首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fiber size decline, alterations in fiber metabolic potential and increase of connective tissue component were shown in human m. vastus lateralis after short and long-duration space flights and in m.soleus and m.vastus lateralis after 120 day head down tilt bed rest. It is known from rat and monkey studies that the exposure to weightlessness leads to the most pronounced changes in postural muscles, e.g. m.soleus. It was shown that 17 day space flight induced significant decrease of fiber cross-sectional area and slow-to-fast fiber type transformation in human soleus. But in the cited work the fiber population under study was limited like in most single fiber technique analyses. The present study was purposed to investigate the structural and metabolic properties of soleus muscle in Russian cosmonauts exposed to 129-day space flight on board of the International Space Station.  相似文献   

2.
The effects of extracellular Ca2+ withdrawal were studied on isolated diaphragmatic muscle fibers and compared with the effects on the papillary, soleus, and extensor digitorum longus (EDL) contractility, using the same in vitro model. Diaphragmatic fibers were obtained from 15 rats, and papillary muscles, soleus, and EDL were obtained from 10 animals. Isometric force generated in response to 1-Hz supramaximal electrical stimulation was measured with a highly sensitive photoelectric transducer. After control measurements, perfusion with a Krebs solution depleted of calcium (0 Ca2+) was started while the fibers were continuously stimulated (4 times/min) and twitches recorded. For the papillary fibers, perfusion with zero Ca2+ was followed by an immediate decrease in twitch tension, complete twitch abolition occurring within 3 +/- 1 min after zero-Ca2+ exposure. Diaphragmatic fibers behaved similarly, although twitch abolition was delayed (10 +/- 3 min after 0-Ca2+ exposure). For the soleus fibers, the twitch amplitude amounted to 38 +/- 10% of control (62% decrease on the average) after 30 min of zero-Ca2+ exposure, no twitch abolition being noted even after 1 h of Ca2+-free exposure. The twitch amplitude of the EDL fibers amounted to 75 +/- 7% of control (25% decrease) after 30 min of zero-Ca2+ exposure. The recovery kinetics for the four fiber types after reexposure to Ca2+-containing solution were also different, with papillary and diaphragmatic fibers recovering completely within 2.5 +/- 0.5 and 4 +/- 0.5 min, respectively. By contrast, neither the soleus nor the EDL showed complete recovery after 30 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effects of long duration hypergravity on m. soleus morphology characteristics are still unknown. Particularly, only one paper describes the size and myosin heavy chain profiles of rat hindlimb extensor muscle fibers after 2 weeks of +2 G exposure. Earlier it was shown that long term overloading induced changes in skeletal muscle fiber cross-sectional area (CSA), fiber composition, and imitochondrial content. The aim of our study was to evaluate quantitatively structural parameters of m. soleus contractile apparatus after 19 day exposure to +2 G overloading.  相似文献   

4.
Author followed up the activity of the three enzymes involved in the catabolism of nucleic acids--acid deoxyribonulease (DNase II), alkaline ribonuclease (RNase I), and acid ribonuclease (RNase II)--in the denervated gastrocnemius and soleus muscles of rats for 28 postoperative days. The activity of both acid nucleases increased in both types of denervated muscles, compared with the respective controls. Up to the 14th postoperative day, the activity excess of both acid nucleases was more significant in the m. gastrocnemius than in the m. soleus. The RNase I ran below the control activity during the whole period in the m. soleus and up to the 14th day in the m. gastrocnemius. The role of nucleases and nuclease inhibitors in the changes of nucleic acid catabolism in neurogenic muscular atrophies is discussed.  相似文献   

5.
It is known that exposure of humans and animals to microgravity causes reduction in the cross-sected area of muscle fibers and muscle atrophy. These changes also involve ultrastructural alterations in muscle fibers. Therefore primates, that are physiologically close to humans, are to be examined to help a better understanding of the nature of these ultrastructural changes is muscles and muscle fibers. Although failed to find any relevant published data on the quantitative aspects of ultrastructural changes in muscle fibers of space-flown primates we believe that it is important to examine these aspects. The postflight study of monkey's m. soleus, and m. vastus lateralis did not reveal any significant changes in volume density of the myofibrillar apparatus. Mitochondria of m. soleus showed a distinct reduction in volume density, being more obvious in the subsarcolemmal zone than in the central one. Mitochondria of m. vastus lateralis showed a decrease (P > 0.05) in volume density. Following the flight, m. soleus and m. vastus lateralis of the monkeys showed a significant increase in the mean area of myofibrils, and a trend towards a decrease in the number of myofibrils per 100 micron 2. Besides, m. soleus showed a significant increase in the mean area of mitochondria, and a trend towards a decrease in the number of mitochondria per 100 micron 2. In m. vastus lateralis of the monkeys after space flight the number opf mitochondria tended to decrease and the mean area showed differential changes. It can be postulated that these phenomena may be associated with a reduction in the diffusion surface of mitochondria resulting from the diminished myofibrillar volume.  相似文献   

6.
In experiments on neuromuscular synapses of rat fast (m. Extensor digitorum longus, EDL) and slow (m. soleus) skeletal muscles, changes in the intensity of spontaneous quantal mediator secretion in response to the activation of presynaptic cholinoreceptors by the nonhydrolyzable acetylcholine analogue carbachol and to an increase in K+ concentration in the control group of animals and in animals subjected to different terms of unloading of hindlimbs have been compared. The intensity of spontaneous secretion of mediator quanta was evaluated from the mean frequency of miniature endplate potentials. In the control group of animals, the frequency of miniature endplate potentials by the action of carbachol increased by 363% in m. EDL and by 62% in m. soleus. The frequency of miniature endplate potentials in the synapses of m. EDL was more sensitive to K(+)-induced depolarization too. The bearing unloading of hindlimbs abolished the sensitivity of spontaneous secretion to carbachol in the synapses of m. EDL, whereas in m. soleus it was unchanged. However, the preservation of sensitivity of nerve endings of fast muscle to K(+)-induced depolarization allows one to assume that the hindlimb unloading leads to a decrease in the number of functioning presynaptic receptors.  相似文献   

7.
By the use of SDS PAGE, the behavior of titin and MyBP-C in fast (m. psoas) as well as titin and MyBP-X in slow (m. soleus) muscles of ground squirrels (Citellus undulatus) during hibernation was compared with the behavior of titin and MyBP-X in rat m. soleus under conditions of simulated microgravity. A decrease in the amount of titin 1 and MyBP-C relative to that of myosin heavy chains by approximately 30% and approximately 40%, correspondingly, in muscles of hibernating and arousing ground squirrels was revealed in comparison with active animals. No differences in the relative amount of MyBP-X in m. soleus of hibernating, arousing and active ground squirrels were found. Under conditions of simulated microgravity, a decrease in the amount of titin 1 by approximately 2 times and MyBP-X by approximately1.5 times relative to that of myosin heavy chains in rat m. soleus was observed. By the method of SDS PAGE modified by us, an almost twofold decrease in the amount of short isovariants of the titin N2A isoform relative to that of myosin heavy chains was shown in muscles of hibernating and arousing ground squirrels, whereas no changes were found in the amount of long titin isovariants. The conditions of simulated microgravity resulted in a twofold decrease in the relative amount of both short and long titin isovariants in rat m. soleus. The results indicate that hibernating ground squirrels have an evolutionarily determined adaptive mechanism of selective degradation of fast muscle fibers and preservation or increase of slow fibers, as the most economic and energetically advantageous, with proteins typical of them. The microgravitation of nonhibernating animals (rats) leads to a non-selective degradation of MyBP-X and titin isovariants, which contributes to considerable atrophy of soleus fibers.  相似文献   

8.
Summary Intramuscular collagen in a slow (m. soleus) and a fast (m. rectus femoris) skeletal muscle was studied by biochemical, morphometric, and immunohistochemical methods. Wistar white rats of 1, 4, 10, and 24 months were used as experimental animals. Our aim was to evaluate the effects of life-long physical training (treadmill running, 5 days a week for 1, 3, 9, and 23 months depending on the age attained). The biochemical concentration of collagen was higher in m. soleus than in m. rectus femoris and it increased in youth and in old age in m. soleus. The trained rats had higher concentrations of collagen than the untrained rats at 10 and 24 months. The morphometrically measured area-fractions of both the endomysium and perimysium were higher in m. soleus than in m. rectus femoris. The age-related increase in intramuscular connective tissue was of endomysial origin. The immunohistochemical staining of type-I, -III, and -IV collagens indicated the more collagenous nature of m. soleus as compared with m. rectus femoris for all major collagen types; this was most marked for type-IV collagen of basement membrane. The results indicate that both age and endurance-type physical training further distinguish the slow and fast muscles with respect to their connective tissue.  相似文献   

9.
The intensity of cell respiration of the rat m. soleus, m. gastrocnemius c.m. and tibialis anterior fibers during 35-day gravitational unloading, with the addition of succinate in the diet at a dosage rate of 50 mg per 1 kg animal weight has been investigated. The gravitational unloading was modeled by antiorthostatic hindlimb suspension. The intensity of cell respiration was estimated by polarography. It was shown that the rate of oxygen consumption by soleus and gastrocnemius fibers on endogenous and exogenous substrates and with the addition of ADP decreases after the discharge. This may be associated with the transition to the glycolytic energy path due to a decrease in the EMG-activity. At the same time, the respiration rate after the addition of exogenous substrates in soleus fibers did not increase, indicating a disturbance in the function of the NCCR-section of the respiratory chain and more pronounced changes in the structure of muscle fibers. In tibialis anterior fibers, no changes in oxygen consumption velocity were observed. The introduction of succinate to the diet of rats makes it possible to prevent the negative effects of hypokinesia, although it reduces the basal level of intensity of cell respiration.  相似文献   

10.
It is known that gravitational unloading (GU) induces atrophy of skeletal muscles and slow-to-fast muscle fiber (MF) transformation. Stretching of m. soleus prevents those changes, probably afferent information from the stretched muscle acting as triggering mechanism. It was shown that EMG of suspended animals or of stretched muscle is similar to that of control animals. Our study was aimed at revealing contribution of the afferent information from stretched m.soleus exposed to GU in maintenance of cross-sectional area (CSA) of MF and of myosine heavy chains and oxidative potential of skeletal muscles.  相似文献   

11.
The intensity of cell respiration of the rat m. soleus, gastrocnemius c.m., and tibialis anterior fibers during 35-day gravitational unloading, with the addition of succinate in the diet at a dosage rate of 50 mg per 1 kg animal weight has been investigated. The gravitational unloading was modeled by antiorthostatic hindlimb suspension. The intensity of cell respiration was estimated by polarography. It was shown that the rate of oxygen consumption by soleus and gastrocnemius fibers on endogenous and exogenous substrates and with the addition of ADP decreases after the unloading. This may be associated with the transition to the glycolytic energy pathway due to a decrease in the EMG activity. At the same time, the respiration rate after the addition of exogenous substrates in soleus fibers did not increase, indicating a disturbance in the function of the NCCR-section of the respiratory chain and more pronounced changes in the structure of muscle fibers. In tibialis anterior fibers, no changes in oxygen consumption velocity were observed. The introduction of succinate to the diet of rats makes it possible to prevent the negative effects of hypokinesia, although it reduces the basal level of intensity of cell respiration.  相似文献   

12.
The changes in the sarcoplasmic proteins of the m. gastrocnemius and m. soleus were examined by biochemical methods on the 5th, 7th, 14th and 28th days after plaster cast immobilization of the right hind limbs of adult rabbits. During 4 weeks the soluble/myofibrillar protein ratio increased from 0.47 to 0.75 in the m. gastrocnemius, and to 0.85 in the m. soleus. Evaluation of the relative quantities of the components identified after gel-electrophoresis separation led to the following results: (1) There was no, or no appreciable change in the glyceraldehyde-3-phosphate dehydrogenase, creatine kinase and enolase activities. (2) The enzymes lactate dehydrogenase, aldolase and the glycogenolytic enzymes showed a relative decrease in both muscles. (3) Phosphoglycerate kinase, phosphoglucose isomerase and pyruvate kinase increased in both muscles. (4) Changes of opposite directions were exhibited by myoglobin, myokinase and F-protein. These results provide new data on the biochemical characterization of these functionally different muscles, and on the mechanism of disuse atrophy.  相似文献   

13.
The purpose of this study was to ascertain the time course of changes, whilst suspending the hindlimb and physical exercise training, of myosin light chain (LC) isoform expression in rat soleus and vastus lateralis muscles. Two groups of six rats were suspended by their tails for 1 or 2 weeks, two other groups of ten rats each were subjected to exercise training on a treadmill for 9 weeks, one to an endurance training programme (1-h running at 20 m.min-1 5 days.week-1), and the other to a sprint programme (30-s bouts of running at 60 m.min-1 with rest periods of 5 min). At the end of these experimental procedures, soleus and vastus lateralis superficialis muscles were removed for myosin LC isoform determination by two-dimensional gel electrophoresis. Hindlimb suspension for 2 weeks significantly increased the proportion of fast myosin LC and decreased slow myosin LC expression in the soleus muscle. The pattern of myosin LC was unchanged in the vastus lateralis muscle. Sprint training or endurance training for 9 weeks increased the percentage of slow myosin LC in vastus lateralis muscle, whereas soleus muscle myosin LC was not modified. These data indicate that hindlimb suspension influences myosin LC expression in postural muscle, whereas physical training acts essentially on phasic muscle. There were no differences in myosin LC observed under the influence of sprint- or endurance-training programme.  相似文献   

14.
Abdominal neutrophils effect on rat skeletal muscle m. soleus was investigated in vitro. The incubation was carried out in Hanks balanced solution within 24 hrs. It was a release of proteins from m. soleus 1 hr later. Creatine kinase (CK) and aspartate aminotransferase (AAT) activities increase was detected in incubation medium. The neutrophils released their proteins quicker than muscles. A dramatic inhibition of CK and AAT activities took place during coincubation of m. soleus and neutrophils. Zymosan-activated cells had a higher inhibition potency in comparison to nonactivated neutrophils. Analysis of proteinase and myeloperoxidase activities in incubation medium has given evidence that CK and AAT inhibition by non-activated neutrophils mainly depends on cell-secreted proteinases. Zymosan-activated neutrophil inhibition of CK and AAT consists of proteinases and myeloperoxidase effects. AAT appeared to be more resistant than CK to the damage by neutrophils. The used approach failed to demonstrate the direct damage effect of neutrophils on m. soleus, but the described enzyme inhibition mechanism can take place in vivo during leukocyte infiltration of skeletal muscles after intensive muscular activity.  相似文献   

15.
Stiffness of m. soleus (Sol.) and m. tibialis anterior (TA) was evaluated in 16 volunteers during exposure to 7-days dry immersion alone and to the combination of immersion and mechanic stimulation of foot support zones. It was shown that Sol. stiffness decreased progressively starting from day-1 of immersion, whereas TA stiffness, on the contrary, made a sharp rise. Mechanic stimulation of foot support zones slowed down the rate and extent of changes in both muscles.  相似文献   

16.
Changes in sarcomeric cytoskeletal proteins of rat m. soleus fibers upon the chronic stretching against the background of gravitational unloading were analyzed and compared with changes in fiber size and myosin phenotype. For rats exposed to gravitational unloading in the usual microgravity-simulating experimental model (hindlimb suspension (HS) according to Morey-Holten), a considerable reduction in the mass of m. soleus (by 54%) and the area of its fibers of both slow-twitch (by 47%) and fast-twitch (37%) types compared with control animals was revealed. Moreover, the percent of fibers containing only slow isoforms of myosin heavy chains (MHC) for suspended animals was slightly smaller and the portion of fibers interacting only with antibodies against fast myosin isoforms was significantly higher than for control animals. For hindlimb-suspended rats, the titin/MHC and nebulin/MHC ratios appeared to be reduced almost by two times as compared with those for the contriol group of animals. Chronic immobilization of m. soleus in stretched state against the background of suspension leads to a partial or complete prevention of the reduction in muscle fiber sizes, the transformation of the myosin phenotype into fast one, and a decrease in relative content of sarcomeric cytoskeletal proteins.  相似文献   

17.
Unloading of skeletal muscles by hindlimb unweighting is known to induce muscle atrophy and a shift toward faster contractile properties associated with an increase in the expression of fast contractile proteins, particularly in slow soleus muscles. Contractile properties suggest that slow soleus muscles acquire SR properties close to those of a faster one. We studied the expression and properties of the sarcoplasmic reticulum calcium release (RyR) channels in soleus and gastrocnemius muscles of rats submitted to hindlimb unloading (HU). An increase in RyR1 and a slight decrease in RyR3 expression was detected in atrophied soleus muscles only after 4 weeks of HU. No variation appeared in fast muscles. [(3)H]Ryanodine binding experiments showed that HU neither increased the affinity of the receptors for [(3)H]ryanodine nor changed the caffeine sensitivity of [(3)H]ryanodine binding. Our results suggested that not only RyR1 but also RyR3 expression can be regulated by muscle activity and innervation in soleus muscle. The changes in the RyR expression in slow fibers suggested a transformation of the SR from a slow to a fast phenotype.  相似文献   

18.
The effect of increases in diaphragmatic muscle contractile activity on diaphragm blood flow remains unclear. The present study examined the effect of electrically induced isometric diaphragmatic muscle contractions on diaphragmatic blood flow. Studies were performed on diaphragmatic muscle strips prepared in anesthetized mechanically ventilated dogs. Diaphragmatic contractile activity was quantitated as the tension-time index (TTI) (i.e., the product of tension magnitude and duration). Blood flow to the strip (Qdi) was measured from the volume of the phrenic venous effluent using a drop counter. The separate effects on Qdi of 30-s periods of continuous and rhythmic contractions were examined. Qdi increased with increases in TTI and peaked at a TTI of 20-30% of maximum after which Qdi fell progressively with further increases in TTI. At levels of TTI greater than 30%, the pattern of muscle contraction significantly affected blood flow. Qdi was significantly lower during activity and the postcontraction hyperemia significantly greater at a given TTI when contractions were continuous than when contractions were intermittent. Above a TTI of 30%, Qdi during contraction decreased linearly with increases in duty cycle and curvilinearly with increases in tension. We conclude that during isometric diaphragmatic contractions, diaphragmatic blood flow may become mechanically impeded, and the magnitude of the impediment in blood flow depends on the pattern of diaphragmatic contractions. With increases in contractile activity above a critical level, changes in duty cycle exert progressively greater effects on diaphragmatic blood flow than changes in muscle tension.  相似文献   

19.
It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber type-specific changes in Na(+)-K(+)-ATPase activity in sarcolemmal membranes and in total membranes obtained from control rats and after 30 min of treadmill running. ATPase activity was measured at Na(+) concentrations of 0-80 mM and K(+) concentrations of 0-10 mM. K(m) and V(max) values were obtained from a Hill plot. K(m) for Na(+) was higher (lower affinity) in total membranes of glycolytic muscle (extensor digitorum longus and white vastus lateralis), when compared with oxidative muscle (red gastrocnemius and soleus). Treadmill running induced a significant decrease in K(m) for Na(+) in total membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex. The changes in Na(+)-K(+)-ATPase ion affinity are expected to influence muscle ion balance during muscle contraction.  相似文献   

20.
Umnova MM  Krasnov IB 《Biofizika》2006,51(5):940-945
The ultrastructure of muscle spindles (incapsulated mechanoreceptors of stretch of extrafusal muscle fibres) of m. soleus in adult Wistar rats after repeated unloading of support on hind limbs with preservation of support loading on fore limbs has been studied by transmissing electron microscopy. It was shown that, along with muscle spindles with the ordinary number of intrafusal muscle fibres (four), m. soleus contains spindles with an increased number of intrafusal fibers (five to six). It was assumed that the increase in the number of intrafusal muscle fibers is due to the proliferation of their satellite cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号