首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One- and two-“year”-old seedlings of Pinus silvestris L., from which the buds had been removed, were studied for five weeks during the second and third growth period, respectively. Intact seedlings were used as controls. The seedlings were cultivated under controlled conditions in a climate chamber. The growth of the seedlings was determined and the one-“year”-old needles assayed for changes in net photosynthesis and ribulose bisphosphate carboxylase activity and in the levels of protein, Kjeldahl nitrogen, chlorophyll and starch. In the control the carboxylase activity and the content of protein, Kjeldahl nitrogen and starch in the needles increased in the beginning of the “summer” and decreased during the shoot growth period. The starch content was higher after bud removal (decapitation), since the carbohydrate could not be utilized for the growth of the new shoot. Decapitation did not affect the growth rate of the roots. The content of Kjeldahl nitrogen and total and soluble protein in the needles was higher in the decapitated seedlings during the period of shoot elongation in the control. Total nitrogen, but not protein, reached high levels, indicating accumulation of non-protein compounds. The general course of the chlorophyll pattern was not affected. Higher ribulose bisphosphate carboxylase activity than in the control was observed in the later part of the experimental periods. The higher levels of protein and nitrogen as well as of carboxylase activity after decapitation support the interpretation that soluble protein, including the carboxylase, and possibly other nitrogen compounds in the older needles are used for growth of the shoot. The loss of protein and nitrogen and of carboxylase activity in the control did not seem to be due to mineral deficiency in the substrate. Despite higher levels of carboxylase activity and similar chlorophyll concentrations, light-saturated net photosynthesis was lower after decapitation. The ratio between photosynthesis and photorespiration was not affected.  相似文献   

2.
Seedlings of Scots pine (Pinus sylvestris L.) of a northern provenance were cultivated in nutrient solution for 10 weeks in a climate chamber. The nutrient solution (renewed by solution exchange) contained 2.5, 10 or 50 mg N I?1. All other essential elements were added in optimal proportion to the nitrogen. Seedlings cultivated at 10 and 50 mg N I?1 were similar with respect to all characteristics studied. Seedlings cultivated at 2.5 mg N I?1 showed a lower growth rate, especially for the shoot, and an altered morphology, with high root:shoot ratios and long, slender roots. The nitrogen concentrations in shoot and needles as well as in whole seedlings were not significantly affected by the nitrogen supply, while the nitrogen concentrations in the roots were somewhat lower at 2.5 mg N I?1. Ribulose bisphosphate carboxylase (EC 4.1.1.39) activity and the concentrations of carboxylase, total and soluble protein and of chlorophyll in the needles were consistently much lower for seedlings cultivated at 2.5 mg N I?1, than for seedlings grown at higher nutrient levels. A close correlation was observed between activity and concentration of the carboxylase (r=0.95). Carboxylase activity and protein were more sensitive to a low nutrient supply than was chlorophyll. The data show how activity and concentration of ribulose bisphosphate carboxylase and the concentrations of soluble and total protein and of chlorophyll in needles of pine seedlings can be negatively affected by the nutrient supply, also when the nitrogen concentrations in the needles are close to those observed at optimal nutrient supply. It is suggested that pine seedlings store assimilated non-protein nitrogen in the needles when protein synthesis is under restraint. The nitrogen concentration in needles and seedlings could not be used as a measure of the physiological state of the seedlings.  相似文献   

3.
Chloroplasts were isolated from primary needles of 1-year-old seedlings and from secondary needles of a 20-year-old pine tree in a natural stand. In autumn the electron transport capacities of PSII, PSI and PS (II + I) decreased and the electron transport between PSII and PSI became inhibited in October in the 20-year-old tree. This inhibition lasted until May the following year. The partial reactions of PSI and PSII still showed low but fairly constant rates during the whole winter seedlings. Seasonal changes in the electron transport properties of 1-year-old showed the same general trends as observed in the 20-year-old tree, but the changes were less pronounced. However, in snow-covered seedlings the PSI-mediated electron transport and the electron transport from H2O to NADP increased during the late winter when the seedlings were still covered by snow. The total chlorophyll content of the needles decreased in autumn and winter. Low temperature fluorescence ratios of F692/F680 and F726/F680 indicated more severe destruction of the chlorophyll a antennae closely associated with the two photosystems than of the light harvesting chlorophyll a/b complex. In this case, too, the changes were more pronounced in the 20-year-old tree than in the 1-year-old seedlings. The chlorophyll/P700 ratios indicated a more marked reduction in the reaction centre molecules during autumn than in the antennae chlorophyll molecules. The changes in electron transport and low temperature fluorescence properties which occurred during autumn and winter were mainly reversed during spring.  相似文献   

4.
Ribulose bisphosphate carboxylase-oxygenase, RuBP carboxylase (EC 4.1.1.39), was purified from non-hardened and hardened needles of Pinus sylvestris L. Needles were collected from pine seedlings cultivated in nutrient solution in a climate chamber from seedlings grown outdoors, and from a tree in a natural stand. The enzyme was isolated from crude extracts through quantitative precipitation in polyethylene glycol 4000 and MgCl2, followed by sucrose gradient centrifugation in a fixed angle rotor. The purified enzyme seemed homogeneous by the criterion of (sodium dodecylsulphate) polyacrylamide gel electrophoresis. Contamination by nucleic acids was negligible. The RuBP carboxylase protein content of the gradient fractions was estimated as A2801 cm× 0.61 mg ml−1. Carboxylase activities were determined in a radioactive assay at 25°C. The specific activity of RuBP carboxylase isolated from non-hardened needles was approximately 1 μmol CO2 (mg protein)−1 min−1. For enzyme isolated from hardened needles collected during winter the specific activity was somewhat lower due to loss of enzyme activity during the preparation. The described two-step procedure provides a means for quantitation of the RuBP carboxylase protein in pine needles during all seasons.  相似文献   

5.
6.
Effects of mild and severe soil drought on the water status of needles, chlorophyll a fluorescence, shoot electrical admittance, and concentrations of photosynthetic pigments in needles of seedlings of Picea abies (L.) Karst. were examined under controlled greenhouse conditions. Drought stress reduced shoot admittance linearly with a decrease in shoot water potential (w) and increase in water deficit (WD) and led to a decrease in concentrations of chlorophyll a, b and carotenoids. Severe water stress (shoot w=–2.4 MPa) had a negative effect on chlorophyll a fluorescence parameters including PSII activity (Fv/Fm), and the vitality index (Rfd). Variations in these parameters suggest an inhibition of the photosynthetic electron transport in spruce needles. Water stress led to a decrease in the mobility of electrolytes in tissues, which was reflected by decreased shoot electrical admittance. After re-watering for 21 days the WD in needles decreased and the shoot water potential increased. In the re-watered plants, the chloroplast function was restored and chlorophyll a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in the seedlings triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. We conclude that the shoot electrical admittance and photosynthetic electron transport in leaves are closely linked to changes in water status and their decrease is among the initial responses of seedlings to water stress.  相似文献   

7.
Scots pine (Pinus sylvestris L.) seedlings were fumigated with 1.2–1.5 x ambient ozone over 2 seasons in an open-air experiment. Fumigation started in the early spring and continued into late autumn during both years. Needle and root cell structures were analyzed in the summer, autumn and early winter following the second fumigation period. Under the light microscope an increase in the intercellular space and disintegrating cells in the mesophyll tissue near the stomata and stomatal cavities were observed in the ozone-exposed needles. Darkening of chloroplast stroma, increased plastoglobulus size and decreased chloroplast size were characteristic ultrastructural changes associated with ozone exposure. In addition, less dense grouping of the chloroplasts in the needles of elevated ozone-exposed seedlings as compared to the controls (background ozone) was observed in the early winter. Fewer starch grains and an increased accumulation of tannin-like substances were detected in both mycorrhizal and uninfected roots of ozone-exposed seedlings as compared to the control seedlings. For the first time, we were able to show that the ozone-induced darkening of needle chloroplast stroma is a reversible symptom. An increased frequency of frost injury symptoms indicated that the winter hardening process was disturbed in the needles of ozone-treated seedlings.  相似文献   

8.
Summary A transient decline in photosynthetic rate and several correlates of photosynthetic function in year-old shade needles coincided with shoot elongation in 15 fullsib 8-year-old Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] saplings. In year-old needles and current year needles collected from May to November from branchlets with a single terminal bud and at least 4 needle age classes, chlorophyll (chl) content, photosynthetic rate and non-photochemical quenching of chl fluorescence declined during the period of flushing of the new shoots and recovered as shoot elongation slowed. Developing shade needles did not achieve the same oxygen evolution rate per unit area as the year-old needles, but did develop a higher quantum yield (estimated from chl a fluorescence). In short, in shade branchlets shoot development occurred at a cost of photosynthetic function in year-old needles. In year-old sun needles collected from the upper portions of the same trees, total protein concentration increased prior to, and decreased during, flushing. The concentration of ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco) rose and decreased more than chlorophyll-binding proteins. In general, protein concentration in needles reflected age class rather than sun or shade environment. A specific decline in Rubisco in year-old sun needles during the period of new shoot elongation strengthens the hypothesis that degradation of this photosynthetic protein contributes to development of the new shoot.  相似文献   

9.
The concentration of free amino acids and total nitrogen was studied in needles, stems and roots of seedlings of Pinus sylvestris L. for five weeks during the second growth period ("summer"). In one group of seedlings the source/sink relation was disturbed through removal of the terminal buds. The seedlings were cultivated in artificial year-cycles in a climate chamber.
Total nitrogen increased in needles and sterns of intact seedlings in the beginning of the "summer" and decreased during shoot growth. In seedlings, from which the buds had been removed, nitrogen remained at high levels in the primary needles and accumulated in steins and roots. The results are consistent with utilization of nitrogen in older needles and in the stem during shoot elongation.
The pool of free amino acids increased in the beginning of the "summer" and decreased after bud break in primary needles, stems and roots. Arginine and glutamine, in the roots also asparagine, were the dominating amino acids (amides included). Together, these compounds (plus glutamate and aspartate) contributed about 90% of the nitrogen in the amino acid pool in all organs. In primary needles and in the stem, arginine predominated at the end of hardening (75–85% of the amino acid nitrogen). Free amino acids contributed at most ca 10% of the total nitrogen in primary needles, where the ratio of free amino acid nitrogen: total nitrogen was highest at the end of dormancy and in the early "summer". Free amino acids accumulated after bud removal in primary needles and especially in stems and roots. Glutamine became relatively more dominant than arginine in the different organs.
The observations are consistent with the role of arginine and glutamine for storage and transport of nitrogen in conifers. Because of the low concentrations of amino acid nitrogen in the primary needles, arginine is not considered a major nitrogen reserve in needles of Scots pine seedlings.  相似文献   

10.
To examine the role of rhodoxanthin in long‐term acclimation to low temperatures, we monitored seasonal changes in pigment composition, photosynthesis, chlorophyll fluorescence and the level of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in needles of wild‐type and mutant forms of Cryptomeria japonica. In winter, rhodoxanthin accumulated in sun‐exposed needles of wild‐type plants, but not in those of the mutant. The level of chlorophyll decreased in both types of plant in winter. In contrast, the level of the xanthophyll cycle pool increased in both cases. The level of the pool in the mutant was twice that in the wild type in winter, on a Chl basis, even though the levels in both were similar in summer. The synthesis of rhodoxanthin might be triggered by photo‐inhibitory conditions, as suggested by the sustained elevated levels of zeaxanthin (Z) and antheraxanthin (A). In the wild type and the mutant, the quantum yield of CO2 fixation (φ), the photosynthetic capacity, the photochemical efficiency of photosystem II (PSII), the photochemical quenching and the level of Rubisco in summer were similar. However, all these values for the wild type were higher than those for the mutant in winter. The non‐photochemical quenching (NPQ) in the mutant in winter increased rapidly even under low light conditions due to the high sustained levels of Z and A. In contrast, in the wild type, the conversion of Z via A to rhodoxanthin prevented the rapid increase in NPQ to maintain the relatively high level of φ. These findings suggest that rhodoxanthin might play an important photoprotective role in long‐term acclimation to cold. The dynamic regulation of the amount of rhodoxanthin relative to the level of the xanthophyll cycle pool might act to maintain an appropriate balance between light absorption, photosynthesis and the thermal dissipation of energy due to excess absorbed light in winter.  相似文献   

11.
The aim was to determine whether a reduced carboxylation efficiency in needles of damaged spruce trees (Picea abies), is derived from a direct impairment of the ribulose-1,5-bisphosphate carboxylase (RuBP carboxylase) or there is an indirect inhibition of the RuBP carboxylase. In 1985, 1986 and 1987 measurements of RuBP carboxylase activity were carried out at three locations. Trees of different ages and degrees of damage were examined. RuBP carboxylase was assayed using both a rapid extraction method to determine the initial activity and an in vitro test after total activation to determine the total activity. The activation state was calculated as the ratio of initial activity to total activity.Within three vegetation periods the total activity in needles of damaged and apparently healthy or slightly damaged spruce trees indicated no definite difference in the annual average. On the other hand, in damaged needles a continued decline of the actual activation of RuBP carboxylase was established. The observation of continued depression of the activation state of the enzyme in needles of damaged spruce trees can possibly be due to a reduced photosynthetic electron transport rate.The measurements of the soluble protein content indicate a tendency to increased amounts in the needles of damaged trees. In accordance, a considerable increase of the activity of some enzymes like glutamine synthethase, phosphoenol-pyruvate carboxylase, and catalase could be noticed. However, there is no clear connection between the RuBP carboxylase and the content of soluble proteins.Abbreviations chl chlorophyll a+b, dw-dry weight, i.a-initial activity - P-700 reaction center of photosystem I - PVP polyvinylpyrrolidone 25 - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - t.a. total activity  相似文献   

12.
Mehne-Jakobs  Beate 《Plant and Soil》1995,168(1):255-261
In order to investigate the influence of different magnesium nutrition on photosynthesis, one hundred 6-year-old spruce trees derived from one clone were planted in October 1990 into a special out-door experimental construction, where they were cultivated in sand culture with an optimal supply of nutrients, except magnesium, via circulating nutrient solutions. Magnesium was added to the nutrient solutions in three different concentrations, varying from optimal to severe deficient supplies. During the first vegetative period in 1991, photosynthetic performance and carboxylation efficiency were measured under saturating light, controlled CO2 conditions, optimal temperature and humidity, using a minicuvette system.During summer, the trees under moderate magnesium deficiency developed tip yellowing symptoms on older needles, while the youngest needles remained green with unchanged chlorophyll contents. Trees under severe magnesium deficiency showed yellowing symptoms on all needle age classes combined with decreased chlorophyll contents in the youngest needles as well. In comparison with the controls, the photosynthetic performance of the 1-year-old needles was significantly lower in both deficiency treatments. The same was observed in the youngest needles of the trees under severe deficiency. Trees under moderate deficiency treatment decreased in photosynthetic performance during the summer without reduction of chlorophyll contents. The reduction of photosynthetic rates corresponded to a decrease in carboxylation efficiency, which is taken as a measure of the activity of the enzyme ribulose-1,5-bisphosphate carboxylase. This reduction, together with the observed increase of carbohydrate contents in needles of trees growing under magnesium deficiency, led to the assumption that the photosynthetic carbonfixation is reduced as a consequence of the accumulation of carbohydrates.  相似文献   

13.
W. H. Parry 《Oecologia》1976,23(4):297-313
Summary A comparison of the feeding behaviour of E. abietinum on current year needles and previous year needles of P. sitchensis revealed that during the summer months the aphids preferentially settled on previous year needles, this response not being evident in winter. Aphids on current year needles in summer took a much longer period of time to commence sap uptake than in winter, intake ceasing following a very short feeding period. On previous year needles sap uptake in December commenced after a shorter feeding period than in June. Analysis of total and soluble nitrogen levels in Sitka spruce needles showed that current year needles had initially higher levels during shoot elongation in May and early June, but that previous year needles had higher levels for most of the remainder of the year. Quantitative analyses of amino acids revealed that in current year needles the levels were generally lower than in previous year needles. Less marked proportional differences were observed between previous year needles in May and in July/August when the needles were unsuitable. Addition of amino acids in solution into cut current year shoots resulted in increased longevity on shoots containing introduced iso-leucine, histidine and methionine and revealed a general imbalance of the amino acids.  相似文献   

14.
The response and adaption mechanisms of seedlings under long-term warming have remained largely unknown. In this study, we investigated the effects of warming for 6 years on growth, and needle carbon, nitrogen, chlorophyll, and carbohydrate levels in a coniferous tree species, Abies faxoniana. Seedlings were grown in even-aged monospecific stands under ambient and warming (ambient +2.2°C) temperature in climate control chambers. Warming caused statistically significant increases in the specific leaf area, leaf area ratio, root biomass, leaf biomass, branch biomass, stem biomass, and total mass of the seedlings, and reduced the root/shoot ratio. Warming also increased total chlorophyll concentrations, specific chlorophyll pigments, and Chlorophyll a/b ratios in both studied needle age classes. In addition, C/N ratios of current-year and 1-year-old needles increased by warming. In contrast, warming decreased the levels of N, sugar, cellulose, and starch in needles, while warming had no effect on the height, stem diameter, needle mass ratio, root mass ratio, and root/needle ratio. We conclude that warming increases branch growth and changes needle chemistry, which enhances the light capture potential of seedlings.  相似文献   

15.
Summary Photosynthetic performance of Norway spruce needles [Picea abies (L.) Karst.] was measured over a 1-year period. The trees grew in an area of heavy air pollution and forest decline on a mountain ridge in the eastern Ore Mountains (Czech Republic). Photosynthetic capacity, as well as light use efficiency, decreased dramatically with time, starting in July (2 months after bud-break) to finally reach zero (respiration only) by February of the following year. Two months later all needles from upper crown parts were shed. Needles from lower crown parts, on the other hand, were undamaged. The chlorophyll and Mg content decreased transiently during the cold season, with Mg reaching deficiency thresholds during winter. However, total sulfur, as well as organic and sulfate S increased with time. The increase was higher in needles from the upper parts of the crown, which were exposed to windy air throughout the year, than in the lower parts of the crown, which were covered by grass during summer and by snow during most of the winter.  相似文献   

16.
为了解遮荫对秋枫(Bischofia javanica)幼苗生长的影响,对夏季1年生秋枫幼苗在4种遮荫(透光率分别为自然光的100%、41.3%、14.6%和3.6%)处理150 d后的生理指标变化进行了研究。结果表明,1年生秋枫幼苗的光补偿点(LCP)、光饱和点(LSP)和暗呼吸速率(Rd)随着遮荫程度加重而减小,表观量子效率(AQY)则增大,净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和胞间CO_2浓度(Ci)的日变化表明秋枫有明显的"午休"现象,遮荫引起光合速率降低的主要原因是非气孔限制,而全光照条件下则是气孔限制。叶绿素、可溶性糖含量随遮荫程度的增大呈先升后降的变化趋势;相对电导率、丙二醛(MDA)含量、过氧化氢酶(CAT)活性则呈先降后升的趋势,以41.3%透光率的最小;可溶性蛋白质含量、超氧化物歧化酶(SOD)活性随遮荫程度的增大而降低。因此,秋枫幼苗主要通过提高Pn、抗氧化酶活性(SOD和CAT)、叶绿素含量,降低LSP、LCP和Rd,增大AQY来提高弱光利用能力;适度遮荫(41.3%NS)更有利于1年生秋枫幼苗在夏季的生长。  相似文献   

17.
Overwintering needles of the evergreen conifer Douglas fir exhibited an association between arrest of the xanthophyll cycle in the dissipating state (as zeaxanthin + antheraxanthin; Z + A) with a strongly elevated predawn phosphorylation state of the D1 protein of the photosystem II (PSII) core. Furthermore, the high predawn phosphorylation state of PSII core proteins was associated with strongly increased levels of TLP40, the cyclophilin-like inhibitor of PSII core protein phosphatase, in winter versus summer. In turn, decreases in predawn PSII efficiency, Fv/Fm, in winter were positively correlated with pronounced decreases in the non-phosphorylated form of D1. In contrast to PSII core proteins, the light-harvesting complex of photosystem II (LHCII) did not exhibit any nocturnally sustained phosphorylation. The total level of the D1 protein was found to be the same in summer and winter in Douglas fir when proteins were extracted in a single step from whole needles. In contrast, total D1 protein levels were lower in thylakoid preparations of overwintering needles versus needles collected in summer, indicating that D1 was lost during thylakoid preparation from overwintering Douglas fir needles. In contrast to total D1, the ratio of phosphorylated to non-phosphorylated D1 as well as the levels of the PsbS protein were similar in thylakoid versus whole needle preparations. The level of the PsbS protein, that is required for pH-dependent thermal dissipation, exhibited an increase in winter, whereas LHCII levels remained unchanged.  相似文献   

18.
Winter-induced inhibition of photosynthesis in Scots pine (Pinus sylvestris L.) needles is accompanied by a 65% reduction of the maximum photochemical efficiency of photosystem II (PSII), measured as F v/F m, but relatively stable photosystem I (PSI) activity. In contrast, the photochemical efficiency of PSII in bark chlorenchyma of Scots pine twigs was shown to be well preserved, while PSI capacity was severely decreased. Low-temperature (77 K) chlorophyll fluorescence measurements also revealed lower relative fluorescence intensity emitted from PSI in bark chlorenchyma compared to needles regardless of the growing season. Nondenaturating SDS-PAGE analysis of the chlorophyll–protein complexes also revealed much lower abundance of LHCI and the CPI band related to light harvesting and the core complex of PSI, respectively, in bark chlorenchyma. These changes were associated with a 38% reduction in the total amount of chlorophyll in the bark chlorenchyma relative to winter needles, but the Chl a/b ratio and carotenoid composition were similar in the two tissues. As distinct from winter pine needles exhibiting ATP/ADP ratio of 11.3, the total adenylate content in winter bark chlorenchyma was 2.5-fold higher and the estimated ATP/ADP ratio was 20.7. The photochemical efficiency of PSII in needles attached to the twig recovered significantly faster (28–30 h) then in detached needles. Fluorescence quenching analysis revealed a high reduction state of Q A and the PQ-pool in the green bark tissue. The role of bark chlorenchyma and its photochemical performance during the recovery of photosynthesis from winter stress in Scots pine is discussed.  相似文献   

19.
Methods were established, which render possible a simultaneous determination of ri-bulose-l,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39) activity and chlorophyll content of Norway spruce (Picea abies Karst.) needles from a detergent-containing aqueous crude extract. Spruce RuBP carboxylase was tentatively characterized with regard to kinetic properties. Recovery experiments employing purified wheat RuBP carboxylase proved quantitative extraction of the enzyme from spruce foliage. Five timber stands consisting of 35–62 years old spruce, two of which exhibited the typical symptoms of recent spruce decline, were compared. For the needle generations 1 to 4 the enzyme activities as well as chlorophyll and protein concentrations were determined. The results do not indicate an involvement of RuBP carboxylase in spruce decline.  相似文献   

20.
The impact of season and temperature on frog liver γ-glutamyltranspeptidase was assessed by measuring the activity of this enzyme in plasma membranes isolated from the livers of Rana pipiens obtained as summer and winter frogs; subjected to short-term (3 weeks) temperature acclimation; and subjected to multiple-temperature shifts. Plasma levels of T3 were determined. γ-Glutamyltranspeptidase was found to be 2·2-fold higher in the summer frog relative to the winter frog; decreased by 44 percent in the summer frog by cold acclimation and increased by 1·7-fold in the winter frog by warm acclimation; and increased by 1·9-fold in the summer frog and 2·8-fold in the winter frog subjected to multiple-temperature shifts. Plasma T3 levels were found to be 42-fold higher in the summer frog relative to the winter frog; decreased by 42 percent by cold acclimation and increased by 2·9-fold by warm acclimation; and decreased by 39 percent and 38 percent in the summer and winter frogs subjected to multiple temperature shifts. T3 replacement during the last phase of the multiple-temperature shift protocol, restored the plasma T3 levels to 75 percent of the control levels and prevented the increase evoked by the multiple-temperature shifts in γ-glutamyl-transpeptidase activity. Indeed, enzyme activity in the T3 replaced state was 19 percent lower than in the control state. The involvement of thyroid hormone as a negative regulator of enzyme activity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号