首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Several fluorescent probes were evaluated as indicators of bacterial viability by flow cytometry. The probes monitor a number of biological factors that are altered during loss of viability. The factors include alterations in membrane permeability, monitored by using fluorogenic substrates and fluorescent intercalating dyes such as propidium iodide, and changes in membrane potential, monitored by using fluorescent cationic and anionic potential-sensitive probes. Of the fluorescent reagents examined, the fluorescent anionic membrane potential probe bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC(inf4)(3)] proved the best candidate for use as a general robust viability marker and is a promising choice for use in high-throughput assays. With this probe, live and dead cells within a population can be identified and counted 10 min after sampling. There was a close correlation between viable counts determined by flow cytometry and by standard CFU assays for samples of untreated cells. The results indicate that flow cytometry is a sensitive analytical technique that can rapidly monitor physiological changes of individual microorganisms as a result of external perturbations. The membrane potential probe DiBAC(inf4)(3) provided a robust flow cytometric indicator for bacterial cell viability.  相似文献   

2.
A novel staining protocol is reported for the assessment of viability in yeast, specifically the biocontrol yeast, Pichia anomala. Employing both the red fluorescent membrane potential sensitive oxonol stain DiBAC4(5) (Bis-(1,3-dibutylbarbituric acid)pentamethine oxonol), a structural analog of the commonly used DiBAC4(3) (Bis-(1,3-dibutylbarbituric acid)trimethine oxonol), with one of the esterase dependent green fluorogenic probes such as CFDA-AM (5-Carboxyfluorescein diacetate, acetoxymethyl ester) or Calcein-AM (Calcein acetoxymethyl ester), a two-color flow cytometric method was developed, which yields rapid quantitative information on the vitality and vigor of yeast cell cultures. The method was validated by cell sorting and analysis of live, heat killed, and UV-treated yeast.  相似文献   

3.
The use of flow cytometry in microbiology allows rapid characterization of cells from a nonhomogeneous population. A method based on flow cytometry to assess the effects of lethal agents and the bacterial survival in starved cultures through the use of membrane potential-sensitive dyes and a nucleic acid marker is presented. The use of propidium iodide, rhodamine, and oxonol has facilitated the differentiation of cells of Escherichia coli and Salmonella typhimurium of various states of vitality following various treatments (heat, sonication, electroporation, and incubation with gramicidin) and during starvation in artificial seawater. The fluorescence intensity is directly correlated with viable cell counts for rhodamine 123 labelling, whereas oxonol and propidium iodide labelling is inversely correlated with viable counts. The distribution of rhodamine and oxonol uptake during starvation-survival clearly indicates that single-species starved bacteria are heterogeneous populations, and flow cytometry can be a fundamental tool for quantifying this heterogeneity.  相似文献   

4.
Three bacterial isolates (Micrococcus sp., Rhodovulum sp., and Vibrio sp.) from natural biofilms were investigated for their effects on cyprid settlement of Balanus amphitrite in laboratory bioassays. The inhibitive effect of these bacteria was clearly demonstrated by using a choice assay, in which cyprids settled preferentially on surfaces without bacterial pretreatment over those possessing a monospecies bacterial film. This result suggested that the inhibitive effect was mediated by direct larval contact with bacterial film surface rather than the perception of diffusible bacterial products. In a no-choice assay, monospecies bacterial films of different cell densities reduced cyprid settlement in a density-dependent manner. Vibrio sp. was the most potent inhibitor among the three isolates as it effectively inhibited cyprid settlement by relatively low-density films. The cells of Vibrio sp. were the smallest among the three isolates, suggesting that the correlation between bacterial cell density and cyprid settlement might not be merely due to the reduction of free-space availability. For all three isolates, films that were killed by formaldehyde or UV treatment were as potent as untreated, live films. These films remained inhibitive even in the presence of a strong promoter for cyprid settlement, namely conspecific settlement factor (SF), obtained from adult B. amphitrite. However, SF reverted the inhibitive effect of natural biofilms developed in the intertidal region.  相似文献   

5.
Potential-sensitive fluorescent probes oxonol V and oxonol VI were employed for monitoring membrane potential (Delta(psi)) generated by the Schizosaccharomyces pombe plasma membrane H(+)-ATPase reconstituted into vesicles. Oxonol VI was used for quantitative measurements of the Delta(psi) because its response to membrane potential changes can be easily calibrated, which is not possible with oxonol V. However, oxonol V has a superior sensitivity to Delta(psi) at very low concentration of reconstituted vesicles, and thus it is useful for testing quality of the reconstitution. Oxonol VI was found to be a good emission-ratiometric probe. We have shown that the reconstituted H(+)-ATPase generates Delta(psi) of about 160 mV on the vesicle membrane. The generated Delta(psi) was stable at least over tens of minutes. An influence of the H(+) membrane permeability on the Delta(psi) buildup was demonstrated by manipulating the H(+) permeability with the protonophore CCCP. Ratiometric measurements with oxonol VI thus offer a promising tool for studying processes accompanying the yeast plasma membrane H(+)-ATPase-mediated Delta(psi) buildup.  相似文献   

6.
The effect of the mitogenic lectin concanavalin A on the membrane potential of murine lymphocytes was investigated by observing the fluorescence of cells stained with carbocyanine and oxonol dyes. We describe a rapid and reliable method for detecting lectin-induced membrane potential changes in individual cells by flow cytometric analysis of oxonol fluorescence. By 10 min after addition of lectin to suspensions of isolated cells from lymph node, 7-15% of the cells have responded by releasing oxonol dye, indicating a membrane hyperpolarization. The dose onset of this response is similar to that for mitogenesis, which was assessed by measuring [3H]thymidine incorporation. The effect is abolished by alpha-methyl mannoside (100mM), which prevents concanavalin A from binding to the cells, but not by fucose (100mM). When cells are treated with lectin in medium from which Ca2+ has been omitted or to which quinine (0.5mM) has been added, a membrane depolarization is observed. Since these are conditions under which activation of plasma membrane Ca2+-dependent K+ channels is prevented, these findings support the view that the early hyperpolarization of these cells is brought about by an increase in intracellular free [Ca2+].  相似文献   

7.
Living and heat-killed bacterial cells of Rhizobium leguminosarum protected totally lentil plants against infection by the pathogen Fusarium oxysporum MR 84. Culture filtrate of this rhizobacterium was also able to protect the plants to a high degree. However, when they were inoculated separately of the pathogen, living bacterial cells did not protect the plants whereas culture filtrate and killed bacterial cells protected them. These results suggest that Rhizobium cannot protect lentil plants without interaction with the pathogen, but the culture filtrate and the killed bacterial cells can protect them even in the absence of this interaction. It seems that the culture filtrate and the killed bacterial cells contain signals able to induce plant resistance. Those signals would be suppressed once Rhizobium is in contact with the plant.  相似文献   

8.
Controlled expression of cloned phi X174 gene E in gram-negative bacteria results in lysis of the bacteria by the formation of a transmembrane tunnel structure built through the cell envelope complex. Production of bacterial ghosts is routinely monitored by classical microbiological procedures. These include determination of the turbidity of the culture and the total number of cells and the number of reproductive cells present during the time course of growth and lysis. Although conceptually simple, these methods are labor intensive and time consuming, providing a complete set of results after the determination of viable cell counts. To avoid culturing methods for bacterial growth, an alternative flow cytometric procedure is presented for the quantification of ghosts and polarized, as well as depolarized, nonlysed cells within a culture. For this method, which is based on the discriminatory power of the membrane potential-sensitive dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol, a staining protocol was developed and optimized for the maximum discrepancy in fluorescence between bacterial ghosts and viable cells. The total quantitative analysis procedure takes less than 2 min. The results derived from classical or cytometric analyses correlate with respect to the total cell numbers and the viability of the culture.  相似文献   

9.
Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages   总被引:2,自引:0,他引:2  
Ralstonia solanacearum is a Gram-negative bacterium and the causative agent of bacterial wilt in many important crops. We treated R. solanacearum with three lytic phages: φRSA1, φRSB1, and φRSL1. Infection with φRSA1 and φRSB1, either alone or in combination with the other phages, resulted in a rapid decrease in the host bacterial cell density. Cells that were resistant to infection by these phages became evident approximately 30 h after phage addition to the culture. On the other hand, cells infected solely with φRSL1 in a batch culture were maintained at a lower cell density (1/3 of control) over a long period. Pretreatment of tomato seedlings with φRSL1 drastically limited penetration, growth, and movement of root-inoculated bacterial cells. All φRSL1-treated tomato plants showed no symptoms of wilting during the experimental period, whereas all untreated plants had wilted by 18 days postinfection. φRSL1 was shown to be relatively stable in soil, especially at higher temperatures (37 to 50°C). Active φRSL1 particles were recovered from the roots of treated plants and from soil 4 months postinfection. Based on these observations, we propose an alternative biocontrol method using a unique phage, such as φRSL1, instead of a phage cocktail with highly virulent phages. Using this method, φRSL1 killed some but not all bacterial cells. The coexistence of bacterial cells and the phage resulted in effective prevention of wilting.  相似文献   

10.
Evidence for the presence of a functionally important vicinal dithiol in mitochondrial coupling factor B (FB) has been presented earlier (Sanadi, D. R. (1982) Biochim. Biophys. Acta 683, 39-56). FB was completely inactivated by 38 micron of copper o-phenanthroline or 0.63 mM iodosobenzoate, and the kinetics were consistent with intramolecular disulfide formation as were polyacrylamide gel patterns which showed that FB which had been treated with copper o-phenanthroline had a different mobility from that of untreated FB. ATP-Pi exchange activity and ATP-induced binding of bis[3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol (oxonol VI) to H+ -ATPase were also inhibited by the thiol oxidizing reagents, although oligomycin-sensitive ATPase activity was unaffected. F0 isolated from H+ -ATPase rebinds purified F1 with the restoration of ATP-induced oxonol-binding activity. Prior treatment of F0 (but not of F1) with copper o-phenanthroline abolished the oxonol-binding activity of reconstituted F0-F1. 115Cd binds tightly to H+ -ATPase and the bound protein can be recovered by gel electrophoresis in phosphate buffer in the presence of sodium dodecyl sulfate at a position corresponding to FB. Prior treatment of the H+ -ATPase with copper o-phenanthroline abolished 115Cd binding. The results indicate that the major effect of these inhibitors is on FB dithiol and leave little doubt that Cd2+ is indeed bound to a vicinal dithiol group.  相似文献   

11.
Viable dried yeast is used as an inoculum for many fermentations in the baking and wine industries. The fermentative activity of yeast in bread dough or grape must is a critical parameter of process efficiency. Here, it is shown that fluorescent stains and flow cytometry can be used in concert to predict the abilities of populations of dried bakers' and wine yeasts to ferment after rehydration. Fluorescent dyes that stain cells only if they have damaged membrane potential (oxonol) or have increased membrane permeability (propidium iodide) were used to analyse, by flow cytometry, populations of rehydrated yeasts. A strong relationship (r2 = 0.99) was found between the percentages of populations staining with the oxonol and the degree of cell membrane damage as measured by the more traditional method of leakage of intracellular compounds. There were also were good negative relationships (r2 > or = 0.83) between fermentation by rehydrated bakers' or wine dry yeasts and percentage of populations staining with either oxonol or propidium iodide. Fluorescent staining with flow cytometry confirmed that factors such as vigour of dried yeast mixing in water, soaking before stirring, rehydration in water or fermentation medium and temperature of rehydration have profound effects on subsequent yeast vitality. These experiments indicate the potential of flow cytometry as a rapid means of predicting the fermentation performance of dried bakers' and wine yeasts.  相似文献   

12.
A method is described for quantitative measurement of lymphocyte transmembrane electrical potential difference (psi) by flow cytometric recording of the oxonol dye fluorescence of single cells. Both the simultaneous collection and analysis of multiple optical parameters and the use of a negatively charged oxonol probe allowed more accurate measurement of psi than may be obtained by bulk cell suspension techniques employing cationic voltage indicators. Mouse spleen and human blood lymphocyte psi was calculated to be -70 mV. T and B lymphocytes maintain a constant psi as extracellular K+ is varied from 2 to 10 mM and the deviation from K+ equilibrium potentials (EK) is shown to result from Na+ permeability. At [K+]o values greater than 10 mM, lymphocytes behave as K+ electrodes. Examination of lymphocyte subsets showed that hyperpolarization induced by the Ca2+ ionophore A23187 occurs only in T cells. This response was identified as activation of a Ca2+-sensitive K+ channel by pharmacologic manipulations. Hence, T cells depolarized by 4-aminopyridine (4-AP, 10 mM) were observed to return to resting psi by A23187-induced elevation of [Ca2+]i. Cells depolarized by quinine (100 microM) were unaffected by A23187. The Ca2+-activated channel does not contribute to resting psi in T cells since it may be selectively blocked by quinine (20 microM) or modulated by calmodulin antagonists (5 microM trifluperazine) without affecting resting psi.  相似文献   

13.
Human lungs are constantly exposed to bacteria in the environment, yet the prevailing dogma is that healthy lungs are sterile. DNA sequencing-based studies of pulmonary bacterial diversity challenge this notion. However, DNA-based microbial analysis currently fails to distinguish between DNA from live bacteria and that from bacteria that have been killed by lung immune mechanisms, potentially causing overestimation of bacterial abundance and diversity. We investigated whether bacterial DNA recovered from lungs represents live or dead bacteria in bronchoalveolar lavage (BAL) fluid and lung samples in young healthy pigs. Live bacterial DNA was DNase I resistant and became DNase I sensitive upon human antimicrobial-mediated killing in vitro. We determined live and total bacterial DNA loads in porcine BAL fluid and lung tissue by comparing DNase I-treated versus untreated samples. In contrast to the case for BAL fluid, we were unable to culture bacteria from most lung homogenates. Surprisingly, total bacterial DNA was abundant in both BAL fluid and lung homogenates. In BAL fluid, 63% was DNase I sensitive. In 6 out of 11 lung homogenates, all bacterial DNA was DNase I sensitive, suggesting a predominance of dead bacteria; in the remaining homogenates, 94% was DNase I sensitive, and bacterial diversity determined by 16S rRNA gene sequencing was similar in DNase I-treated and untreated samples. Healthy pig lungs are mostly sterile yet contain abundant DNase I-sensitive DNA from inhaled and aspirated bacteria killed by pulmonary host defense mechanisms. This approach and conceptual framework will improve analysis of the lung microbiome in disease.  相似文献   

14.
A suite of fluorescent intracellular stains and probes was used, in conjunction with viable plate counts, to assess the effect of chlorine disinfection on membrane potential (rhodamine 123; Rh123 and bis-(1,3-dibutylbarbituric acid) trimethine oxonol; DiBAC4(3)), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride; CTC) and substrate responsiveness (direct viable counts; DVC) in the commensal pathogen Escherichia coli O157:H7. After a 5 min exposure to the disinfectant, physiological indices were affected in the following order: viable plate counts > substrate responsiveness > membrane potential > respiratory activity > membrane integrity. In situ assessment of physiological activity by examining multiple targets, as demonstrated in this study, permits a more comprehensive determination of the site and extent of injury in bacterial cells following sublethal disinfection with chlorine. This approach to assessing altered bacterial physiology has application in various fields where detection of stressed bacteria is of interest.  相似文献   

15.
Summary. The effects of the calcium sequester EGTA on gravitactic orientation and membrane potential changes in the unicellular flagellate Euglena gracilis were investigated during a recent parabolic-flight experiment aboard of an Airbus A300. In the course of a flight parabola, an acceleration profile is achieved which yields subsequently about 20 s of hypergravity (1.8 g n), about 20 s of microgravity, and another 20 s of hypergravity phases. The movement behavior of the cells was investigated with real-time, computer-based image analysis. Membrane potential changes were detected with a newly developed photometer which measures absorption changes of the membrane potential-sensitive probe oxonol VI. To test whether the data obtained by the oxonol device were reliable, the signal of non-oxonol-labelled cells was recorded. In these samples, no absorption shift was detected. Changes of the oxonol VI signals indicate that the cells depolarize during acceleration (very obvious in the step from microgravity to hypergravity) and slightly hyperpolarize in microgravity, which can possibly be explained with the action of Ca-ATPases. These signals (mainly the depolarization) were significantly suppressed in the presence of EGTA (5 mM). Gravitaxis in parallel was also inhibited after addition of EGTA. Initially, negative gravitaxis was inverted into a positive one. Later, gravitaxis was almost undetectable. Correspondence and reprints: Department of Plant Ecophysiology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Federal Republic of Germany.  相似文献   

16.
Aims: To study cellular damage induced by Cinnamomum verum essential oil in Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213. Methods and Results: The effect of cinnamon bark essential oil on these two strains was evaluated by plate counts, potassium leakage, flow cytometry and transmission electron microscopy (TEM). Exposure to this oil induced alterations in the bacterial membrane of Ps. aeruginosa, which led to the collapse of membrane potential, as demonstrated by bis‐oxonol staining, and loss of membrane‐selective permeability, as indicated by efflux of K+ and propidium iodide accumulation. Thus, respiratory activity was inhibited, leading to cell death. In Staph. aureus, cells treated with the oil entered a viable but noncultivable (VNC) state. The oil initially caused a considerable decrease in the metabolic activity and in the replication capacity of these bacterial cells. The loss of membrane integrity appeared later, as indicated by bis‐oxonol and Propidium iodide (PI) staining. Data provided by TEM showed various structural effects in response to cinnamon essential oil. In Ps. aeruginosa cells, coagulated cytoplasmic material was observed, and intracellular material was seen in the surrounding environment, while oil‐treated Staph. aureus showed fibres extending from the cell surface. Conclusions: Cinnamon essential oil damages the cellular membrane of Ps. aeruginosa, which leads to cell death. There is evidence of VNC Staph. aureus after exposure to the oil. Significance and Impact of the Study: Cinnamon essential oil shows effective antimicrobial activity and health benefits and is therefore considered a potential food additive. To use this oil as a natural food preservative, especially in combination with other preservation methods, a thorough understanding of the mechanism through which this oil exerts its antibacterial action is required.  相似文献   

17.
(1) Energy transduction in an ATPase complex (complex V) has been studied in two reactions catalyzed by this system, i.e., ATP-dependent spectral shift of oxonol VI, and ATP-Pi exchange activity. (2) Aurovertin alone inhibits 50% of the oxonol shift at 2 μM, and no further inhibition occurs at up to 12 μM. In combination with even weakly effective uncouplers, 4 μM aurovertin fully abolishes the oxonol response. No such effects are observed in the presence of oligomycin and uncouplers. (3) No pH gradient is detectable by quenching of 9-amino-6-chloro-2-methoxyacridine; and nigericin is without effect on the oxonol response. Valinomycin is inhibitory even in the absence of added potassium, due to ammonium ions introduced during the purification steps. Thiocyanate inhibits the dye response by only 10–27%, depending on the preparation. The extent of the oxonol response depends on the ATP / ADP ratio rather than the phosphorylation potential. (4) The dye response in the ATPase complex is 4–7-times less sensitive to bile salts than in submitochondrial particles. The inhibition by cardiolipin can be reversed by the addition of phospholipids. (5) The possibility is discussed that the oxonol response in the ATPase complex reflects, at least in part, a more local, ATP-dependent and energy-related process.  相似文献   

18.
The interaction of the dyes oxonol V and oxonol VI with unilamellar dioleoylphosphatidylcholine vesicles was investigated using a fluorescence stopped-flow technique. On mixing with the vesicles, both dyes exhibit an increase in their fluorescence, which occurs in two phases. According to the dependence of the reciprocal relaxation time on vesicle concentration, the rapid phase appears to be due to a second-order binding of the dye to the lipid membrane, which is very close to being diffusion-controlled. The slow phase is almost independent of vesicle concentration, and it is suggested that this may be due to a change in dye conformation or position within the membrane, possibly diffusion across the membrane to the internal monolayer. The response times of the dyes to a rapid jump in the membrane potential has also been investigated. Oxonol VI was found to respond to the potential change in less than 1 s, whereas oxonol required several minutes. This has been attributed to lower mobility of oxonol V within the lipid membrane.  相似文献   

19.
The PCR is a rapid and sensitive method for detecting and identifying low numbers of bacteria, but it does not discriminate between living and dead cells. Most messenger RNA (mRNA) molecules have a short half-life in the bacterial cell and their presence may therefore indicate viability. We have compared PCR and RT-PCR (targeted at tufA DNA or mRNA, respectively) for the detection of Escherichia coli, using healthy cells and those killed by exposure to different stress treatments. PCR gave a positive signal in live cells and those killed by autoclaving, boiling, or treatment with 50% ethanol, but was negative after exposure to pH 2.0 for 5 min. RT-PCR was positive in live cells but negative after all treatments except exposure to ethanol. The persistence of tufA mRNA was examined in ethanol-killed cells incubated in LB broth at different temperatures. The RT-PCR signal persisted for up to 16 h at 15 degrees C or 4 degrees C but disappeared within 2 h at 37 degrees C. RT-PCR thus has potential as an indicator of viability provided samples are pre-incubated under appropriate conditions that will ensure decay of any residual mRNA in dead cells.  相似文献   

20.
Various dyes were assessed for their ability to discriminate between viable and non-viable bacteria. Two methods of killing were employed: by heat treatment or by gramicidin treatment. Staining was carried out in two ways; by staining directly in the medium or by washing cells prior to staining in buffer. Carbocyanine and rhodamine 123 dyes only exhibited small changes in fluorescence between viable and non-viable populations of bacteria. Both oxonol dye (bis 1,3-dibutylbarbituric acid trimethine oxonol) and calcafluor white proved much more useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号