2 on CO2 and O2 partial pressures are analyzed in illuminated white clover (Trifolium repens L.) leaves. The data show a deviation of the photosynthetic gas exchange from ribulose bisphosphate carboxylase oxygenase kinetics at 10°C but not at 30°C. This deviation is due to an effect of CO2 partial pressure on the ratio of photosynthesis to photorespiration which can be explained if active inorganic carbon transport is assumed.  相似文献   

6.
The pattern of photorespiratory ammonia (PR–NH3) formation and its modulation by exogenous bicarbonate or glycine were investigated in C3–C4 intermediates of Alternanthera (A. ficoides and A. tenella) and Parthenium hysterophorus in comparison to those of C3 or C4 species. The average rates of PR–NH3 accumulation in leaves of the intermediates were slightly less than (about 25% reduced) those in C3 species, and were further low in C4 plants (40% of that in C3). The levels of PR–NH3 in leaf discs decreased markedly when exogenous bicarbonate was present in the incubation medium. The inhibitory effect of bicarbonate on PR–NH3 accumulation was pronounced in C3 plants, very low in C4 species and was moderate in the C3–C4 intermediates. Glycine, an intermediate of photorespiratory metabolism, raised the levels of PR–NH3 in leaves of not only C4 but also C3–C4 intermediates, bringing the rates close to those of C3 species. The rate of mitochondrial glycine decarboxylation in darkness in C3–C4 intermediates was partially reduced (about 80% of that in C3 species), corresponding to the activity-levels of glycine decarboxylase and serine hydroxymethyltransferase in leaves. The intermediates had a remarkable capacity of reassimilating photorespiratory CO2 in vivo, as indicated by the apparent refixation of about 85% of the CO2 released from exogenous glycine in the light. We suggest that the reduced photorespiration in the C3–C4 intermediate species of Alternanthera and Parthenium is due to both a limitation in the extent of glycine production/decarboxylation and an efficient refixation/recycling of internal CO2.Abbreviations GDC glycine decarboxylase - GS glutamine synthetase - GOGAT glutamate-oxoglutarate aminotransferase - -HPMS -hydroxy-2-pyridinemethanesulfonic acid - INH isonicotinyl hydrazide - MSO L-methionine sulfoximine - PR–NH3 photorespiratory-ammonia - SHMT serine hydroxymethyltransferase  相似文献   

7.
C. A. Adams  F. Leung  S. S. M. Sun 《Planta》1986,167(2):218-225
Phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) from Flaveria trinervia Mohr (C4), F. floridana Johnston (C3–C4), and F. cronquistii Powell (C3) leaves were compared by electrotransfer blotting/enzyme-linked immunoassay (Western-blot analysis), mobility of the native enzyme in polyacrylamide gels and in isoelectric focusing (IEF) gels, peptide mapping, and in-vitro translation of RNA isolated from each plant. The PEPCases from the C3 and C3–C4 plants were very similar to each other in terms of electrophoretic mobilities on gels and isoenzyme patterns on IEF gels, and identical in peptide mapping. Quantitative differences were noted, however, in that the C3–C4 intermediate plant contained more PEPCase overall and that the relative activity of individual isoenzymes shifted between the C3 and C3–C4 intermediate PEPCases. The PEPCase from the C4 plant had a different isoenzyme pattern, a different peptide map, and was far more abundant than the other two enzymes. Western blot analysis demonstrated the cross-reactivity of PEPCases from all three Flaveria species with antibody raised against maize PEPCase. The results provide evidence, at the molecular level, that supports the view of C3–C4 intermediate species as C3-like plants with some C4-like photosynthetic characteristics, but there are differences from the C3 plant in the quantity and properties of the PEPCase from the C3–C4 intermediate plant.Abbreviations IEF isoelectric focusing - kDa kilodalton - PEPCase phosphoenolpyruvate carboxylase - Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

8.
Based upon extensive density functional theory and wave function theory calculations performed in this work, we predict the existence of the perfectly planar triangle C(3h) B(6)H(3)(+) (1, (1)A') and the double-chain stripe C(2h) B(8)H(2) (9, (1)A(g)) which are the ground states of the systems and the inorganic analogues of cyclopropene cation D(3h) C(3)H (3) (+) and cyclobutadiene D(2h) C(4)H(4), respectively. Detailed adaptive natural density partitioning (AdNDP) analyses indicate that C(3h) B(6)H (3) (+) is π plus σ doubly aromatic with two delocalized π-electrons and six delocalized σ-electrons formally conforming to the 4n + 2 aromatic rule, while C(2h) B(8)H(2) is π antiaromatic and σ aromatic with four delocalized π-electrons and ten delocalized σ-electrons. The perfectly planar C(2h) B(8)H(4) (5, (1)A(g)) also proves to be π antiaromatic analogous to D(2h) C(4)H(4), but it appears to be a local minimum about 50 kJ mol(-1) less stable than the three dimensional C(s) B(8)H(4)(6, (1)A'). AdNDP, nucleus independent chemical shifts (NICS) and electron localization function (ELF) analyses indicate that these boron hydride clusters form islands of both σ- and π-aromaticities and are overall aromatic in nature in ELF aromatic criteria.  相似文献   

9.
Three methods of estimating photorespiratory rate in leaves of the C3–C4 intermediate species Moricandia arvensis and the related C3 species Moricandia moricandioides were compared. The results indicated that the photorespiratory rate in M. arvensis is less than in M. moricandioides, and that this is caused partly by reduced carbon flux through the photorespiratory pathway, and partly by the presence of a mechanism for enhanced photorespiratory CO2 reassimilation in the intermediate species. Measurements of the CO2 compensation point () in the two species supported this conclusion. A functional C4 pathway is unlikely to be involved in the reduction of photorespiratory rate in M. arvensis since pulse-chase experiments showed that carbon did not move from C4 acids to the reductive pentose-phosphate pathway in attached leaves under steady-state conditions at .Abbreviations and symbols APR apparent photosynthetic rate - Ci, Ce intercellular, external CO2 concentration - CO2 compensation point - PAR photosynthetically active radiation - PFD photon flux density  相似文献   

10.
The in-situ inter- and intracellular localization patterns of phosphoenolpyruvate (PEP) and ribulose 1,5-bisphosphate (RuBP) carboxylases in green leaves of severalPanicum species were investigated using an indirect immunofluorescence technique. Four species were examined and compared:P. miliaceum (C4),P. bisulcatum (C3), andP. decipiens andP. milioides (C3–C4 intermediates which have Kranz-like leaf anatomy and reduced photorespiration). In the C4 Panicum, PEP carboxylase was located in the cytosol of the mesophyll cells and RuBP carboxylase was restricted to the bundle-sheath chloroplasts. In contrast, in the C3 Panicum species, PEP carboxylase was found throughout the leaf chlorenchyma, in both the cytosol and chloroplasts, and RuBP carboxylase was located in the chloroplasts. For the C3–C4 intermediate plants, the patterns depended on the species examined. ForP. decipiens, the in-situ localization of both carboxylases was similar to that described forP. bisulcatum and other C3 plants. However, inP. milioides, PEP carboxylase was found exclusively in the cytosol of the mesophyll cells, as inP. miliaceum and other C4 species, whereas RuBP carboxylase was distributed in both the mesophyll and bundle-sheath chloroplasts.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate  相似文献   

11.
The extent of photorespiration, the inhibition of apparent photosynthesis (APS) by 21% O2, and the leaf anatomical and ultrastructural features of the naturally occurring C3–C4 intermediate species in the diverse Panicum, Moricandia, and Flaveria genera are between those features of representative C3 and C4 plants. The greatest differences between the photosynthetic/photorespiratory CO2 exchange characteristics of the C3–C4 intermediates and C3 plants occur for the parameters which are measured at low pCO2 (i.e., the CO2 compensation concentration and rates of CO2 evolution into CO2-free air in the light). The rates of APS by the intermediate species at atmospheric pCO2 are similar to those of C3 plants.The mechanisms which are responsible for reducing photorespiration in the C3–C4 intermediate species are poorly understood, but two proposals have been advanced. One emphasizes the importance of limited C4 photosynthesis which reduces O2 fixation by ribulose 1,5-bisphosphate carboxylase/oxygenase, and, thus, reduces photorespiration by a CO2-concentrating mechanism, while the other emphasizes the importance of the internal recycling of photorespiratory CO2 evolved from the chloroplast/mitochondrion-containing bundle-sheath cells. There is no evidence from recent studies that limited C4 photosynthesis is responsible for reducing photorespiration in the intermediate Panicum and Moricandia species. However, preliminary results suggest that some, but not all, of the intermediate Flaveria species may possess a limited C4 cycle. The importance of a chlorophyllous bundle-sheath layer in the leaves of intermediate Panicum and Moricandia species in a mechanism based on the recycling of photorespiratory CO2 is uncertain.Therefore, although they have yet to be clearly delineated, different strategies appear to exist in the C3–C4 intermediate group to reduce photorespiration. Of major importance is the finding that some mechanism(s) other than Crassulacean acid metabolism or C4 photosynthesis has (have) evolved in at least the majority of these terrestrial intermediate species to reduce the seemingly wasteful metabolic process of photorespiration.Abbreviations APS apparent (net) photosynthesis - CAM Crassulacean acid metabolism - CE carboxylation efficiency - T CO2 compensation concentration - IRGA infrared gas analysis - Pi orthophosphate - PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate Published as Paper No. 7383, Journal Series, Nebraska Agricultural Experiment Station.  相似文献   

12.
Leaf anatomical, ultrastructural, and CO2-exchange analyses of three closely related species of Flaveria indicate that they are C3–C4 intermediate plants. The leaf mesophyll of F. floridana J.R. Johnston, F. linearis Lag., and F. chloraefolia A. Gray is typical of that in dicotyledonous C3 plants, but the bundle sheath cells contain granal, starch-containing chloroplasts. In F. floridana and F. chloraefolia, the chloroplasts and numerous associated mitochondria are arranged largely centripetally, as in the closely related C4 species, F. brownii A.M. Powell. In F. linearis, fewer mitochondria are present and the chloroplasts are more evenly distributed throughout the bundle sheath cytosol. There is no correlation between the bundle sheath ultrastructure and CO2 compensation concentration. () values of these C3–C4 intermediate Flaveria species. At 21% O2 and 25°C, for F. chloraefolia, F. linearis, and F. floridana is 23–26, 14–19, and 8–10 l CO2 l-1, respectively. The O2 dependence of is the greatest for F. chloraefolia and F. linearis (similar to that for C3–C4 intermediate Panicum and Moricandia species) and the least for F. floridana, whose O2 response is identical to that for F. brownii from 1.5 to 21% O2, but greater at higher pO2. The variation in leaf anatomy, bundle sheath ultrastructure, and O2 dependence of among these Flaveria species may indicate an active evolution in the pathway of photosynthetic carbon metabolism within this genus.Abbreviations CO2 compensation concentration - IRGA infrared gas analysis Published as Paper No. 7068, Journal Series, Nebraska Agricultural Experiment Station  相似文献   

13.
Aims Accurate estimation of variation tendency of photosynthetic electron flow response to CO 2 is of great significance to understand the photosynthetic processes. Methods A model of electron transport rate (J) response to CO 2 (model II) was developed based on a new model of photosynthesis response to CO 2 (model I). The data of maize (Zea mays) and grain amaranth (Amaranthus hypochondriacus) that were measured by LI-6400-40 portable photosynthetic apparatus were fitted by the two models, respectively. Important findings The results indicated that the model II could well characterize and fit the CO 2 -response curves of electron transport rate (J-C a curve) for maize and grain amaranth, and the maximum electron transport rates of maize and grain amaranth were 262.41 and 393.07 mol·m −2 ·s −1 , which were in very close agreement with the estimated values (p > 0.05), respectively. Based on these results, the allocation to other pathways of photosynthetic electronic flow were discussed. At 380 mol·mol −1 CO 2 , the photosynthetic electron flows for carbon assimilation of maize and grain amaranth carbon were 247.92 and 285.16 mol·m −2 ·s −1 , respectively, when the CO 2 for recovery of mitochondrial respiration was considered, and the photosynthetic electron flows for other pathways were 14.49 and 107.91 mol·m −2 ·s −1 , respectively. The photosynthetic electron flows for other pathways in grain amaranth were more six times than that in maize. The analysis shows that this difference is closely related to the types of catalytic decarboxylase and the locations of decarboxylation reactions. This finding provides a new perspective for investigating the differences between the two subtypes of nicotinamide adenine dinucleotide phosphate malic acid enzyme type and nicotinamide adenine dinucleotide malic acid enzyme type in C 4 species. In addition, the CO 2 -response model of electron transport rate offers us an alternative mathematical tool for investigating the photosynthetic electron flow of C4 crop. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

14.
Oxygen inhibition of leaf slice photosynthesis in Panicum milioides increased from 20% to 30% at 21% O2 in the presence of maleate, a phosphoenolpyruvate carboxylase inhibitor. The increased O2 sensitivity was completely reversed by the addition of malate and aspartate, the stable products of the phosphoenolpyruvate carboxylase reaction. The C4 acids, malate and aspartate, also reduced O2 inhibition of photosynthesis by isolated bundle sheath strands, but not mesophyll protoplasts. Similarly, only bundle sheath strands exhibited an active C4 acid-dependent O2 evolution. Compartmentation of C4 cycle enzymes, with pyruvate, Pi dikinase in the mesophyll and NAD-malic enzyme in the bundle sheath, was demonstrated. It is concluded that reduced photorespiration in P. milioides is due to a limited potential for C4 photosynthesis permitting an increase in pCO2 at the site of bundle sheath ribulosebisphosphate carboxylase.  相似文献   

15.
Paul Teese 《Oecologia》1995,102(3):371-376
CO2 compenstation point (), the concentration of CO2 at which photosynthesis and respiration are at equilibrium, is a commonly used diagnostic for the C4 photosynthetic pathway, since it reflects the reduced photorespiration that is a property of C4 photosynthesis. Geographic variation for was examined within Flaveria linearis, a C3–C4 intermediate species. Collections from four widely separated Floridian populations were propagated in a greenhouse and measured for . Little differentiation among populations was found, but significant within-population variation was present. Temperature is a hypothesized selective agent for the C4 photosynthetic pathway. To test this hypothesis, plants exhibiting a range of were cloned and placed in growth chambers at 25°C and 40°C. After 7 weeks, valves were remeasured and plants were harvested and weighed. There was a poor correlation between initial and final measures of for a given genotype (r=0.38, P>0.1). Broad sense heritability for was computed to be 0.10. At 25°C, there was no relationship between final size and . At 40°C, more C4-like plants, as indicated by their low , had grown larger. Differences in relative growth rate were attributable more to differences in net assimilation rate than in leaf area ratio. Taken together, these results demonstrate that although significant plasticity exists in the amount of photorespiration in this C3–C4 species, high temperature appears to be an effective selective agent for the reduction of photorespiration and the enhancement of C4-like traits.  相似文献   

16.
17.
C3、C4和C3-C4中间型植物的进化   总被引:1,自引:1,他引:0  
介绍了有关C3、C4和C3-C4中间型植物进化的形态学、生理学、分子生物学、遗传学等方面的证据;推断地球上首先出现C3植物,然后是C3-C4中间类型植物,最后出现C4植物.  相似文献   

18.
A few species of Cymbopogon and Vetiveria are potentially important tropical grasses producing essential oils. In the present study, we report on the leaf anatomy and photosynthetic carbon assimilation in five species of Cymbopogon and Vetiveria zizanioides. Kranz-type leaf anatomy with a centrifugal distribution of chloroplasts and exclusive localization of starch in the bundle sheath cells were common among the test plants. Besides the Kranz leaf anatomy, these grasses displayed other typical C4 characteristics including a low (0–5 µl/l) CO2 compensation point, lack of light saturation of CO2 uptake at high photon flux densities, high temperature (35°C) optimum of net photosynthesis, high rates of net photosynthesis (55–67 mg CO2 dm-2 leaf area h-1), little or no response of net photosynthesis to atmospheric levels of O2 and high leaf 13C/12C ratios. The biochemical studies with 14CO2 indicated that the leaves of the above plant species synthesize predominantly malate during short term (5 s) photosynthesis. In pulse-chase experiments it was shown that the synthesis of 3-phosphoglycerate proceeds at the expense of malate, the major first formed product of photosynthesis in these plant species.  相似文献   

19.
Glycolate oxidase (GO; EC 1.1.3.1) was purified from the leaves of three plant species:Amaranthus hypochondriacus L.(NAD-ME type C4 dicot),Pisum sativum L. (C3 species) andParthenium hysterophorus L. (C3–C4. intermediate). A flavin moiety was present in the enzyme from all the three species. The enzyme from the C4 plant had a low specific activity, exhibited lower KM for glycolate, and required a lower pH for maximal activity, compared to the C3 enzyme. The enzyme from the C4 species oxidized glyoxylate at <10% of the rate with glycolate, while the GO from the C3 plant oxidized glyoxylate at a rate of about 35 to 40% of that with glycolate. The sensitivity of GO from C4 plant to -hydroxypyridinemethane sulfonate, 2-hydroxy-3-butynoate and other inhibitors was less than that of the enzyme from C3 source. The properties of GO fromParthenium hysterophorus, were similar to those of the enzyme fromPisum sativum. The characteristics of glycolate oxidase from leaves of a C4 plant,Amaranthus hypochondriacus are different from those of the C3 species or the C3–C4 intermediate.  相似文献   

20.
《Inorganica chimica acta》2006,359(11):3632-3638
Synthesis and characterization of linked cluster [{Os3(CO)102-H)}222-NC6H4C6H4N}] (1) from the reaction of [Os3Rh(μ-H)3(CO)12] with aniline in the presence of an excess amount of 4-vinyl phenol in refluxing heptane is reported. A similar reaction with [Os3(CO)10(NCMe)2] as starting material gave a known compound, [Os3(CO)102-H)(μ2-HNC6H5)] (2). The treatment of complexes 1 and 2 with Wilkinson’s catalyst in refluxing heptane respectively, yielded [{Os3(CO)92-H)PPh3}222-NC6H4C6H4N}] (3). An interesting and unexpected C–C coupling of phenyl-amido ligands was observed in complexes 1 and 3, which is believed to be catalysed by the organometallic rhodium species. The newly synthesized compounds 1 and 3 were fully characterized by IR, 1H NMR spectroscopy, mass spectroscopy, elemental analysis, and X-ray crystallography. Both structures 1 and 3 comprise two triangles of osmium atoms. The two triangular osmium metal cores are linked by a bi-amido ligand via the two nitrogen atoms N(1) and N(1)* and N(1) and N(2), at their equatorial sites. The electronic absorption spectra of complexes 1, 2, and 3 display both low energy absorption, dπ (Os)  π* (amido) metal-to-ligand charge-transfer (MLCT) transition, and π  π* intra-ligand electronic transitions of the amido and bi-amido ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号