首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Corcia  I Pecht  S Hemmerich  S Ran  B Rivnay 《Biochemistry》1988,27(19):7499-7506
Ion channels, activated upon IgE-Fc epsilon receptor aggregation by specific antigen, were studied in micropipet-supported lipid bilayers. These bilayers were reconstituted with purified IgE-Fc epsilon receptor complex and the intact 110-kDa channel-forming protein, both isolated from plasma membranes of rat basophilic leukemia cells (line RBL-2H3). In order to identify the current carrier through these ion channels and to determine their ion selectivity, we investigated the currents flowing through the IgE-Fc epsilon receptor gated channels in the presence of a gradient of Ca2+ ions. Thus, the solution in which the micropipet-supported bilayer was immersed contained 1.8 mM CaCl2, while the interior of the micropipet contained 0.1 microM Ca2+ (buffered with EGTA). Both solutions also contained 150 mM of a monovalent cation chloride salt (either K+ or Na+). The currents induced upon specific aggregation of the IgE (by either antigen or anti-IgE antibodies) were examined over a range of potentials imposed on the bilayer. The type of conductance event most frequently observed under the employed experimental conditions was a channel that has a slope conductance of 3 pS and a reversal potential practically identical with the calculated value for the reversal potential of calcium (134 +/- 11 mV in the presence of sodium, 125 +/- 13 mV in the presence of potassium). These results indicate that this channel is highly selective for calcium against the monovalent cations sodium and potassium. This same channel has a conductance of 4-5 pS in the presence of symmetrical solutions containing only 100 mM CaCl2 and 8 pS in the presence of 0.5 M NaCl with no calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively.  相似文献   

3.
The single channel conductance of the dihydropyridine (DHP)-sensitive calcium channel from rabbit skeletal muscle transverse tubules was analyzed in detail using the planar bilayer recording technique. With 0.1 M BaCl2 on both sides of the channel (symmetrical solutions), the most frequent conductance is 12 pS, which is independent of holding potential in the range of -80 to +80 mV. This conductance accounts for approximately 80% of all openings analyzed close to 0 mV. Two additional channels of conductance 9 and 3 pS are also present at all positive potentials, but their relative occurrence close to 0 mV is low. All channels depend on the presence of agonist Bay K 8644 and are inhibited by the antagonist nitrendipine. The relative occurrence of 9 and 3 pS can be increased, and that of 12 pS decreased, by several interventions such as external addition of cholesterol, lectin (wheat germ agglutinin), or calmodulin inhibitor R24571 (calmidazolium). The 9- and 3-pS channels are also conspicuous at positive potentials larger than +40 mV. We suggest that 9- and 3-pS channels are two elementary conductances of the same DHP-sensitive Ca channel. Under most circumstances, these two conductances are gated in a coupled way to generate a channel with a unitary conductance of 12 pS. Interventions tested, including large depolarizations, probably decompose or uncouple the 12-pS channel into 9 and 3 pS.  相似文献   

4.
Currents through single potassium channels were studied in cell-attached or inside-out patches from collagenase-dispersed smooth muscle cells of the guinea pig taenia coli. Under conditions mimicking the physiological state with [K+]i = 135 mM: [K+]o = 5.4 mM, three distinct types of K+ channel were identified with conductances around 0 mV of 147, 94, and 63 pS. The activities of the 94- and 63-pS channel were observed infrequently. The 147-pS channel was most abundant. It has a reversal potential of approximately -75 mV. It is sensitive to [Ca2+]i and to membrane potential. At -30 mV, the probability of a channel being open is at a minimum. At more positive voltages, the probability follows Boltzman distribution. A 10-fold change in [Ca2+]i causes a 25-mV negative shift of the voltage where half of the channels are open; an 11.3-mV change in membrane potential produces an e-fold increase in the probability of the channel being open when P is low. At voltages between -30 and -50 mV, the open probability increases in an anomalous manner because of a large decrease of the channel closed time without much change in the channel open time. This anomalous activity may play a regulatory role in maintaining the resting potential. The histograms of channel open and closed time fit well, respectively, with single and double exponential distributions. Upon step depolarizations by 100-ms pulses, the 147-pS channel opens with a brief delay. The delay shortens and both the number of open channels and the open time increase with increasing positivity of the potential. The averaged currents during the step depolarizations closely resemble the delayed rectifying outward K+ currents in whole-cell recordings.  相似文献   

5.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.  相似文献   

6.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

7.
Depletion of intracellular calcium stores induces transmembrane Ca2+ influx. We studied Ca(2+)- and Ba(2+)-permeable ion channels in A431 cells after store depletion by dialysis of the cytosol with 10 mM BAPTA solution. Cell-attached patches of cells held at low (0.5 microM) external Ca2+ exhibited transient channel activity, lasting for 1-2 min. The channel had a slope conductance of 2 pS with 200 mM CaCl2 and 16 pS with 160 mM BaCl2 in the pipette. Channel activity quickly ran down in excised inside-out patches and was not restored by InsP3 and/or InsP4. Thapsigargin induced activation in cells kept in 1 mM external Ca2+ after BAPTA dialysis. These channels represent one Ca2+ entry pathway activated by depletion of internal calcium stores and are clearly distinct from previously identified calcium repletion currents.  相似文献   

8.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

9.
Na(+) reduction induces contraction of opossum lower esophageal sphincter (LES) circular smooth muscle strips in vitro; however, the mechanism(s) by which this occurs is unknown. The purpose of the present study was to investigate the electrophysiological effects of low Na(+) on opossum LES circular smooth muscle. In the presence of atropine, quanethidine, nifedipine, and substance P, conventional intracellular electrodes recorded a resting membrane potential (RMP) of -37.5 +/- 0.9 mV (n = 4). Decreasing [Na(+)] from 144.1 to 26.1 mM by substitution of equimolar NaCl with choline Cl depolarized the RMP by 7.1 +/- 1.1 mV. Whole cell patch-clamp recordings revealed outward K(+) currents that began to activate at -60 mV using 400-ms stepped test pulses (-120 to +100 mV) with increments of 20 mV from holding potential of -80 mV. Reduction of [Na(+)] in the bath solution inhibited K(+) currents in a concentration-dependent manner. Single channels with conductance of 49-60 pS were recorded using cell-attached patch-clamp configurations. The channel open probability was significantly decreased by substitution of bath Na(+) with equimolar choline. A 10-fold increase of [K(+)] in the pipette shifted the reversal potential of the single channels to the positive by -50 mV. These data suggest that Na(+)-activated K(+) channels exist in the circular smooth muscle of the opossum LES.  相似文献   

10.
INTRODUCTION: In vascular smooth muscle cells, different types of K+ channels participate in the regulation of membrane potential and consequently in the contractile behavior of the vessel. There is little information about the properties and role of K+ channels in human internal mammary artery (HIMA), the vessel of choice for coronary revascularization. METHODS: Patch-clamp technique on isolated HIMA smooth muscle cells was used. RESULTS: This work presents for the first time single-channel properties of the high conductance Ca2+-activated K+ channel (BK(Ca)) of HIMA. It presents a single-channel conductance of 228+/-4 pS (n=44, 8 cells), is sensitive to 100 nM iberiotoxin, and its open probability is Ca2+- and voltage-dependent. Inside-out results show that BK(Ca) channels in HIMA are directly activated by increasing the pH of intracellular media (NPo=0.096+/-0.032 at pH 7.4 and NPo=0.459+/-0.111 at pH 7.6, n=12 cells, p<0.05) and inhibited by lowering this pH (NPo=0.175+/-0.067 at pH 7.4 and NPo=0.051+/-0.019 at pH 6.8, n=13 cells, p<0.05). CONCLUSIONS: The evidences presented about single-channel properties and intracellular pH sensitivity of BK(Ca) from HIMA smooth muscle cells provide useful information to elucidate physiological or pathological mechanisms in this vessel, as well as for future studies where drugs could have BK(Ca) channels as targets for pharmacological therapies.  相似文献   

11.
Although ketamine and Ca2+-activated K+ (KCa) channels have been implicated in the contractile activity regulation of cerebral arteries, no studies have addressed the specific interactions between ketamine and the KCa channels in cerebral arteries. The purpose of this study was to examine the direct effects of ketamine on KCa channel activities using the patch-clamp technique in single-cell preparations of rabbit middle cerebral arterial smooth muscle. We tested the hypothesis that ketamine modulates the KCa channel activity of the cerebral arterial smooth muscle cells of the rabbit. Vascular myocytes were isolated from rabbit middle cerebral arteries using enzymatic dissociation. Single KCa channel activities of smooth muscle cells from rabbit cerebral arteries were recorded using the patch-clamp technique. In the inside-out patches, ketamine in the micromolar range inhibited channel activity with a half-maximal inhibition of the ketamine concentration value of 83.8 +/- 12.9 microM. The Hill coefficient was 1.2 +/- 0.3. The slope conductance of the current-voltage relationship was 320.1 +/- 2.0 pS between 0 and +60 mV in the presence of ketamine and symmetrical 145 mM K+. Ketamine had little effect on either the voltage-dependency or open- and closed-time histograms of KCa channel. The present study clearly demonstrates that ketamine inhibits KCa channel activities in rabbit middle cerebral arterial smooth muscle cells. This inhibition of KCa channels may represent a mechanism for ketamine-induced cerebral vasoconstriction.  相似文献   

12.
The patch-clamp technique of cell-attached and inside-out configurations was used to study the single potassium channels in isolated guinea pig hepatocytes. The single potassium channels in isolated guinea pig hepatocytes were recorded at different K+ concentrations. A linear single-channel current-voltage relationship was obtained at the voltage range of -80 to -20 mV with slope conductance of 70 ± 6 pS (n = 10). Under symmetrical high K+ concentration of 148 mM in the cell-attached patch membrane, the I-V curve exhibited a mild inward rectification at potentials positive to +20 mV. The values of reversal potential was +5 ± 2 mV (n = 10). When the external potassium concentration ([K+]0) was decreased to 74 mM and 20 mM, the slope conductance was decreased to 48 ± 2 pS (n = 4) and 24 ± 3 pS (n = 3), respectively. The reversal potential was changed by 58 mV for a tenfold change in [K+]0, indicating that this channel was highly selective for K+. Open probabilities (P0) of the channel were 73-93% without apparent voltage dependence. The distributions of open time of the channels were fitted to two exponentials, while those of closed time were fitted to three exponentials, exhibiting no voltage dependence. The success rate of K+ channel activity to be recorded was 28% at room temperature, and there were no increases in the success rate nor in the channel opening probabilities at a temperature of 34-36°C. P0 in inside-out patches was not changed by application of 1 μM Ca2+ nor 1 mM Mg2+ to the internal side of patch membranes. It is concluded that a novel type of the K+ channels in guinea pig hepatocytes had different properties of slope conductance, channel kinetics, and sensitivity to [Ca2+]i, from those in other species. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4- 10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization.  相似文献   

14.
Two types of divalent cation conducting channels from rabbit skeletal muscle sarcoplasmic reticulum (SR) were incorporated into planar lipid bilayers. A high conductance (100 pS in 53 mM trans Ca2+) Ca2+ channel was incorporated from heavy density SR fractions. The 100-pS channel was activated by adenine nucleotides and Ca2+ and inhibited by Mg2+ and ruthenium red. A 10-pS calcium and barium conducting channel could be incorporated into planar lipid bilayers from light, intermediate, and heavy density SR vesicles. 10-pS channel activity in bilayers was not dependent on cis Ca2+ and was only weakly dependent on adenine nucleotides. Ruthenium red at concentrations up to 1 mM had no effect and Mg2+ was only marginally effective in inhibiting macroscopic Ba2+ currents from this channel. Calcium releasing activity in intermediate and heavy density SR fractions was assayed according to a rapid quench protocol and compared with the results obtained in the bilayer. Results from this comparison indicate that the 10-pS channel is probably not involved in rapid Ca2+- and adenine nucleotide-induced Ca2+ release from isolated SR vesicles.  相似文献   

15.
Previously undescribed high conductance single anion channels from frog skeletal muscle sarcoplasmic reticulum (SR) were studied in native membrane using the "sarcoball" technique (Stein and Palade, 1988). Excised inside-out patches recorded in symmetrical 200 mM TrisCl show the conductance of the channel''s predominant state was 505 +/- 25 pS (n = 35). From reversal potentials, the Pcl/PK ratio was 45. The slope conductance vs. Cl- ion concentration curve saturates at 617 pS, with K0.5 estimated at 77 mM. The steady-state open probability (Po) vs. holding potential relationship produces a bell-shaped curve, with Po values reaching a maximum near 1.0 at 0 mV, and falling off to 0.05 at +/- 25 mV. Kinetic analysis of the voltage dependence reveals that while open time constants are decreased somewhat by increases in potential, the largest effect is an increase in long closed times. Despite the channel''s high conductance, it maintains a moderate selectivity for smaller anions, but will not pass larger anions such as gluconate, as determined by reversal-potential shifts. At least two substates different from the main open level are distinguishable. These properties are unlike those described for mitochondrial voltage- dependent anion channels or skeletal muscle surface membrane Cl channels and since SR Ca channels are present in equally high density in sarcoball patches, we propose these sarcoball anion channels originate from the SR. Preliminary experiments recording currents from frog SR anion channels fused into liposomes indicate that either biochemical isolation and/or alterations in lipid environment greatly decrease the channel''s voltage sensitivity. These results help underline the potential significance of using sarcoballs to study SR channels. The steep voltage sensitivity of the sarcoball anion channel suggests that it could be more actively involved in the regulation of Ca2+ transport by the SR.  相似文献   

16.
K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could contribute to the voltage-dependent Ca2+-activated macroscopic K+ current (IC) that has been observed in several neuronal somata preparations, as well as in other cells. Some of the properties reported here may serve to distinguish which type contributes in each case. A third class of smaller (40-50 pS) channels was also studied. These channels were independent of calcium over the concentration range examined (10(-7)-10(-3) M), and were also independent of voltage over the range of pipette potentials of -60 to +60 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
These studies examine the properties of an apical potassium (K+) channel in macula densa cells, a specialized group of cells involved in tubuloglomerular feedback signal transmission. To this end, individual glomeruli with thick ascending limbs (TAL) and macula densa cells were dissected from rabbit kidney and the TAL covering macula densa cells was removed. Using patch clamp techniques, we found a high density (up to 54 channels per patch) of K+ channels in the apical membrane of macula densa cells. An inward conductance of 41.1 +/- 4.8 pS was obtained in cell-attached patches (patch pipette, 140 mM K+). In inside- out patches (patch pipette, 140 mM; bath, 5 mM K+), inward currents of 1.1 +/- 0.1 pA (n = 11) were observed at 0 mV and single channel current reversed at a pipette potential of -84 mV giving a permeability ratio (PK/PNa) of over 100. In cell-attached patches, mean channel open probability (N,Po, where N is number of channels in the patch and Po is single channel open probability) was unaffected by bumetanide, but was reduced from 11.3 +/- 2.7 to 1.6 +/- 1.3 (n = 5, p < 0.02) by removal of bath sodium (Na+). Simultaneous removal of bath Na+ and calcium (Ca2+) prevented the Na(+)-induced decrease in N.Po indicating that the effect of Na+ removal on N.Po was probably mediated by stimulation of Ca2+ entry. This interpretation was supported by studies where ionomycin, which directly increases intracellular Ca2+, produced a fall in N.Po from 17.8 +/- 4.0 to 5.9 +/- 4.1 (n = 7, p < 0.02). In inside- out patches, the apical K+ channel was not sensitive to ATP but was directly blocked by 2 mM Ca2+ and by lowering bath pH from 7.4 to 6.8. These studies constitute the first single channel observations on macula densa cells and establish some of the characteristics and regulators of this apical K+ channel. This channel is likely to be involved in macula densa transepithelial Cl- transport and perhaps in the tubuloglomerular feedback signaling process.  相似文献   

18.
This article shows that colchicine and taxol strongly influence the kinetics of L-type Ca channels in intact cardiac cells, and it suggests a mechanism for this action. It is known that colchicine disassociates microtubules into tubulin, and that taxol stabilizes microtubules. We have found that colchicine increases the probability that Ca channels are in the closed state and that taxol increases the probability they are in the open state. Moreover, taxol lengthens the mean open time of Ca channels. In this regard, taxol is similar to Bay-K 8644; however, Bay K works on inside-out patches, but taxol does not. Neither colchicine nor taxol alters the number of Ca channels in a patch. We have quantified these results as follows. It is known that L-type channels in embryonic chick heart ventricle cells have voltage- and current-dependent inactivation. In 10 mM Ba, channel conductance is linear in the range -10 to 20 mV. The conductance is 12 +/- 1 pS, and the extrapolated reversal potential is 42 +/- 2 mV (n = 3). In cell-attached patches, inactivation depends on the number of channels. One channel (holding at -80 mV and stepping to 0 mV for 500 ms) shows virtually no inactivation. However, three channels inactivate with a time constant of 360 +/- 20 ms (n = 6). In similar patches, colchicine (80 microM for 15 min) decreases the inactivation time constant to 162 +/- 33 ms (n = 4) and taxol (50 microM for 10 min) virtually abolishes inactivation (time constant 812 +/- 265 ms (n = 4)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Secretion of enzymes and fluid induced by Ca(2+) in pancreatic acini is not completely understood and may involve activation of ion conductive pathways in zymogen granule (ZG) membranes. We hypothesized that a chromanol 293B-sensitive K(+) conductance carried by a KCNQ1 protein is expressed in ZG membranes (ZGM). In suspensions of rat pancreatic ZG, ion flux was determined by ionophore-induced osmotic lysis of ZG suspended in isotonic salts. The KCNQ1 blocker 293B selectively blocked K(+) permeability (IC(50) of approximately 10 microM). After incorporation of ZGM into planar bilayer membranes, cation channels were detected in 645/150 mM potassium gluconate cis/trans solutions. Channels had linear current-voltage relationships, a reversal potential (E(rev)) of -20.9 +/- 0.9 mV, and a single-channel K(+) conductance (g(K)) of 265.8 +/- 44.0 pS (n = 39). Replacement of cis 500 mM K(+) by 500 mM Na(+) shifted E(rev) to -2.4 +/- 3.6 mV (n = 3), indicating K(+) selectivity. Single-channel analysis identified several K(+) channel groups with distinct channel behaviors. K(+) channels with a g(K) of 651.8 +/- 88.0 pS, E(rev) of -22.9 +/- 2.2 mV, and open probability (P(open)) of 0.43 +/- 0.06 at 0 mV (n = 6) and channels with a g(K) of 155.0 +/- 11.4 pS, E(rev) of -18.3 +/- 1.8 mV, and P(open) of 0.80 +/- 0.03 at 0 mV (n = 3) were inhibited by 100 microM 293B or by the more selective inhibitor HMR-1556 but not by the maxi-Ca(2+)-activated K(+) channel (BK channel) inhibitor charybdotoxin (5 nM). KCNQ1 protein was demonstrated by immunoperoxidase labeling of pancreatic tissue, immunogold labeling of ZG, and immunoblotting of ZGM. 293B also inhibited cholecystokinin-induced amylase secretion of permeabilized acini (IC(50) of approximately 10 microM). Thus KCNQ1 may account for ZG K(+) conductance and contribute to pancreatic hormone-stimulated enzyme and fluid secretion.  相似文献   

20.
To investigate the possible regulation of large-conductance Ca2+-activated K+ channels (BKCa) by tyrosine phosphatases (Tyr-PPs), single-channel currents of myocytes from rat mesenteric artery were recorded in open cell-attached patches. Two structurally different Tyr-PP inhibitors, sodium orthovanadate (Na3VO4) and dephostatin, were used. The channels (236 pS) evoked at +40 mV and pCa 6, were significantly inhibited by 1 mM Na3VO4 (-81+/-3%, n = 10; P < 0.005). Similarly, 100 microM dephostatin strongly inhibited the BKCa channels (-80+/-7%, n = 7 ; P < 0.05). Therefore, BKCa channels in vascular smooth muscle cells may be regulated by tyrosine phosphatase-dependent signal transduction pathways, whose inhibition could attenuate the channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号