首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity-oriented chemical modification of heparin is shown to afford charge-reduced heparin derivatives that possess increased selectivity for binding heparin-binding proteins. Variable N-desulfonation of heparin was employed to afford heparin fractions possessing varied levels of free amine. These N-desulfonated heparin fractions were selectively N-acylated with structurally diverse carboxylic acids using a parallel synthesis protocol to generate a library of 133 heparin-derived structures. Screening library members to compare affinity for heparin-binding proteins revealed unique heparin-derived structures possessing increased affinity and selectivity for individual heparin-binding proteins. Moreover, N-sulfo groups in heparin previously shown to be required for heparin to bind specific proteins have been replaced with structurally diverse non-anionic moieties to afford identification of charge-reduced heparin derivatives that bind these proteins with equivalent or increased affinity compared to unmodified heparin. The methods described here outline a process that we feel will be applicable to the systematic chemical modification of natural polyanionic polysaccharides and the preparation of synthetic oligosaccharides to identify charge-reduced high affinity ligands for heparin-binding proteins.  相似文献   

2.
Surface plasmon resonance (SPR) biosensors such as the BIAcore 2000 are a useful tool for the analysis of protein-heparin interactions. Generally, biotinylated heparin is captured on a streptavidin-coated surface to create heparinized surfaces for subsequent binding analyses. In this study we investigated three commonly used techniques for the biotinylation of heparin, namely coupling through either carboxylate groups or unsubstituted amines along the heparin chain, or through the reducing terminus of the heparin chain. Biotinylated heparin derivatives were immobilized on streptavidin sensor chips and several heparin-binding proteins were examined. Of the surfaces investigated, heparin attached through the reducing terminus had the highest binding capacity, and in some cases had a higher affinity for the proteins tested. Heparin immobilized via intrachain bare amines had intermediate binding capacity and affinity, and heparin immobilized through the carboxylate groups of uronic acids had the lowest capacity for the proteins tested. These results suggest that immobilizing heparin to a surface via intrachain modifications of the heparin molecule can affect the binding of particular heparin-binding proteins.  相似文献   

3.
Bovine spermatozoa that have been exposed to seminal plasma possess more binding sites for heparin than sperm from the cauda epididymis that have not been exposed to accessory sex gland secretions. Seminal plasma exposure enables sperm, following incubation with heparin, to undergo zonae pellucidae-induced exocytosis of the acrosome. In this study, the regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa by heparin was investigated. Plasma membranes from sperm exposed to seminal plasma in vivo or in vitro contained a series of acidic 15-17 kDa proteins not found in cauda epididymal sperm. Western blots of membrane proteins indicated that these 15-17 kDa proteins bound [125I]-heparin. Heparin-binding proteins were isolated by heparin affinity chromatography from seminal plasma from vasectomized bulls. Gel electrophoresis indicated that the heparin-binding peaks contained 14-18 kDa proteins with isoelectric variation, a basic 24 kDa protein, and a 31 kDa protein. Western blots probed with [125I]-heparin confirmed the ability of each of these proteins to bind heparin. Each of these proteins, as well as control proteins, bound to epididymal sperm. The seminal plasma proteins were peripherally associated with sperm since they were removed by hypertonic medium and did not segregate into the detergent phase of Triton X-114. Seminal plasma heparin-binding proteins potentiated zonae pellucidae-induced acrosome reactions in epididymal sperm. However, seminal plasma proteins that did not bind to the heparin affinity column were unable to stimulate zonae-sensitivity. Control proteins, including lysozyme--which binds to both heparin and sperm, were ineffective at enhancing zonae-induced acrosome reactions. These data provide evidence for a positive regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa.  相似文献   

4.
R-spondin 4 is a secreted protein mainly associated with embryonic nail development. R-spondins have been recently identified as heparin-binding proteins with high affinity. Proteoglycan binding has been associated with both the TSR and the C terminal basic amino acid rich domains. In this paper, molecular modelling techniques were used to construct the model of R-spondin 4 TSR domain based on the structure of the F-spondin TSR domain 4 (30-40¢ sequence identity). Beside a positively charged surface in the TSR domain, presence of the basic amino acid rich domain which could forms a continuous heparin binding surface may explain the high affinity of R-spondins for heparin. Our results provide a framework for understanding the possible regulatory role of heparin in R-spondins signalling.  相似文献   

5.
Numerous extracellular proteins, growth factors, chemokines, cytokines, enzymes, lipoproteins, involved in a variety of biological processes, interact with heparin and/or heparan sulfate at the cell surface and in the extracellular matrix (ECM). The goal of this study is to investigate the relationship(s) between affinity and kinetics of heparin–protein interactions and the localization of the proteins, their intrinsic disorder and their biological roles. Most proteins bind to heparin with a higher affinity than their fragments and form more stable complexes with heparin than with heparan sulfate. Lipoproteins and matrisome-associated proteins (e.g. growth factors and cytokines) bind to heparin with very high affinity. Matrisome-associated proteins form transient complexes with heparin. However they bind to this glycosaminoglycan with a higher affinity than the proteins of the core matrisome, which contribute to ECM assembly and organization, and than the secreted proteins which are not associated with the ECM. The association rate of proteins with heparin is related to the intrinsic disorder of heparin-binding sites. Enzyme inhibitor activity, protein dimerization, skeletal system development and pathways in cancer are functionally associated with proteins displaying a high or very high affinity for heparin (KD < 100 nM). Besides their use in investigating molecular recognition and functions, kinetics and affinity are essential to prioritize interactions in networks and to build network models as discussed for the interaction network established at the surface of endothelial cells by endostatin, a heparin-binding protein regulating angiogenesis.  相似文献   

6.
A fundamental property of the secretory tetrameric extracellular superoxide dismutase (EC-SOD) is its affinity for heparin and analogues, in vivo, mediating attachment to heparan sulfate proteoglycans located on cell surfaces and in the connective tissue matrix. EC-SOD is in vivo heterogeneous with regard to heparin affinity and can be divided into subclasses; A which lacks heparin affinity, B with intermediate affinity, and C with strong heparin affinity. The EC-SOD C subunits contain 222 amino acids and among the last 20 carboxyl-terminal amino acids, 10 are positively charged and six of these are located in a cluster in positions 210-215. To analyze if this local accumulation of basic amino acids is responsible for heparin binding we produced three series of recombinant EC-SOD (rEC-SOD) variants, six containing amino acid exchanges in the carboxyl-terminal end, four with truncations, and two with both truncations and substitutions. Exchange of positively or negatively charged amino acids on the carboxyl-terminal side of the cluster results in only minor modifications in heparin affinity, whereas substitution of three of the amino acids in the cluster abrogates the heparin binding. Insertions of stop codons at different positions resulted in either C or A but not B class EC-SOD. In an attempt to produce EC-SODs with intermediate heparin affinities, plasmids defining C and A class EC-SOD were cotransfected into Chinese hamster ovary cells. In addition to the parental A and C class EC-SOD forms, two variants with intermediate heparin affinities were formed. Coincubation of EC-SOD C and A resulted in the appearance of one heterotetramer with intermediate affinity for heparin. We conclude that the cluster of six basic amino acids forms the essential part of the heparin-binding domain and that the composition of the four subunits in the EC-SOD tetramer determines the affinity for heparin. This domain is different from heparin-binding domains of other proteins, and its localization allows the distribution of EC-SOD in vivo to be regulated by proteolytic processing.  相似文献   

7.
Abstract: Recent studies have shown that the binding of the amyloid protein precursor (APP) of Alzheimer's disease to heparan sulfate proteoglycans (HSPGs) can modulate a neurite outgrowth-promoting function associated with APP. We used three different approaches to identify heparin-binding domains in APP. First, as heparin-binding domains are likely to be within highly folded regions of proteins, we analyzed the secondary structure of APP using several predictive algorithms. This analysis showed that two regions of APP695 contain a high degree of secondary structure, and clusters of basic residues, considered mandatory for heparin binding, were found principally within these regions. To determine which domains of APP bind heparin, deletion mutants of APP695 were prepared and analyzed for binding to a heparin affinity column. The results suggested that there must be at least two distinct heparin-binding regions in APP. To identify novel heparin-binding regions, peptides homologous to candidate heparin-binding domains were analyzed for their ability to bind heparin. These experiments suggested that APP contains at least four heparin-binding domains. The presence of more than one heparin-binding domain on APP suggests the possibility that APP may interact with more than one type of glycosaminoglycan.  相似文献   

8.
The key enzymes in the biosynthetic pathway of glycosaminoglycan production are represented by the human xylosyltransferase I and its isoform II (XylT-I and XylT-II). The glycosaminoglycan heparin interacts with a variety of proteins, thereby regulating their activities, also those of xylosyltransferases. The identification of unknown amino acids responsible for heparin-binding of XylT-II was addressed in this study. Thus, six XylT-II fragments were designed as fusion proteins with MBP and we received soluble and purified MBP/XylT-II from Escherichia coli. Heparin-binding studies showed that all fragments bound with low affinity to heparin. Prolonging of XylT-II fragments did not account for a cooperative effect of multiple heparin-binding motifs and in turn for a stronger heparin-binding. Sequence alignment and surface polarity plot led to the identification of two highly positively charged Cardin-Weintraub motifs with surface accessibility, resulting in combination with short clusters of basic amino acids for strong heparin-binding of native xylosyltransferases.  相似文献   

9.
Seal BL  Panitch A 《Biomacromolecules》2003,4(6):1572-1582
A rapidly forming polymer matrix with affinity-based controlled release properties was developed based upon interactions between heparin-binding peptides and heparin. Dynamic mechanical testing of 10% (w/v) compositions consisting of a 3:1 molar ratio of poly(ethylene glycol)-co-peptide (approximately 18,000 g/mol) to heparin (approximately 18,000 g/mol) revealed a viscoelastic profile similar to that of concentrated, large molecular weight polymer solutions and melts. In addition, the biopolymer mixtures recovered quickly following thermal denaturation and mechanical insult. These gel-like materials were able to sequester exogenous heparin-binding peptides and could release these peptides over several days at rates dependent on relative heparin affinity. The initial release rates ranged from 3.3% per hour for a peptide with low heparin affinity to 0.025% per hour for a peptide with strong heparin affinity. By altering the affinity of peptides to heparin, a series of peptides can be developed to yield a range of release profiles useful for controlled in vivo delivery of therapeutics.  相似文献   

10.
Heparin and heparan sulfates are regulators of cellular events including adhesion, proliferation and migration. In particular, the antiproliferative effect of heparin on smooth muscle cell (SMC) growth is well described. However, its mechanism of action remains unclear. Numerous results suggest an endocytosis mediated by a still unknown heparin receptor on vascular SMCs. In order to identify a putative heparin receptor on SMCs that could be involved in heparin signalling, affinity chromatography supports were developed. In this paper, we describe high-performance liquid affinity chromatography (HPLAC) supports obtained from silica beads coated with dextran polymer substituted by a calculated amount of diethylaminoethyl functions. With a polysaccharide dextran layer, this type of support can be grafted with specific ligands, such as heparin, using conventional coupling methods. In a previous work, we demonstrated, using butanedioldiglycidyl ether, that silica stationary phases coupled to heparin could be used for the fast elution and good peak resolution of heparin-binding proteins. In the present work, an affinity chromatographic fraction of SMC membrane extracts was analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and six heparin-binding proteins from dodecyloctaethyleneglycol monoether-solubilized SMCs were observed. Their Mr values were between 40 and 70 kDa, with three major protein bands at 66, 45 and 41 kDa. These results indicate the usefulness of the chromatographic method for purifying heparin binding proteins from SMC membrane.  相似文献   

11.
Heparin is naturally occurring polysaccharides which interacts with seminal plasma proteins and regulate multiple steps in fertilization process. Qualitative and quantitative information regarding the affinity for heparin-seminal plasma proteins interactions is not generally well documented and there are no reports of a comprehensive analysis of these interactions in human seminal plasma. Such information should improve our understanding of how GAGs especially heparin present in the reproductive tract regulate fertilization. In this study, we use SPR to study interactions of heparin with various seminal plasma heparin-binding proteins (HBPs). HBPs like lactoferrin (LF), fibronectin fragment (FNIII), semenogelinI (SGI) and prostate specific antigen (PSA) all bind heparin with different binding kinetics and affinities. Kinetic data suggests that FNIII binds heparin with a high affinity (KD=3.2 nM), while PSA binds heparin with a micromolar affinity (KD=11.1 μM). Preincubation of SGI with heparin inhibits the binding of SGI to immobilized PSA in a dosedependent manner, while FNIII incubated with heparin binds with an increased affinity to PSA. Solution-competition studies show that the minimum size of a heparin oligosaccharide capable of binding with PSA is greater than a tetrasaccharide, with LF and SGI is larger than a hexasaccharide and for FNIII is larger than an octasaccharide.  相似文献   

12.
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that has a high affinity for heparin and heparan sulfate. While interactions with heparin are thought to modulate the biological activity of HB-EGF, the precise role of the heparin-binding domain has remained unclear. We analyzed the activity of wild-type HB-EGF and a mutant form lacking the heparin-binding domain (DeltaHB) in the presence or absence of heparin. The activity of the EGF-like domain of HB-EGF was determined by measuring binding to diphtheria toxin (DT) as well as the growth factor activity in EGF receptor-expressing cells. The binding affinity of DeltaHB for DT was much higher than that of wild-type HB-EGF in the absence of heparin. The binding affinity of HB-EGF for DT was increased by addition of exogenous heparin and reached the level close to the affinity of DeltaHB, whereas that of DeltaHB was not affected. Moreover, the growth factor activity of DeltaHB was much higher than that of wild-type HB-EGF in the absence of heparin but was not affected by addition of exogenous heparin, whereas HB-EGF had increased growth factor activity with added heparin. These results indicate that the heparin-binding domain suppresses the activity of the EGF-like domain of HB-EGF and that association of heparin with HB-EGF via this domain removes the suppressive effect. Thus, we conclude that the heparin-binding domain serves as a negative regulator of this growth factor.  相似文献   

13.
Green fluorescent proteins (GFPs) and their derivatives are widely used as markers to visualize cells, protein localizations in in vitro and in vivo studies. The use of GFP fusion protein for visualization is generally thought to have negligible effects on cellular function. However, a number of reports suggest that the use of GFP may impact the biological activity of these proteins. Heparin is a glycosaminoglycan (GAG) that interacts with a number of proteins mediating diverse patho-physiological processes. In the heparin-based interactome studies, heparin-binding proteins are often prepared as GFP fusion proteins. In this report, we use surface plasmon resonance (SPR) spectroscopy to study the impact of the GFP tagging on the binding interaction between heparin and a heparin-binding protein, the Roundabout homolog 1 (Robo1). SPR reveals that heparin binds with higher affinity to Robo1 than GFP-tagged Robo1 and through a different kinetic mechanism. A conformational change is observed in the heparin-Robo1 interaction, but not in the heparin-Robo1-GFP interaction. Furthermore the GFP-tagged Robo1 requires a shorter (hexasaccharide) than the tag-free Robo1 (octadecasaccharide). These data demonstrate that GFP tagging can reduce the binding affinity of Robo1 to heparin and hinder heparin binding-induced Robo1 conformation change.  相似文献   

14.
The interaction between tenascin-C (TN-C), a multi-subunit extracellular matrix protein, and heparin was examined using a surface plasmon resonance-based technique on a Biacore system. The aims of the present study were to examine the affinity of fibronectin type III repeats of TN-C fragments (TNIII) for heparin, to investigate the role of the TNIII4 domains in the binding of TN-C to heparin, and to delineate a sequence of amino acids within the TNIII4 domain, which mediates cooperative heparin binding. At a physiological salt concentration, and pH 7.4, TNIII3-5 binds to heparin with high affinity (K(D) = 30 nm). However, a major heparin-binding site in TNIII5 produces a modest affinity binding at a K(D) near 4 microm, and a second site in TNIII4 enhances the binding by several orders of magnitude, although it was far too weak to produce an observable binding of TNIII4 by itself. Moreover, mutagenesis of the KEDK sequence in the TNIII4 domain resulted in the significant reduction of heparin-binding affinity. In addition, residues in the KEDK sequences are conserved in TN-C throughout mammalian evolution. Thus the structure-based sequence alignment, mutagenesis, and sequence conservation data together reveal a KEDK sequence in TNIII4 suggestive of a minor heparin-binding site. Finally, we demonstrate that TNIII4 contains binding sites for heparin sulfate proteoglycan and enhances the heparin sulfate proteoglycan-dependent human gingival fibroblast adhesion to TNIII5, thus providing the biological significance of heparin-binding site of TNIII4. These results suggest that the heparin-binding sites may traverse TNIII4-5 and thus require KEDK in TNIII4 for optimal heparin-binding.  相似文献   

15.
Our hypothesis is that the proteins in aqueous humor may be involved in the regulation of outflow facility through the trabecular meshwork and uveoscleral meshwork. In this study, we analyzed the profile of heparin-binding proteins present in porcine aqueous humor to identify and characterize secretory proteins with a binding affinity for heparin. A single step involving heparin-sepharose affinity chromatography of porcine aqueous humor yielded a approximately 60 kDa protein as the major heparin-binding species. This protein was specifically eluted from the column by heparin. The N-terminal sequence and immunological cross reactivity of this protein confirmed its identity as antithrombin III. Aqueous humor from different species, as well as cells from human trabecular meshwork, Schlemm's canal, and lens epithelium, contained detectable amounts of antithrombin III. Based on its known anticoagulative function in endothelial cells and effects on the production of prostacyclin, it is reasonable to speculate that antithrombin III present in aqueous humor might influence the physiology of the trabecular and uveoscleral meshwork and thereby regulate intraocular pressure.  相似文献   

16.
Two distinct forms of antithrombin III were isolated by chromatography of normal human plasma on heparin-Sepharose. The predominant antithrombin species present (AT-III alpha), which eluted from the affinity column in 1 M NaCl, was identified as the antithrombin III form which has been previously characterized. Ionic strength of the buffer was increased to elute a variant form of antithrombin III, designated as AT-III beta. The molecular weight of AT-III beta is less than that of AT-III alpha, but physicochemical studies do not indicate measureable differences in the polypeptide portion of the proteins. Carbohydrate determination revealed the sole detectable structural difference in the two antithrombins: levels of hexosamine, neutral sugars, and sialic acid in AT-III beta were all 25-30% less than in AT-III alpha. Kinetic studies of thrombin inactivation by both antithrombins, in the presence of nonsaturating amounts of heparin, indicated that AT-III beta inhibited thrombin more rapidly. AT-III beta is also distinguishable from AT-III alpha on the basis of heparin-binding affinity estimated from titration of protein fluorescence with heparin. Thus, antithrombin III exists as two molecular entities in human plasma which differ both structurally, in carbohydrate content, and functionally, in their heparin-binding behavior.  相似文献   

17.
Temperature-dependent regulation of affinity binding between bioactive ligands and their cell membrane receptors is an attractive approach for the dynamic control of cellular adhesion, proliferation, migration, differentiation, and signal transduction. Covalent conjugation of bioactive ligands onto thermoresponsive poly(N-isopropylacrylamide) (PIPAAm)-grafted surfaces facilitates the modulation of one-on-one affinity binding between bioactive ligands and cellular receptors by changing temperature. For the dynamic control of the multivalent affinity binding between heparin and heparin-binding proteins, thermoresponsive cell culture surface modified with heparin, which interacts with heparin-binding proteins such as basic fibroblast growth factor (bFGF), has been proposed. Heparin-functionalized thermoresponsive cell culture surface induces (1) the multivalent affinity binding of bFGF in active form and (2) accelerating cell sheet formation in the state of shrunken PIPAAm chains at 37°C. By lowering temperature to 20°C, the affinity binding between bFGF and immobilized heparin is reduced with increasing the mobility of heparin and the swollen PIPAAm chains, leading to the detachment of cultured cells. Therefore, heparin-functionalized thermoresponsive cell culture surface was able to enhance cell proliferation and detach confluent cells as a contiguous cell sheet by changing temperature. A cell cultivation system using heparin-functionalized thermoresponsive cell culture surface is versatile for immobilizing other heparin-binding proteins such as vascular endothelial growth factor, fibronectin, antithrombin III, and hepatocyte growth factor, etc. for tuning the adhesion, growth, and differentiation of various cell species.  相似文献   

18.
Heparin potentiates the mitogenic activity of FGF-1 by increasing the affinity for its receptor and by extending its biological half-life. During the course of labeling human FGF-1 with Na(125)I and chloramine T, it was observed that the protein lost its ability to bind to heparin. In contrast, bovine FGF-1 retained its heparin affinity even after iodination. To localize the region responsible for the lost heparin affinity, chimeric FGF-1 proteins were constructed from human and bovine FGF-1 expression constructs and tested for their heparin affinity after iodination. The results showed that the C-terminal region of human FGF-1 was responsible for the loss of heparin affinity. This region harbors a single tyrosine residue in human FGF-1 in contrast to a phenylalanine at this position in bovine FGF-1. Mutating this tyrosine residue in the human FGF-1 sequence to phenylalanine did not restore the heparin affinity of the iodinated protein. Likewise, changing the phenylalanine to tyrosine in the bovine FGF-1 did not reduce the ability of the iodinated protein to bind to heparin. In contrast, a mutant human FGF-1 that has cysteine-131 replaced with serine (C131S) was able to bind to heparin even after iodination while bovine FGF-1 (S131C) lost its binding affinity to heparin upon iodination. In addition, the human FGF-1 C131S mutant showed a decrease in homodimer formation when exposed to CuCl(2). Molecular modeling showed that the heparin-binding domain of FGF-1 includes cysteine-131 and that cysteine-131, upon oxidation to cysteic acid during the iodination procedures, would interact with lysine-126 and lysine-132. This interaction alters the conformation of the basic residues such that they no longer bind to heparin.  相似文献   

19.
The interaction of heparin with glia-derived nexin (GDN) has been characterized and compared to that observed between heparin and antithrombin III (ATIII). Heparin was fractionated according to its affinity for immobilized GDN, and the ability of various fractions to accelerate the inhibition rate of thrombin by either GDN or ATIII was examined. Fractions with different affinities for GDN accelerated the thrombin-GDN reaction to a similar extent; heparin with a high affinity for immobilized GDN stimulated the reaction only about 30% more than the fraction that did not bind to immobilized GDN. Slightly greater differences were observed for the effect of these fractions on the thrombin-ATIII reaction; heparin that did not bind to the GDN affinity column was about 60% more effective than heparin with a high affinity for GDN in accelerating the inhibition of thrombin by ATIII. The CNBr fragment of GDN between residues 63 and 144 was able to reduce the heparin-accelerated rate of inhibition of thrombin by GDN indicating that this region of GDN was able to bind the heparin molecules responsible for the acceleration. Shorter synthetic peptides within this sequence did not significantly reduce the rate, suggesting that the heparin-binding activity of fragment 63-144 depends on a specific conformation of the polypeptide chain. Fragment 63-144 was less effective in decreasing the heparin-accelerated rate of inhibition of thrombin by ATIII. The results are discussed in terms of the heparin species that are responsible for the acceleration of the GDN- and ATIII-thrombin reactions and the heparin-binding sites of GDN and ATIII.  相似文献   

20.
We assessed the participation of the three known heparin-binding domains of PFn (Hep I, Hep II, Hep III) in their interaction with heparin by making a quantitative comparison of the fluid-phase heparin affinities of PFn and PFn fragments under physiologic pH and ionic strength conditions. Using a fluorescence polarization binding assay that employed a PFn affinity-purified fluorescein-labeled heparin preparation, we found that greater than 98% of the total PFn heparin-binding sites exhibit a Kd in the 118-217 nM range. We also identified a minor (less than 2%) class of binding sites exhibiting very high affinity (Kd approximately 1 nM) in PFn and the carboxyl-terminal 190/170 and 150/136 kDa PFn fragments. This latter activity probably reflects multivalent inter- or intramolecular heparin-binding activity. Amino-terminal PFn fragments containing Hep I (72 and 29 kDa) exhibited low affinity for heparin under physiologic buffer conditions (Kd approximately 30,000 mM). PFn fragments (190/170 and 150/136 kDa) containing both the carboxyl-terminal Hep II and central Hep III domains retained most of the heparin-binding activity of native PFn (Kd = 278-492 nM). The isolated Hep II domain (33-kDa fragment) exhibited appreciable, but somewhat lower (2-5-fold), heparin affinity compared to the 190/170-kDa PFn fragment. Heparin binding to the 100-kDa PFn fragment containing Hep III was barely detectable (Kd greater than 30,000 nM). From these observations, we conclude that PFn contains only one major functional heparin-binding site per subunit, Hep II, that dominates the interaction between heparin and PFn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号