首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
An intact T cell compartment and IFN-gamma signaling are required for protective immunity against Chlamydia. In the mouse model of Chlamydia pneumoniae (Cpn) infection, this immunity is critically dependent on CD8(+) T cells. Recently we reported that Cpn-infected mice generate an MHC class I-restricted CD8(+) Tc1 response against various Cpn Ags, and that CD8(+) CTL to multiple epitopes inhibit Cpn growth in vitro. Here, we engineered a DNA minigene encoding seven H-2(b)-restricted Cpn CTL epitopes, the universal pan-DR epitope Th epitope, and an endoplasmic reticulum-translocating signal sequence. Immunization of C57BL/6 mice with this construct primed IFN-gamma-producing CD8(+) CTL against all seven CTL epitopes. CD8(+) T cell lines generated to minigene-encoded CTL epitopes secreted IFN-gamma and TNF-alpha and exhibited CTL activity upon recognition of Cpn-infected macrophages. Following intranasal challenge with Cpn, a 3.6 log reduction in mean lung bacterial numbers compared with control animals was obtained. Using a 20-fold increase in the Cpn challenging dose, minigene-vaccinated mice had a 60-fold reduction in lung bacterial loads, compared with controls. Immunization and challenge studies with beta(2)-microglobulin(-/-) mice indicated that the reduction of lung Cpn burdens was mediated by the MHC class I-dependent CD8(+) T cells to minigene-included Cpn CTL epitopes, rather than by pan-DR epitope-specific CD4(+) T cells. This constitutes the first demonstration of significant protection achieved by immunization with a CD8(+) T cell epitope-based DNA construct in a bacterial system and provides the basis for the optimal design of multicomponent anti-Cpn vaccines for humans.  相似文献   

2.
CD8+ T cells are important for immunity to the intracellular bacterial pathogen Chlamydia pneumoniae (Cpn). Recently, we reported that type 1 CD8+ (Tc1) from Cpn-infected B6 mice recognize peptides from multiple Cpn Ags in a classical MHC class Ia-restricted fashion. In this study, we show that Cpn infection also induces nonclassical MHC class Ib-(H2-M3)-restricted CD8+ T cell responses. H2-M3-binding peptides representing the N-terminal formylated sequences from five Cpn Ags sensitized target cells for lysis by cytolytic effectors from the spleens of infected B6 mice. Of these, only peptides fMFFAPL (P1) and fMLYWFL (P4) stimulated IFN-gamma production by infection-primed splenic and pulmonary CD8+ T cells. Studies with Cpn-infected Kb-/-/Db-/- mice confirmed the Tc1 cytokine profile of P1- and P4-specific CD8+ T cells and revealed the capacity of these effectors to exert in vitro H2-M3-restricted lysis of Cpn-infected macrophages and in vivo pulmonary killing of P1- and P4-coated splenocytes. Furthermore, adoptive transfer of P1- and P4-specific CD8+ T cells into naive Kb-/-/Db-/- mice reduced lung Cpn loads following challenge. Finally, we show that in the absence of MHC class Ia-restricted CD8+ T cell responses, CD4+ T cells are largely expendable for the control of Cpn growth, and for the generation, memory maintenance, and secondary expansion of P1- and P4-specific CD8+ T cells. These results suggest that H2-M3-restricted CD8+ T cells contribute to protective immunity against Cpn, and that chlamydial Ags presented by MHC class Ib molecules may represent novel targets for inclusion in anti-Cpn vaccines.  相似文献   

3.
Human CD8+ CTL specific for the mycobacterial major secreted antigen 85A   总被引:9,自引:0,他引:9  
The role of CD8(+) CTL in protection against tuberculosis in human disease is unclear. In this study, we stimulated the peripheral blood mononuclear cells of bacillus Calmette-Guérin (BCG)-vaccinated individuals with live Mycobacterium bovis BCG bacilli to establish short-term cell lines and then purified the CD8(+) T cells. A highly sensitive enzyme-linked immunospot (ELISPOT) assay for single cell IFN-gamma release was used to screen CD8(+) T cells with overlapping peptides spanning the mycobacterial major secreted protein, Ag85A. Three peptides consistently induced a high frequency of IFN-gamma responsive CD8(+) T cells, and two HLA-A*0201 binding motifs, P(48-56) and P(242-250), were revealed within the core sequences. CD8(+) T cells responding to the 9-mer epitopes were visualized within fresh blood by ELISPOT using free peptide or by binding of HLA-A*0201 tetrameric complexes. The class I-restricted CD8(+) T cells were potent CTL effector cells that efficiently lysed an HLA-A2-matched monocyte cell line pulsed with peptide as well as autologous macrophages infected with Mycobacterium tuberculosis or recombinant vaccinia virus expressing the whole Ag85A protein. Tetramer assays revealed a 6-fold higher frequency of peptide-specific T cells than IFN-gamma ELISPOT assays, indicating functional heterogeneity within the CD8(+) T cell population. These results demonstrate a previously unrecognized, MHC class I-restricted, CD8(+) CTL response to a major secreted Ag of mycobacteria and supports the use of Ag85A as a candidate vaccine against tuberculosis.  相似文献   

4.
A substantial and protective response against malaria liver stages is directed against the circumsporozoite protein (CSP) and involves induction of CD8(+) T cells and production of IFN-gamma. CSP-derived peptides have been shown to be presented on the surface of infected hepatocytes in the context of MHC class I molecules. However, little is known about how the CSP and other sporozoite Ags are processed and presented to CD8(+) T cells. We investigated how primary hepatocytes from BALB/c mice process the CSP of Plasmodium berghei after live sporozoite infection and present CSP-derived peptides to specific H-2K(d)-restricted CD8(+) T cells in vitro. Using both wild-type and spect(-/-) P. berghei sporozoites, we show that both infected and traversed primary hepatocytes process and present the CSP. The processing and presentation pathway was found to involve the proteasome, Ag transport through a postendoplasmic reticulum compartment, and aspartic proteases. Thus, it can be hypothesized that infected hepatocytes can contribute in vivo to the elicitation and expansion of a T cell response.  相似文献   

5.
CD8 T cell cross-reactivity between heterologous viruses has been shown to provide protective immunity, induce immunopathology, influence the immunodominance of epitope-specific T cell responses, and shape the overall memory population. Virus infections also induce cross-reactive allo-specific CTL responses. In this study, we quantified the allo-specific CD8 T cells elicited by infection of C57BL/6 (B6) mice with lymphocytic choriomeningitis virus (LCMV). Cross-reactive LCMV-specific CD8 T cells were directly visualized using LCMV peptide-charged MHC tetramers to costain T cells that were stimulated to produce intracellular IFN-gamma in response to allogeneic target cells. The cross-reactivity between T cells specific for LCMV and allogeneic Ags was broad-based, in that it involved multiple LCMV-derived peptides, but there were distinctive patterns of reactivity against allogeneic cells with different haplotypes. Experiments indicated that this cross-reactivity was not due to the expression of two TCR per cell, and that the patterns of allo-reactivity changed during sequential infection with heterologous viruses. The allo-specific CD8 T cells generated by LCMV infection were maintained at relatively high frequencies in the memory pool, indicating that memory allo-specific CD8 T cell populations can arise as a consequence of viral infections. Mice previously infected with LCMV and harboring allo-specific memory T cells were refractory to the induction of tolerance to allogeneic skin grafts.  相似文献   

6.
Using plasmid vaccination with DNA encoding the putative phosphate transport receptor PstS-3 from Mycobacterium tuberculosis and 36 overlapping 20-mer peptides spanning the entire PstS-3 sequence, we determined the immunodominant Th1-type CD4(+) T cell epitopes in C57BL/10 mice, as measured by spleen cell IL-2 and IFN-gamma production. Furthermore, a potent IFN-gamma-inducing, D(b)-restricted CD8(+) epitope was identified using MHC class I mutant B6.C-H-2(bm13) mice and intracellular IFN-gamma and whole blood CD8(+) T cell tetramer staining. Using adoptive transfer of CFSE-labeled, peptide-pulsed syngeneic spleen cells from naive animals into DNA vaccinated or M. tuberculosis-infected recipients, we demonstrated a functional in vivo CTL activity against this D(b)-restricted PstS-3 epitope. IFN-gamma ELISPOT responses to this epitope were also detected in tuberculosis-infected mice. The CD4(+) and CD8(+) T cell epitopes defined for PstS-3 were completely specific and not recognized in mice vaccinated with either PstS-1 or PstS-2 DNA. The H-2 haplotype exerted a strong influence on immune reactivity to the PstS-3 Ag, and mice of the H-2(b, p, and f) haplotype produced significant Ab and Th1-type cytokine levels, whereas mice of H-2(d, k, r, s, and q) haplotype were completely unreactive. Low responsiveness against PstS-3 in MHC class II mutant B6.C-H-2(bm12) mice could be overcome by DNA vaccination. IFN-gamma-producing CD8(+) T cells could also be detected against the D(b)-restricted epitope in H-2(p) haplotype mice. These results highlight the potential of DNA vaccination for the induction and characterization of CD4(+) and particularly CD8(+) T cell responses against mycobacterial Ags.  相似文献   

7.
CD8(+) cytotoxic T lymphocytes (CTLs) generated by immunization with allogeneic cells or viral infection are able to lyse allogeneic or virally infected in vitro cells (e.g., lymphoma and mastocytoma). In contrast, it is reported that CD8(+) T cells are not essential for allograft rejection (e.g., heart and skin), and that clearance of influenza or the Sendai virus from virus-infected respiratory epithelium is normal or only slightly delayed after a primary viral challenge of CD8-knockout mice. To address this controversy, we generated H-2(d)-specific CD8(+) CTLs by a mixed lymphocyte culture and examined the susceptibility of a panel of H-2(d) cells to CTL lysis. KLN205 squamous cell carcinoma, Meth A fibrosarcoma, and BALB/c skin components were found to be resistant to CTL-mediated lysis. This resistance did not appear to be related to a reduced expression of MHC class I molecules, and all these cells could block the recognition of H-2(d) targets by CTLs in cold target inhibition assays. We extended our observation by persistently infecting the same panel of cell lines with defective-interfering Sendai virus particles. The Meth A and KLN205 lines infected with a variant Sendai virus were resistant to lysis by Sendai virus-specific CTLs. The Sendai virus-infected Meth A and KLN205 lines were able to block the lysis of Sendai virus-infected targets by CTLs in cold target inhibition assays. Taken together, these results suggest that not all in vivo tissues may be sensitive to CTL lysis.  相似文献   

8.
IFN-gamma-deficient (IFN-gamma(-/-)) mice inoculated with intermediate doses of a slowly replicating strain of lymphocytic choriomeningitis virus become chronically infected. In such mice a hypercompensated CTL response is observed that partially controls virus replication. Here we have investigated whether CD4(+) Th cells are required to establish and maintain this new equilibrium. The absence of IFN-gamma does not impair the generation of IL-2-producing CD4(+) cells, and depletion of these cells precipitates severe CD8(+) T cell-mediated immunopathology in IFN-gamma(-/-) mice, indicating an important role of CD4(+) T cells in preventing this syndrome. Analysis of organ virus levels revealed a further impairment of virus control in IFN-gamma(-/-) mice following CD4(+) cell depletion. Initially the antiviral CTL response did not require CD4(+) cells, but with time an impaired reactivity toward especially the glycoprotein 33--41 epitope was noted. Enumeration of epitope-specific (glycoprotein 33--41 and nucleoprotein 396--404) CD8(+) T cells by use of tetramers gave similar results. Finally, limiting dilution analysis of CTL precursors reveal an impaired capacity to sustain this population in CD4(+)-depleted mice, especially in mice also deficient in IFN-gamma. Thus, our findings disclose that T cell help is required to sustain the expanded CTL precursor pool required in IFN-gamma(-/-) mice. This interpretation is supported by mathematical modeling that predicts an increased requirement for help in IFN-gamma(-/-) hosts similar to what is found with fast replicating virus strains in normal hosts. Thus, the functional integrity of CD8(+) effector T cells is one important factor influencing the requirement for T cell help during viral infection.  相似文献   

9.
Dendritic cells (DCs) play a pivotal role in the development of anti-viral CD8(+) CTL responses. This is straightforward if they are directly infected with virus, but is less clear in response to viruses that cannot productively infect DCS: Human CMV (HCMV) shows strain-specific cell tropism: fibroblast (Fb)-adapted laboratory strains (AD169) and recent clinical isolates do not infect DCs, whereas endothelial cell-adapted strains (TB40/E) result in productive lytic DC infection. However, we show here that uninfected DCs induce CD8(+) T cell cytotoxicity and IFN-gamma production against HCMV pp65 and immediate early 1 Ags following in vitro coculture with HCMV-AD169-infected Fbs, regardless of the HLA type of these FBS: CD8(+) T cell stimulation was inhibited by pretreatment of DCs with cytochalasin B or brefeldin A, indicating a phagosome/endosome to cytosol pathway. HCMV-infected Fbs were not apoptotic as measured by annexin V binding, and induction of apoptosis of infected Fbs in vitro did not augment CTL induction by DCs, suggesting a mechanism other than apoptosis in the initiation of cross-presentation. Furthermore, HCMV-infected Fbs provided a maturation signal for immature DCs during coculture, as evidenced by increased CD83 and HLA class II expression. Cross-presentation of HCMV Ags by host DCs enables these professional APCs to bypass some of the evasion mechanisms HCMV has developed to avoid T cell recognition. It may also serve to explain the presence of immediate early 1 Ag-specific CTLs in the face of pp65-induced inhibition of Ag presentation at the level of the infected cell.  相似文献   

10.
The unique ether glycerolipids of ARCHAEA: can be formulated into vesicles (archaeosomes) with strong adjuvant activity for MHC class II presentation. Herein, we assess the ability of archaeosomes to facilitate MHC class I presentation of entrapped protein Ag. Immunization of mice with OVA entrapped in archaeosomes resulted in a potent Ag-specific CD8(+) T cell response, as measured by IFN-gamma production and cytolytic activity toward the immunodominant CTL epitope OVA(257-264). In contrast, administration of OVA with aluminum hydroxide or entrapped in conventional ester-phospholipid liposomes failed to evoke significant CTL response. The archaeosome-mediated CD8(+) T cell response was primarily perforin dependent because CTL activity was undetectable in perforin-deficient mice. Interestingly, a long-term CTL response was generated with a low Ag dose even in CD4(+) T cell deficient mice, indicating that the archaeosomes could mediate a potent T helper cell-independent CD8(+) T cell response. Macrophages incubated in vitro with OVA archaeosomes strongly stimulated cytokine production by OVA-specific CD8(+) T cells, indicating that archaeosomes efficiently delivered entrapped protein for MHC class I presentation. This processing of Ag was Brefeldin A sensitive, suggesting that the peptides were transported through the endoplasmic reticulum and presented by the cytosolic MHC class I pathway. Finally, archaeosomes induced a potent memory CTL response to OVA even 154 days after immunization. This correlated to strong Ag-specific up-regulation of CD44 on splenic CD8(+) T cells. Thus, delivery of proteins in self-adjuvanting archaeosomes represents a novel strategy for targeting exogenous Ags to the MHC class I pathway for induction of CTL response.  相似文献   

11.
Orthopoxviruses evade host immune responses by using a number of strategies, including decoy chemokine receptors, regulation of apoptosis, and evasion of complement-mediated lysis. Different from other poxviral subfamilies, however, orthopoxviruses are not known to evade recognition by CTL. In fact, vaccinia virus (VV) is used as a vaccine against smallpox and a vector for eliciting strong T cell responses to foreign Ags. and both human and mouse T cells are readily stimulated by VV-infected APC in vitro. Surprisingly, however, CD8(+) T cells of mice infected with cowpox virus (CPV) or VV recognized APC infected with VV but not APC infected with CPV. Likewise, CD8(+) T cells from vaccinated human subjects could not be activated by CPV-infected targets and CPV prevented the recognition of VV-infected APC upon coinfection. Because CD8(+) T cells recognize viral peptides presented by MHC class I (MHC I), we examined surface expression, total levels, and intracellular maturation of MHC I in CPV- and VV-infected human and mouse cells. Although total levels of MHC I were unchanged, CPV reduced surface levels and inhibited the intracellular transport of MHC I early during infection. CPV did not prevent peptide loading of MHC I but completely inhibited MHC I exit from the endoplasmic reticulum. Because this inhibition was independent of viral replication, we conclude that an early gene product of CPV abrogates MHC I trafficking, thus rendering CPV-infected cells "invisible" to T cells. The absence of this immune evasion mechanism in VV likely limits virulence without compromising immunogenicity.  相似文献   

12.
Vpr is preferentially targeted by CTL during HIV-1 infection   总被引:11,自引:0,他引:11  
The HIV-1 accessory proteins Vpr, Vpu, and Vif are essential for viral replication, and their cytoplasmic production suggests that they should be processed for recognition by CTLs. However, the extent to which these proteins are targeted in natural infection, as well as precise CTL epitopes within them, remains to be defined. In this study, CTL responses against HIV-1 Vpr, Vpu, and Vif were analyzed in 60 HIV-1-infected individuals and 10 HIV-1-negative controls using overlapping peptides spanning the entire proteins. Peptide-specific IFN-gamma production was measured by ELISPOT assay and flow-based intracellular cytokine quantification. HLA class I restriction and cytotoxic activity were confirmed after isolation of peptide-specific CD8(+) T cell lines. CD8(+) T cell responses against Vpr, Vpu, and Vif were found in 45%, 2%, and 33% of HIV-1-infected individuals, respectively. Multiple CTL epitopes were identified in functionally important regions of HIV-1 Vpr and Vif. Moreover, in infected individuals in whom the breadth of HIV-1-specific responses was assessed comprehensively, Vpr and p17 were the most preferentially targeted proteins per unit length by CD8(+) T cells. These data indicate that despite the small size of these proteins Vif and Vpr are frequently targeted by CTL in natural HIV-1 infection and contribute importantly to the total HIV-1-specific CD8(+) T cell responses. These findings will be important in evaluating the specificity and breadth of immune responses during acute and chronic infection, and in the design and testing of candidate HIV vaccines.  相似文献   

13.
CTL play a major role in the clearance of respiratory syncytial virus (RSV) during experimental pulmonary infection. The fusion (F) glycoprotein of RSV is a protective Ag that elicits CTL and Ab response against RSV infection in BALB/c mice. We used the strategy of screening a panel of overlapping synthetic peptides corresponding to the RSV F protein and identified an immunodominant H-2K(d)-restricted epitope (F(85-93); KYKNAVTEL) recognized by CD8(+) T cells from BALB/c mice. We enumerated the F-specific CD8(+) T cell response in the lungs of infected mice by flow cytometry using tetramer staining and intracellular cytokine synthesis. During primary infection, F(85-93)-specific effector CD8(+) T cells constitute approximately 4.8% of pulmonary CD8(+) T cells at the peak of the primary response (day 8), whereas matrix 2-specific CD8(+) T cells constituted approximately 50% of the responding CD8(+) T cell population in the lungs. When RSV F-immune mice undergo a challenge RSV infection, the F-specific CD8(+) T cell response is accelerated and dominates, whereas the primary response to the matrix 2 epitope in the lungs is reduced by approximately 20-fold. In addition, we found that activated F-specific effector CD8(+) T cells isolated from the lungs of RSV-infected mice exhibited a lower than expected frequency of IFN-gamma-producing CD8(+) T cells and were significantly impaired in ex vivo cytolytic activity compared with competent F-specific effector CD8(+) T cells generated in vitro. The significance of these results for the regulation of the CD8(+) T cell response to RSV is discussed.  相似文献   

14.
Salmonella enterica serovar Typhi (S. typhi) strain Ty21a remains the only licensed attenuated typhoid vaccine. Despite years of research, the identity of the protective immunological mechanisms elicited by immunization with the Ty21a typhoid vaccine remains elusive. The present study was designed to characterize effector T cell responses in volunteers immunized with S. typhi strain Ty21a typhoid vaccine. We determined whether immunization with Ty21a induced specific CTL able to lyse S. typhi-infected cells and secrete IFN-gamma, a key effector molecule against intracellular pathogens. We measured the functional activity of these CTL by a (51)Cr-release assay using 8-day restimulated PBMC from Ty21a vaccinees as effector cells and S. Typhi-infected autologous PHA-activated PBMC as target cells. Most vaccinees exhibited consistently increased CD8-mediated lysis of targets by postimmunization PBMC when compared with preimmunization levels. We also developed an IFN-gamma ELISPOT assay to quantify the frequency of IFN-gamma spot-forming cells (SFC) in PBMC from Ty21a vaccinees using an ex vivo system. Significant increases in the frequency of IFN-gamma SFC following immunization (mean +/- SD, 393 +/- 172; range 185-548 SFC/10(6) PBMC; p = 0.010), as compared with preimmunization levels, were observed. IFN-gamma was secreted predominantly by CD8(+) T cells. A strong correlation was recorded between the cytolytic activity of CTL lines and the frequency of IFN-gamma SFC (r(2) = 0.910, p < 0.001). In conclusion, this work constitutes the first evidence that immunization of volunteers with Ty21a elicits specific CD8(+) CTL and provides an estimate of the frequency of CD8(+) IFN-gamma-secreting cells induced by vaccination.  相似文献   

15.
We have previously identified mutated ras peptides reflecting the glycine to valine substitution at position 12 as HLA-A2-restricted, CD8+ CTL neo-epitopes. CTL lines produced against these peptide epitopes lysed the HLA-A2+ Ag-bearing SW480 primary colon adenocarcinoma cell line, although IFN-gamma treatment of the targets was necessary to achieve efficient cytotoxicity. Here, we compared the lytic phenotype of the SW480 cell line to its metastatic derivative, SW620, as an in vitro paradigm to further characterize the nature of a HLA class I-restricted, Ag-specific CTL response against neoplastic cell lines of primary and metastatic origin. Although both colon carcinoma cell lines were lysed by these Ag-specific CTL following IFN-gamma pretreatment, the mechanisms of lysis were distinct, which reflected differential levels of sensitivity to the Fas pathway. Whereas IFN-gamma pretreatment rendered SW480 cells sensitive to both Fas-dependent and -independent (perforin) pathways, SW620 cells displayed lytic susceptibility to Fas-independent mechanisms only. Moreover, pretreatment of SW480 cells with the anti-colon cancer agent, 5-fluorouracil (5-FU), led to enhanced Fas and ICAM-1 expression and triggered Ag-specific CTL-mediated lysis via Fas- and perforin-based pathways. In contrast, these phenotypic and functional responses were not observed with SW620 cells. Overall, these data suggested that 1) IFN-gamma and 5-FU may enhance the lytic sensitivity of responsive colon carcinoma cells to immune effector mechanisms, including Fas-induced lysis; 2) the malignant phenotype may associate with resistance to Fas-mediated lysis in response to Ag-specific T cell attack; and 3) if Ag-specific CTL possess diverse lytic capabilities, this may overcome, to some extent, the potential "escape" of Fas-resistant carcinoma cells.  相似文献   

16.
Infection by the respiratory syncytial virus (RSV) can cause extensive inflammation and lung damage in susceptible hosts due to a Th2-biased immune response. Such a deleterious inflammatory response can be enhanced by immunization with formalin- or UV-inactivated RSV, as well as with vaccinia virus expressing the RSV-G protein. Recently, we have shown that vaccination with rBCG-expressing RSV Ags can prevent the disease in the mouse. To further understand the immunological mechanisms responsible for protection against RSV, we have characterized the T cell populations contributing to virus clearance in mice immunized with this BCG-based vaccine. We found that both CD4(+) and CD8(+) T cells were recruited significantly earlier to the lungs of infected mice that were previously vaccinated. Furthermore, we observed that simultaneous adoptive transfer of CD8(+) and CD4(+) RSV-specific T cells from vaccinated mice was required to confer protection against virus infection in naive recipients. In addition, CD4(+) T cells induced by vaccination released IFN-γ after RSV challenge, indicating that protection is mediated by a Th1 immune response. These data suggest that vaccination with rBCG-expressing RSV Ags can induce a specific effector/memory Th1 immune response consisting on CD4(+) and CD8(+) T cells, both necessary for a fully protective response against RSV. These results support the notion that an effective induction of Th1 T cell immunity against RSV during childhood could counteract the unbalanced Th2-like immune response triggered by the natural RSV infection.  相似文献   

17.
Virus-specific cytotoxic T lymphocytes are key effectors for the clearance of virus-infected cells and are required for the normal clearance of respiratory syncytial virus (RSV) in mice. Although perforin/granzyme-mediated lysis of infected cells is thought to be the major molecular mechanism used by CD8(+) cytotoxic T lymphocytes for elimination of virus, its role in RSV has not been reported. Here, we show that viral clearance in perforin knockout (PKO) mice is slightly delayed but that both PKO and wild-type mice clear virus by day 10, suggesting an alternative mechanism of RSV clearance. Effector T cells from the lungs of both groups of mice were shown to lyse Fas (CD95)-overexpressing target cells in greater numbers than target cells expressing low levels of Fas, suggesting that Fas ligand (CD95L)-mediated target cell lysis was occurring in vivo. This cell lysis was associated with a delay in RSV-induced disease in PKO mice compared to the time of disease onset for wild-type controls, which correlated with increased and prolonged production of gamma interferon and tumor necrosis factor alpha levels in PKO mice. We conclude that while perforin is not necessary for the clearance of primary RSV infection, the use of alternative CTL target cell killing mechanisms is less efficient and can lead to enhanced disease.  相似文献   

18.
EBV transformation of human B cells in vitro results in establishment of immortalized cell lines (lymphoblastoid cell lines (LCL)) that express viral transformation-associated latent genes and exhibit a fixed, lymphoblastoid phenotype. In this report, we show that CD4(+) T cells can modify the differentiation state of EBV-transformed LCL. Coculture of LCL with EBV-specific CD4(+) T cells resulted in an altered phenotype, characterized by elevated CD38 expression and decreased proliferation rate. Relative to control LCL, the cocultured LCL were markedly less susceptible to lysis by EBV-specific CD8(+) CTL. In contrast, CD4(+) T cell-induced differentiation of LCL did not diminish sensitivity of LCL to lysis by CD8(+) CTL specific for an exogenously loaded peptide Ag or lysis by alloreactive CD8(+) CTL, suggesting that differentiation is not associated with intrinsic resistance to CD8(+) T cell cytotoxicity and that evasion of lysis is confined to EBV-specific CTL responses. CD4(+) T cell-induced differentiation of LCL and concomitant resistance of LCL to lysis by EBV-specific CD8(+) CTL were associated with reduced expression of viral latent genes. Finally, transwell cocultures, in which direct LCL-CD4(+) T cell contact was prevented, indicated a major role for CD4(+) T cell cytokines in the differentiation of LCL.  相似文献   

19.
Female-to-male hemopoietic stem cell transplantation (HSCT) elicits T cell responses against male-specific minor histocompatibility (H-Y) Ags encoded by the Y chromosome. All previously identified H-Y Ags are encoded by conventional open reading frames, but we report in this study the identification of a novel H-Y Ag encoded in the 5'-untranslated region of the TMSB4Y gene. An HLA-A*3303-restricted CD8(+) CTL clone was isolated from a male patient after an HSCT from his HLA-identical sister. Using a panel of cell lines carrying Y chromosome terminal deletions, a narrow region controlling the susceptibility of these target cells to CTL recognition was localized. Minigene transfection and epitope reconstitution assays identified an 11-mer peptide, EVLLRPGLHFR, designated TMSB4Y/A33, whose first amino acid was located 405 bp upstream of the TMSB4Y initiation codon. Analysis of the precursor frequency of CTL specific for recipient minor histocompatibility Ags in post-HSCT peripheral blood T cells revealed that a significant fraction of the total donor CTL response in this patient was directed against the TMSB4Y epitope. Tetramer analysis continued to detect TMSB4Y/A33-specific CD8(+) T cells at least up to 700 days post-HSCT. This finding underscores the in vivo immunological relevance of minor histocompatibility Ags derived from unconventional open reading frame products.  相似文献   

20.
The role of negatively signaling NK cell receptors of the Ly49 family on the specificity of the acute CD8(+) cytotoxic T-lymphocyte (CTL) response was investigated in lymphocytic choriomeningitis virus (LCMV)-infected C57BL/6 mice. Activated CD8(+) T cells coexpressing Ly49G2 expanded during LCMV infection, and T-cell receptor analyses by flow cytometry and CDR3 spectratyping revealed a unique polyclonal T-cell population in the Ly49G2(+) fraction. These cells lysed syngeneic targets infected with LCMV or coated with two of three LCMV immunodominant peptides examined. Transfection of these sensitive targets with H2D(d), a ligand for Ly49G2, inhibited lysis. This was reversed by antibody to Ly49G2, indicating effective negative signaling. LCMV characteristically induces an anti-H2(d) allospecific T-cell response that includes T-cell clones cross-reactive between allogeneic and LCMV-infected syngeneic targets. The CD8(+) Ly49G2(+) population mediated no allospecific killing, nor was any NK-like killing observed against YAC-1 cells. This study shows that CD8(+) Ly49G2(+) cells participate in the virus-induced CTL response but lyse a more restricted range of targets than the rest of the virus-induced CTL population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号