首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aerobic heterotrophs were isolated from subsurface soil samples obtained from the U.S. Department of Energy's (DOE) Field Research Center (FRC) located at Oak Ridge, Tenn. The FRC represents a unique, extreme environment consisting of highly acidic soils with cooccurring heavy metals, radionuclides, and high nitrate concentrations. Four hundred isolates obtained from contaminated soil were assayed for heavy metal resistance, and a smaller subset was assayed for tolerance to uranium. The vast majority of the isolates were gram-positive bacteria and belonged to the high-G+C- and low-G+C-content genera Arthrobacter and Bacillus, respectively. Genomic DNA from a randomly chosen subset of 50 Pb-resistant (Pbr) isolates was amplified with PCR primers specific for PIB-type ATPases (i.e., pbrA/cadA/zntA). A total of 10 pbrA/cadA/zntA loci exhibited evidence of acquisition by horizontal gene transfer. A remarkable dissemination of the horizontally acquired PIB-type ATPases was supported by unusual DNA base compositions and phylogenetic incongruence. Numerous Pbr PIB-type ATPase-positive FRC isolates belonging to the genus Arthrobacter tolerated toxic concentrations of soluble U(VI) (UO22+) at pH 4. These unrelated, yet synergistic, physiological traits observed in Arthrobacter isolates residing in the contaminated FRC subsurface may contribute to the survival of the organisms in such an extreme environment. This study is, to the best of our knowledge, the first study to report broad horizontal transfer of PIB-type ATPases in contaminated subsurface soils and is among the first studies to report uranium tolerance of aerobic heterotrophs obtained from the acidic subsurface at the DOE FRC.  相似文献   

2.
In order to examine the natural history of metal homeostasis genes in prokaryotes, open reading frames with homology to characterized PIB-type ATPases from the genomes of 188 bacteria and 22 archaea were investigated. Major findings were as follows. First, a high diversity in N-terminal metal binding motifs was observed. These motifs were distributed throughout bacterial and archaeal lineages, suggesting multiple loss and acquisition events. Second, the CopA locus separated into two distinct phylogenetic clusters, CopA1, which contained ATPases with documented Cu(I) influx activity, and CopA2, which contained both efflux and influx transporters and spanned the entire diversity of the bacterial domain, suggesting that CopA2 is the ancestral locus. Finally, phylogentic incongruences between 16S rRNA and PIB-type ATPase gene trees identified at least 14 instances of lateral gene transfer (LGT) that had occurred among diverse microbes. Results from bootstrapped supported nodes indicated that (i) a majority of the transfers occurred among proteobacteria, most likely due to the phylogenetic relatedness of these organisms, and (ii) gram-positive bacteria with low moles percent G+C were often involved in instances of LGT. These results, together with our earlier work on the occurrence of LGT in subsurface bacteria (J. M. Coombs and T. Barkay, Appl. Environ. Microbiol. 70:1698-1707, 2004), indicate that LGT has had a minor role in the evolution of PIB-type ATPases, unlike other genes that specify survival in metal-stressed environments. This study demonstrates how examination of a specific locus across microbial genomes can contribute to the understanding of phenotypes that are critical to the interactions of microbes with their environment.  相似文献   

3.
Powered by ATP hydrolysis, PIB‐ATPases drive the energetically uphill transport of transition metals. These high affinity pumps are essential for heavy metal detoxification and delivery of metal cofactors to specific cellular compartments. Amino acid sequence alignment of the trans‐membrane (TM) helices of PIB‐ATPases reveals a high degree of conservation, with ~60–70 fully conserved positions. Of these conserved positions, 6–7 were previously identified to be important for transport. However, the functional importance of the majority of the conserved TM residues remains unclear. To investigate the role of conserved TM residues of PIB‐ATPases we conducted an extensive mutagenesis study of a Zn2+/Cd2+ PIB‐ATPase from Rhizobium radiobacter (rrZntA) and seven other PIB‐ATPases. Of the 38 conserved positions tested, 24 had small effects on metal tolerance. Fourteen mutations compromised in vivo metal tolerance and in vitro metal‐stimulated ATPase activity. Based on structural modelling, the functionally important residues line a constricted ‘channel’, tightly surrounded by the residues that were found to be inconsequential for function. We tentatively propose that the distribution of the mutable and immutable residues marks a possible trans‐membrane metal translocation pathway. In addition, by substituting six trans‐membrane amino acids of rrZntA we changed the in vivo metal specificity of this pump from Zn2+/Cd2+ to Ag+.  相似文献   

4.
We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting PIB-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH metal-binding motif in TM6 and a histidine-rich N-terminal metal-binding domain. We have cloned both copper pumps, expressed them in Escherichia coli and characterized them functionally. CtrA2 is activated by Ag+ and Cu+ and presumably transports reduced Cu+, while CtrA3 is activated by, and presumably transports, the oxidized copper ion. Both CtrA2 and CtrA3 are thermophilic proteins with an activity maximum at 75 °C. Electron cryomicroscopy of two-dimensional crystals of CtrA3 yielded a projection map at ∼7 Å resolution with density peaks, indicating eight membrane-spanning α-helices per monomer. A fit of the Ca-ATPase structure to the projection map indicates that the arrangement of the six central helices surrounding the ion-binding site in the membrane is conserved, and suggests the position of the two additional N-terminal transmembrane helices that are characteristic of the heavy metal, eight-helix P1B-type ATPases.  相似文献   

5.
Aerobic heterotrophs were isolated from subsurface soil samples obtained from the U.S. Department of Energy's (DOE) Field Research Center (FRC) located at Oak Ridge, Tenn. The FRC represents a unique, extreme environment consisting of highly acidic soils with co-occurring heavy metals, radionuclides, and high nitrate concentrations. Four hundred isolates obtained from contaminated soil were assayed for heavy metal resistance, and a smaller subset was assayed for tolerance to uranium. The vast majority of the isolates were gram-positive bacteria and belonged to the high-G+C- and low-G+C-content genera Arthrobacter and Bacillus, respectively. Genomic DNA from a randomly chosen subset of 50 Pb-resistant (Pb(r)) isolates was amplified with PCR primers specific for P(IB)-type ATPases (i.e., pbrA/cadA/zntA). A total of 10 pbrA/cadA/zntA loci exhibited evidence of acquisition by horizontal gene transfer. A remarkable dissemination of the horizontally acquired P(IB)-type ATPases was supported by unusual DNA base compositions and phylogenetic incongruence. Numerous Pb(r) P(IB)-type ATPase-positive FRC isolates belonging to the genus Arthrobacter tolerated toxic concentrations of soluble U(VI) (UO(2)(2+)) at pH 4. These unrelated, yet synergistic, physiological traits observed in Arthrobacter isolates residing in the contaminated FRC subsurface may contribute to the survival of the organisms in such an extreme environment. This study is, to the best of our knowledge, the first study to report broad horizontal transfer of P(IB)-type ATPases in contaminated subsurface soils and is among the first studies to report uranium tolerance of aerobic heterotrophs obtained from the acidic subsurface at the DOE FRC.  相似文献   

6.

Background

The U12-type spliceosome is responsible for the removal of a subset of introns from eukaryotic mRNAs. U12-type introns are spliced less efficiently than normal U2-type introns, which suggests a rate-limiting role in gene expression. The Drosophila genome contains about 20 U12-type introns, many of them in essential genes, and the U12-type spliceosome has previously been shown to be essential in the fly.

Methodology/Principal Findings

We have used a Drosophila line with a P-element insertion in U6atac snRNA, an essential component of the U12-type spliceosome, to investigate the impact of U12-type introns on gene expression at the organismal level during fly development. This line exhibits progressive accumulation of unspliced U12-type introns during larval development and the death of larvae at the third instar stage. Surprisingly, microarray and RT-PCR analyses revealed that most genes containing U12-type introns showed only mild perturbations in the splicing of U12-type introns. In contrast, we detected widespread downstream effects on genes that do not contain U12-type introns, with genes related to various metabolic pathways constituting the largest group.

Conclusions/Significance

U12-type intron-containing genes exhibited variable gene-specific responses to the splicing defect, with some genes showing up- or downregulation, while most did not change significantly. The observed residual U12-type splicing activity could be explained with the mutant U6atac allele having a low level of catalytic activity. Detailed analysis of all genes suggested that a defect in the splicing of the U12-type intron of the mitochondrial prohibitin gene may be the primary cause of the various downstream effects detected in the microarray analysis.  相似文献   

7.
Although there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT) processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions) that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci.  相似文献   

8.

Background

Acquisition of virulence factors and antibiotic resistance by many clinically important bacteria can be traced to horizontal gene transfer (HGT) between related or evolutionarily distant microflora. Comparative genomic analysis has become an important tool for identifying HGT DNA in emerging pathogens. We have adapted the multi-genome alignment tool EvoPrinter to facilitate discovery of HGT DNA sequences within bacterial genomes and within their mobile genetic elements.

Principal Findings

EvoPrinter analysis of 13 different Staphylococcus aureus genomes revealed that one of the human isolates, the hospital epidemic methicillin-resistant MRSA252 strain, uniquely shares multiple putative HGT DNA sequences with different causative agents of bovine mastitis that are not found in the other human S. aureus isolates. MRSA252 shares over 14 different DNA sequence blocks with the bovine mastitis ET3 S. aureus strain RF122, and many of the HGT DNAs encode virulence factors. EvoPrinter analysis of the MRSA252 chromosome also uncovered virulence-factor encoding HGT events with the genome of Listeria monocytogenes and a Staphylococcus saprophyticus associated plasmid. Both bacteria are also causal agents of contagious bovine mastitis.

Conclusions

EvoPrinter analysis reveals that the human MRSA252 strain uniquely shares multiple DNA sequence blocks with different causative agents of bovine mastitis, suggesting that HGT events may be occurring between these pathogens. These findings have important implications with regard to animal husbandry practices that inadvertently enhance the contact of human and livestock bacterial pathogens.  相似文献   

9.
The rate of excision of U12-type introns has been reported to be slower than that of U2-type introns, suggesting a rate-limiting bottleneck that could down-regulate genes containing U12-type introns. The mechanistic reasons for this slower rate of intron excision are not known, but lower abundance of the U12-type snRNPs and slower rate of assembly or catalytic activity have been suggested. To investigate snRNP abundance we concentrated on the U4atac snRNA, which is the least abundant of the U12-type snRNAs and is limiting the formation of U4atac/U6atac complex. We identified mouse NIH-3T3 cell line isolates in which the level of both U4atac snRNA and U4atac/U6atac complexes is reduced to 10%-20% of the normal level. We used these cell lines to investigate splicing efficiency by transient transfection of a reporter gene containing a U12-type intron and by quantitative PCR analysis of endogenous genes. The splicing of the reporter U12-type intron was very inefficient, but the activity could be restored by overexpression of U4atac snRNA. Using these U4atac-deficient NIH-3T3 cells, we confirmed the results of previous studies showing that U12-type introns of endogenous genes are, indeed, excised more slowly than U2-type introns, but we found that the rate did not differ from that measured in cells displaying normal levels of U4atac snRNA. Thus our results suggest that the cellular abundance of the snRNPs does not limit U12-type intron splicing under normal conditions.  相似文献   

10.
Using PCR with a set of specific oligonucleotide primers to detect cryI-type genes, we were able to screen the cry-type genes of 225 Bacillus thuringiensis soil isolates from Taiwan without much cost in time or labor. Some combinations of cry genes (the cry-type profile) in a single isolate were unique. We identified five distinct profiles of crystal genes from the B. thuringiensis soil isolates from Taiwan. The cry genes included cryIA(a), cryIA(b), cryIA(c), cryIC, cryID, and cryIV. Interestingly, 501 B. thuringiensis isolates (93.5% of the total number that we identified) were isolated from areas at high altitudes. The profiles of cry-type genes were distinct in all isolation areas. The distribution of cry-type genes of our isolates therefore depended on geography. Using PCR footprinting to detect cryIC-type genes, we identified two distinct cryIC footprints from some of our isolates, indicating that these isolates may contain novel cryIC-type genes. B. thuringiensis isolates containing cryIA(a)-, cryIA(b)-, and cryIA(c)-type genes exhibited much greater activity against Plutella xylostella than did other isolates, indicating that multiple cry-type genes may be used as markers for the prediction of insecticidal activities.  相似文献   

11.
SYNOPSIS. We have examined various properties of DNAs from 7 dinoflagellate isolates of wide geographic distribution; all of the isolates are superficially indistinguishable from a laboratory strain of Crypthecodinium cohnii originally isolated at Woods Hole, Massachusetts (WHd strain). Two isolates, one from Puerto Rico and the other from Honduras, are clearly distinguishable from WHd and the other isolates by their DNA buoyant density values. WHd and the other 5 isolates we have examined are indistinguishable from one another in terms of DNA buoyant densities and melting temperatures. The relationship among the various isolates, including WHd, were evaluated at a finer level through restriction endonuclease cleavage and molecular hybridization to compare ribosomal RNA gene structure in the several DNAs. All the isolates could be further categorized by this method, the patterns of restriction endonuclease cleavage of ribosomal RNA genes in the isolates paralleling exactly their sexual compatibilities established from breeding experiments by Beam & Himes. The DNAs were also treated with a restriction endonuclease sensitive to the presence of the modified base 5-methylcytosine. In all isolates, cytosine residues in both total DNA and DNA specifically containing the ribosomal RNA genes were found to be extensively methylated, as was previously shown for the WHd strain.  相似文献   

12.
Copper is a crucial ion in cells, but needs to be closely controlled due to its toxic potential and ability to catalyse the formation of radicals. In chloroplasts, an important step for the proper functioning of the photosynthetic electron transfer chain is the delivery of copper to plastocyanin in the thylakoid lumen. The main route for copper transport to the thylakoid lumen is driven by two PIB-type ATPases, Heavy Metal ATPase 6 (HMA6) and HMA8, located in the inner membrane of the chloroplast envelope and in the thylakoid membrane, respectively. Here, the crystal structures of the nucleotide binding domain of HMA6 and HMA8 from Arabidopsis thaliana are reported at 1.5Å and 1.75Å resolution, respectively, providing the first structural information on plants Cu+-ATPases. The structures reveal a compact domain, with two short helices on both sides of a twisted beta-sheet. A double mutant, aiding in the crystallization, provides a new crystal contact, but also avoids an internal clash highlighting the benefits of construct modifications. Finally, the histidine in the HP motif of the isolated domains, unable to bind ATP, shows a side chain conformation distinct from nucleotide bound structures.  相似文献   

13.
Summary We have carried out a molecular and genetic analysis of the chloroplast ATPase in Chlamydomonas reinhardtii. Recombination and complementation studies on 16 independently isolated chloroplast mutations affecting this complex demonstrated that they represent alleles in five distinct chloroplast genes. One of these five, the ac-u-c locus, has been positioned on the physical map of the chloroplast DNA by deletion mutations. The use of cloned spinach chloroplast ATPase genes in heterologous hybridizations to Chlamydomonas chloroplast DNA has allowed us to localize three or possibly four of the ATPase genes on the physical map. The beta and probably the epsilon subunit genes of Chlamydomonas CF1 lie within the same region of chloroplast DNA as the ac-u-c locus, while the alpha and proteolipid subunit genes appear to map adjacent to one another approximately 20 kbp away. Unlike the arrangement in higher plants, these two pairs of genes are separated from each other by an inverted repeat.  相似文献   

14.
15.
16.
Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB-type Cu+-ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu+ across cellular membranes. Crystal structures of a copper-free Cu+-ATPase are available, but the mechanism of Cu+ recognition, binding, and translocation remains elusive. Through X-ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid-supported membranes using wild-type and mutant forms of the Legionella pneumophila Cu+-ATPase (LpCopA), we identify a sulfur-lined metal transport pathway. Structural analysis indicates that Cu+ is bound at a high-affinity transmembrane-binding site in a trigonal-planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382 and C384) and the conserved Met residue of transmembrane segment 6 (M717 of the MXXXS motif). These residues are also essential for transport. Additionally, the studies indicate essential roles of other conserved intramembranous polar residues in facilitating copper binding to the high-affinity site and subsequent release through the exit pathway.  相似文献   

17.
Mycobacterial tuberculosis (Mtb) is able to preserve its intrabacterial pH (pHIB) near neutrality in the acidic phagosomes of immunologically activated macrophages and to cause lethal pathology in immunocompetent mice. In contrast, when its ability to maintain pHIB homeostasis is genetically compromised, Mtb dies in acidic phagosomes and is attenuated in the mouse. Compounds that phenocopy the genetic disruption of Mtb’s pHIB homeostasis could serve as starting points for drug development in their own right or through identification of their targets. A previously reported screen of a natural product library identified a phloroglucinol, agrimophol, that lowered Mtb’s pHIB and killed Mtb at an acidic extrabacterial pH. Inability to identify agrimophol-resistant mutants of Mtb suggested that the compound may have more than one target. Given that polyphenolic compounds may undergo covalent reactions, we attempted an affinity-based method for target identification. The structure-activity relationship of synthetically tractable polyhydroxy diphenylmethane analogs with equivalent bioactivity informed the design of a bioactive agrimophol alkyne. After click-chemistry reaction with azido-biotin and capture on streptavidin, the biotinylated agrimophol analog pulled down the Mtb protein Rv3852, a predicted membrane protein that binds DNA in vitro. A ligand-protein interaction between agrimophol and recombinant Rv3852 was confirmed by isothermal calorimetry (ITC) and led to disruption of Rv3852’s DNA binding function. However, genetic deletion of rv3852 in Mtb did not phenocopy the effect of agrimophol on Mtb, perhaps because of redundancy of its function.  相似文献   

18.
This study was designed to reveal any differences in effects of fast created versus total inbreeding on reproduction and body weights in mice. A line selected for large litter size for 124 generations (H) and a control line (K) maintained without selection for the same number of generations were crossed (HK) and used as a basis for the experiment. Within the HK cross, full sib, cousin or random mating were practised for two generations in order to create new inbreeding (IBF) at a fast rate. In the first generation of systematic mating, old inbreeding was regenerated in addition to creation of new inbreeding from the mating design giving total inbreeding (IBT). The number of pups born alive (NBA) and body weights of the animals were then analysed by a model including both IBT and IBF. The IBT of the dam was in the present study found to reduce the mean NBA with -0.48 (± 0.22) (p < 0.05) pups per 10% increase in the inbreeding coefficient, while the additional effect of IBF was -0.42 (± 0.27). For the trait NBA per female mated, the effect of IBT was estimated to be -0.45 (± 0.29) per 10% increase in the inbreeding coefficient and the effect of IBF was -0.90 (± 0.37) (p < 0.05) pups. In the present study, only small or non-significant effects of IBF of the dam could be found on sex-ratio and body weights at three and six weeks of age in a population already adjusted for IBT.  相似文献   

19.

Background

Serum albumin is a major pharmacokinetic effector of drugs. To gain further insight into albumin binding chemistry, the crystal structures of six oncology agents were determined in complex with human serum albumin at resolutions of 2.8 to 2.0 Å: camptothecin, 9-amino-camptothecin, etoposide, teniposide, bicalutamide and idarubicin.

Methods

Protein crystal growth and low temperature X-ray crystallography

Results

These large, complex drugs are all bound within the subdomain IB binding region which can be described as a hydrophobic groove formed by α-helices h7, h8 and h9 covered by the extended polypeptide L1. L1 creates a binding cavity with two access sites, one between loop L1 and α-helices h7 and h8 (distal site: IBd) and the other between L1 and α-helix h9 (proximal site: IBp). Camptothecin (2.4 Å) and 9 amino camptothecin (2.0 Å) are clearly bound as the open lactone form (IBp). Idarubicin (2.8 Å) binds in a DNA like dimer complex via an intermolecular π stacking arrangement in IBd. Bicalutamide (2.4 Å) is bound in a folded intramolecular π stacking arrangement between two aromatic rings in IBd similar to idarubicin. Teniposide (2.7 Å) and etoposide (2.7 Å), despite small chemical differences, are bound in two distinctly different sites at or near IB. Teniposide is internalized via primarily hydrophobic interactions and spans through both openings (IBp-d). Etoposide is bound between the exterior of IB and IIA and exhibits an extensive hydrogen bonding network.

Conclusions

Subdomain IB is a major binding site for complex heterocyclic molecules.

General significance

The structures have important implications for drug design and development. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

20.
A phospholipid-stimulated adenosine triphosphatase (ATPase) complex was solubilized and partially purified from membrane particles of Escherichia coli ML308-225. The complex was of large molecular size and contained 16 polypeptides, five of which were subunits of the F1-type ATPase of E. coli. Components of the respiratory chain were absent. Enzyme activity was stimulated by lysophosphatidylcholine, phosphatidylcholine, phosphatidylglycerol, and cardiolipin but not by phosphatidylethanolamine. The ATPase activity of the complex was inhibited by N,N′-dicyclohexylcarbodiimide and by Dio-9 at lower inhibitor:protein ratios than required for inhibition of the F1-type ATPase of E. coli. However, the ATPase complex was less sensitive than the membrane-bound enzyme to inhibition by these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号