首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Synthesis of Acetylcholine from Acetate in a Sympathetic Ganglion   总被引:10,自引:9,他引:1  
Abstract: The present experiments tested whether acetate plays a role in the provision of acetyl-CoA for acetylcholine synthesis in the cat's superior cervical ganglion. Labeled acetylcholine was identified in extracts of ganglia that had been perfused for 20 min with Krebs solution containing choline (10−5 M ) and [3H], [1-4C], or [2-14C]acetate (103 M ); perfusion for 60 min or with [3H]acetate (10−2 M ) increased the labeling. The acetylcholine synthesized from acetate was available for release by a Ca2+-dependent mechanism during subsequent periods of preganglionic nerve stimulation. When ganglia were stimulated via their preganglionic nerves or by exposure to 46 m M K+, the labeling of acetylcholine from [3H]acetate was reduced when compared with resting ganglia. The reduced synthesis of acetylcholine from acetate during stimulation was not due to acetate recapture, shunting of acetate into lipid synthesis, or the transmitter release process itself. In ganglia perfused with [2-14C]glucose, the amount of labeled acetylcholine formed was clearly enhanced during stimulation. An increase in acetylcholine labeling from [3H]acetate was shown during a 15-min resting period following a 60-min period of preganglionic nerve stimulation (20 Hz). It is concluded that acetate is not the main physiological acetyl precursor for acetylcholine synthesis in this sympathetic ganglion, and that during preganglionic nerve stimulation there is enhanced delivery of acetyl-CoA to choline acetyltransferase from a source other than acetate.  相似文献   

2.
By use of the radiolabelled substrates sodium [1–14C] acetate, sodium [2–14C] acetate, NaH14CO3 and 14CH3OH, three of the possible methanogenic pathways in fermenting refuse were confirmed. Due to the absence of a methanol pool, however, the relative contribution of each could not be determined. Circumstantial evidence for an operative trimethylamine pathway was gained but not confirmed whilst preliminary attempts to stimulate methanogenesis in refuse by supplementation with mono-and dimethylamine proved unsuccessful.  相似文献   

3.
Abstract: The metabolic precursors and cerebral compartmentation of the augmented GABA pool induced by vigabatrin, an irreversible inhibitor of GABA transaminase, have been investigated by 13C NMR. Adult rats receiving rat chow ad libitum were given either drinking water only or drinking water containing 2.5 g/L vigabatrin for 7 days. Both groups of animals were infused either with [1,2-13C2]acetate (15 µmol/min/100 g body weight), an exclusive precursor of GABA formation through the glial glutamine pathway, or with [1,2-13C2]glucose (15 µmol/min/100 g body weight), a substrate that can produce GABA through the glial glutamine pathway or by direct metabolism in the neurons. The brains were frozen in situ, extracted with perchloric acid, and analyzed by 13C NMR. In vigabatrin-treated animals [13C]glutamine, a common intermediate for [13C]GABA synthesis from glucose or acetate, was accumulated to similar amounts during infusions with [1,2-13C2]glucose or [1,2-13C2]acetate. However, [13C]GABA accumulation was sevenfold higher during [1,2-13C2]glucose infusions or twofold higher during [1,2-13C2]acetate infusions. These results show that the direct pathway of GABA formation by neuronal metabolism of glucose predominates over the alternative pathway through glial glutamine. Near-equilibrium relationships of the aminotransferases of GABA and aspartate imply that the observed [13C]GABA accumulation occurs initially in the neuronal compartment.  相似文献   

4.
Washed bacterial suspensions obtained from the pig hindgut were incubated under 13CO2 in a buffer containing NaH13CO3 and carbohydrates. Incorporation of 13C into short chain fatty acids was assayed by quantitative nuclear magnetic resonance. The effects of different levels of H2 added to the gas phase (0, 20 and 80% v/v) and of the specific methanogenesis inhibitor 2-bromoethane-sulphonic acid (BES) were determined. In control incubations increasing the concentration of H2 markedly increased methane production. Single- and double-labelled acetate and butyrate were formed in all incubations. In the absence of BES, increasing H2 significantly increased the incorporation of 13CO2 into butyrate and the proportion of double-labelled acetate in total labelled acetate. The addition of BES proved to be very successful as a methane inhibitor and greatly enhanced the amount of mono- and double-labelled acetate, especially at the highest H2 partial pressure. The results suggest that methanogenesis inhibited both routes of reductive acetogenesis, i.e. the homoacetate fermentation of hexose (represented for the most part by single labelling) and the synthesis of acetate from external CO2 and H2 (represented mostly by double labelling). A highly significant interaction between BES and H2 concentration was observed. At the highest pH2 BES increased the proportion of labelled acetate in total acetate from 17.1% for the control to 50.9%. It was concluded that although acetogenesis and methanogenesis can occur simultaneously in the pig hindgut, reductive acetogenesis may become a significant pathway of acetate formation in the absence of methanogenesis.  相似文献   

5.
Abstract We have recently demonstrated that the calmodulin antagonist trifluoperazine has antitubercular activity in vitro against Mycobacterium tuberculosis H37Rv susceptible and resistant to isoniazid. It is shown that trifluoperazine at a concentration of 50 μ g ml−1 when added to the cells along with the labelled precursors inhibited the incorporation of [14C]acetate into lipids (63%) and uptake of [14C]glycine (74%) and [3H]thymidine (52%) bu whole cells of M. tuberculosis H37Rv by 6 h of exposure. After 48 h, the inhibition was 87%, 97% and 74%, respectively. However, when the drug was added to cells taking up and metabolizing the labelled precursors at a later point (3 h for [14C]acetate and [3H]thymidine and 12 h for [14C]glycine) it inhibited completely the uptake of all the precursors, at least up to 24 h. The onset of inhibitory action was very rapid, i.e. 3 h. It is suggested that trifluoperazine has multiple sites of action and acts probably by affecting the synthesis of lipids, proteins and DNA.  相似文献   

6.
Triacylglycerols occur in both the endosperm and embryo of Euphorbia lambii seeds. Upon germination, the amount of these neutral lipids in the endosperm decreased with 1.06 mg fatty acid day-1. The embryo contained 1.4 mg fatty acids in the triacylglycerols and this value declined slowly to 0.4 mg seedling-1 during the 8 day period of endosperm depletion. Radioactive acetate was rapidly taken up by the cotyledons of intact seedlings, translocated throughout the entire seedling, and up to 10.5% of the 14C proceeded to the sterols and latex triterpenols. Maximum uptake values of 1.4 μmol seedling-1 day-1 of acetate were measured. Acetate uptake and subsequent incorporation into sterols and triterpenols decreased substantially in the presence of increasing amounts of sucrose (up to 0.3 M). Traces of acetate did not effect [14C]-sucrose uptake and corresponding synthesis of [14C]-sterols and triterpenols, but increased concentrations of acetate (0.05 M and up) reduced both uptake of sucrose and its conversion into unsaponifiable lipids.
The uptake capacity of the cotyledons for [14C]-glycerol exceeded the daily production in the endosperm, but only a small amount of label proceeded to the sterols and triterpenols. [14C]-Triacylglycerols were never detected in the seedling, regardless of the labeled substrate used. Although acetate is an efficient precursor in triterpenol and sterol synthesis, the uptake capacity of the cotyledons for this metabolite is too small in relation to the daily production of water soluble substrates in the endosperm. If acetate is released by the endosperm, only a marginal contribution towards triterpenol and sterol synthesis in the seedling is to be anticipated from this substrate.  相似文献   

7.
Abstract In the profundal sediment ot Lake Constance (143 m depth) the temperature is constant at 4 °C. Despite the constant temperature, CH4 concentrations changed with season between about 120 μM in winter and about 750 μM in summer, measured down to 30 cm depth. The acetate concentration profiles also varied between seasons. In summer, acetate concentration reached a maximum at about 100 μM in 2 or 4 cm depth. In winter, maximal concentrations of about 5 μM were observed over the entire depth. Input of organic material in late spring may be the reason for the seasonal change of both compounds. To simulate such a sedimentation event, intact sediment cores were covered with suspensions of Porphyridium aerugenium or Synechococcus sp. The addition of the phytoplankton material resulted in a drastic increase of acetate concentrations with a maximum at 2 cm depth, similar to in situ acetate concentrations measured in summer. The same applies for CH4 for which increased concentrations were observed down to 6 cm depth. H2 concentrations, on the other hand, showed no distinct increase. Treatment of intact sediment cores with 14C-labeled Synechococcus cells resulted in the formation of 14C-acetate, 14CH4 and 14CO2. Maximum concentrations of 14CH4 were found at 4 cm depth, i.e. just above the depth to which 14C-acetate penetrated. The results show that phytoplankton blooms may cause a seasonal variation of acetate and CH4 in profundal sediments of deep lakes despite the constant low temperature. They also indicate that acetate is the dominant substrate for methanogenic bacteria in the profundal sediments of Lake Constance.  相似文献   

8.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

9.
Abstract: Little is known about the specificity of the mechanisms involved in the synthesis and release of acetylcholine for the acetyl moiety. To test this, blocks of tissue from the electric organ of Torpedo were incubated with either [1-14C]acetate or [1-14C]propionate, and the synthesis, storage, and release of [1-14C]acetylcholine and [14C]propionylcholine were compared. To obtain equivalent amounts of the two labeled choline esters, a 50-fold higher concentration of propionate than of acetate was needed. Following subcellular fractionation, similar proportions of [14C]acetylcholine and [14C]propionylcholine were recovered with synaptosomes and with synaptic vesicles. Furthermore, both labeled choline esters were protected to a similar extent from degradation during homogenization of tissue in physiological medium, indicating that the two choline esters were equally well incorporated into synaptic vesicles. Yet depolarization of tissue blocks by 50 m M KCI released much less [14C]propionylcholinc than [14C]acetylcholine. During field stimulation of the tissue blocks, the difference between the releasibility of the two choline esters was less marked, but acetylcholine was still released in preference to propionylcholine. Evidence for specificity of the release mechanism was also obtained when the release of the two choline esters in response to field stimulation was compared in tissue blocks preincubated with both [3H]choline and [14C]propionate.  相似文献   

10.
The biosynthesis of lipids in the mycelium and sporophore of Pleurotus sajor caju was studied. Whereas in the mycelium the biosynthesis of lipids was directly primarily towards storage (e.g. tri-acylglycerols), in the sporophore it was directed towards structural components (e.g. sterols). The incorporation of 14C precursors into non-polar and polar lipid fractions was generally similar for 14C acetate, 14C palmitate, 14C oleate and 14C linoleate in the case of mycelium and sporophore. It appears that linoleic acid was utilised as a source of acetate for lipid biosynthesis in the sporophore. A significantly higher incorporation of label was seen in sporophore sterol than in mycelial sterol. Malate dehydrogenase activity increased in the mycelium grown in the presence of lipids. Lipase of P. sajor caju was inducive. The growth of P. sajor caju was enhanced by increased lipid utilisation. The implications of these results on commercial cultivation of this fungus are discussed.  相似文献   

11.
Abstract Signature lipids from the phospholipid esterlinked fatty acids (PELFA) of cell membranes were used to describe benthic microbial communities of 4 Antarctic sediments. Metabolic activities of the communities were determined by incorporation of [3H]thymidine into bacterial DNA and sodium [14C]acetate into membrane lipids. Biomass measurements from extractable phospholipid fatty acids per g dry wt. ranged between 6 to 76 nmol, or when converted to number of bacteria, 3.7 × 108 to 4.5 × 109 cells per g dry wt. The West Sound site at New Harbor contained the lowest biomass, while Cape Evans on the East Sound contained the greatest. A marked difference was also noted between sites in their sediment microbial community structure. The East Sound sites at Cape Armitage and Cape Evans contained a greater abundance of diatom marker lipids, whilst both sides of the Sound contained approximately the same relative amounts of bacterial groups distinguished using PELFA. Activity of sediment microorganisms measured by radiolabel incorporation under ambient conditions followed the trends of the biomass measurements. The East Sound sites were more active by an average of 45–73% for [3H]thymidine and possibly also for sodium [14C]acetate.  相似文献   

12.
Abstract– The pattern of incorporation of [3H, 1-14C]- and [3H. 2-14C]acetate into glutamate and related amino acids was studied in the brain of 10-day-old mice. A comparison of these patterns with those obtained for the adult brain led to the suggestion that the glutamate pool labelled directly by acetate is a much larger fraction of the total glutamate pool in the 10-day-old brain than it is in the adult brain.
Some data on the pattern of labelling of brain amino acids by 3-hydroxybutyrate. glucose and acetate support the hypothesis that direct carboxylation of pyruvate is somewhat more active in the immature than in the mature brain.
Differences in the labelling patterns of free and protein-bound brain amino acids by acetate, do indicate that the free amino acid pool labelled by acetate is not the precursor pool for protein synthesis.  相似文献   

13.
Effects of Ketone Bodies on Astrocyte Amino Acid Metabolism   总被引:5,自引:1,他引:4  
Abstract: The effects of acetoacetate and 3-hydroxybutyrate on glial amino acid metabolism were studied in primary cultures of astrocytes. The exchange of nitrogen among amino acids was measured with 15N as a metabolic probe and gas chromatography-mass spectrometry as a tool with which to quantify isotope abundance. Addition of either acetoacetate or 3-hydroxybutyrate (5 m M ) to the incubation medium did not alter the initial rate of appearance of [15N]glutamate in the glia, but it did inhibit transamination of glutamate to [15N]aspartate. Addition of acetoacetate also inhibited formation of [2-15N]glutamine, but 3-hydroxybutyrate had a stimulatory effect. The presence in the medium of sodium acetate (5 m M ) was also associated with diminished production of [15N]aspartate and [2-15N]glutamine with [15N]glutamate as precursor. Studies with [2-15N]glutamine as precursor indicated that treatment of the astrocytes with ketone bodies did not alter flux through the glutaminase pathway. Nor did the presence of the ketone bodies reduce significantly the flux of nitrogen from [15N]GABA to [2-15N]glutamine when the former species served as a metabolic tracer. The concentration of internal citrate increased in the presence of acetoacetate, 3-hydroxybutyrate, and acetate. Studies with purified sheep brain glutamine synthetase showed that citrate inhibited this enzyme. These findings are considered in terms of the known anticonvulsant effect of a ketogenic diet.  相似文献   

14.
Abstract: The present work tested whether pharmacological activation of protein kinase C (PKC) influences the release of [3H]-acetylcholine ([3H]ACh) synthesized in the presence of vesamicol, an inhibitor of the vesicular acetylcholine transporter (VAChT). Newly synthesized [3H]ACh was released from hippocampal slices by field stimulation (15 Hz) in the absence of vesamicol, but as expected [3H]ACh synthesized during exposure to vesamicol was not released significantly by stimulation. Treatment of slices with the PKC activator phorbol myristate acetate (PMA) decreased the inhibitory effect of vesamicol on [3H]ACh release. The effect of PMA was dose-dependent, was sensitive to calphostin C, a PKC-selective inhibitor, and could not be mimicked by α-PMA, an inactive phorbol ester. PMA did not alter the release of [3H]ACh in the absence of vesamicol, suggesting that the site of PKC action could be related to the VAChT. In agreement with this observation, immunoprecipitation of VAChT from 32P-labeled synaptosomes showed that phosphorylation occurs and that incorporation of 32P in the VAChT protein increases in the presence of PMA. We suggest that PKC alters the output of [3H]ACh formed in the presence of vesamicol and also provide circumstantial evidence for a role of phosphorylation of VAChT in this process.  相似文献   

15.
Abstract– We have determined the incorporation of [3H]-, [1-14C]- and [2-14C]acetate into glutamate, glutamine and aspartate of the adult mouse brain. All these three acetates were incorporated more extensively into glutamine than into glutamate. This has been reported by several authors for each of these labelled acetates in separate experiments. It was shown that [3H, 2-14C]acetate can be used to obtain an acetate labelling ratio analogous to the previously used [2-14C]acetate/[1-14C]acetate labelling ratio. From these acetate labelling ratios of glutamine and glutamate conclusions can be deduced about the dynamic relationship of these amino acids with each other and with the tricarboxylic acid cycle.
A fairly large isotope effect between acetate and glutamate was observed. As this isotope effect is very likely caused by the citrate synthase reaction, it can be argued that citrate synthase involved in the conversion of labelled acetate into glutamate is far out of equilibrium in vivo. Comparing our data with literature data, the possibility can be suggested that citrate synthase in the acetate metabolizing compartment is in situ kinetically distinct from citrate synthase in other compartments of the brain.  相似文献   

16.
Succinic semialdehyde dehydrogenase (SSADH) catalyzes the NADP-dependent oxidation of succinic semialdehyde to succinate, the final step of the GABA shunt pathway. SSADH deficiency in humans is associated with excessive elevation of GABA and γ-hydroxybutyrate (GHB). Recent studies of SSADH-null mice show that elevated GABA and GHB are accompanied by reduced glutamine, a known precursor of the neurotransmitters glutamate and GABA. In this study, cerebral metabolism was investigated in urethane-anesthetized SSADH-null and wild-type 17-day-old mice by intraperitoneal infusion of [1,6-13C2]glucose or [2-13C]acetate for different periods. Cortical extracts were prepared and measured using high-resolution 1H-[13C] NMR spectroscopy. Compared with wild-type, levels of GABA, GHB, aspartate, and alanine were significantly higher in SSADH-null cortex, whereas glutamate, glutamine, and taurine were lower. 13C Labeling from [1,6-13C2]glucose, which is metabolized in neurons and glia, was significantly lower (expressed as μmol of 13C incorporated per gram of brain tissue) for glutamate-(C4,C3), glutamine-C4, succinate-(C3/2), and aspartate-C3 in SSADH-null cortex, whereas Ala-C3 was higher and GABA-C2 unchanged. 13C Labeling from [2-13C]acetate, a glial substrate, was lower mainly in glutamine-C4 and glutamate-(C4,C3). GHB was labeled by both substrates in SSADH-null mice consistent with GABA as precursor. Our findings indicate that SSADH deficiency is associated with major alterations in glutamate and glutamine metabolism in glia and neurons with surprisingly lesser effects on GABA synthesis.  相似文献   

17.
Abstract Interspecies H2 transfer within methanogenic bacterial associations (MBA) accounted for 95–97% of the conversion of 14CO2 to 14CH4 in anoxic paddy soil. Only 3–5% of the 14CH4 were produced from the turnover of dissolved H2. The H2-syntrophic MBA developed within 5 days after the paddy soil had been submerged and placed under anoxic atmosphere. Afterwards, both the contribution of MBA to H2-dependent methanogenesis and the turnover of dissolved H2 did not change significantly for up to 7 months of incubation. However, while the rates of H2-dependent methanogenesis stayed relatively constant, the rates of total methanogenesis decreased. The contribution of MBA to H2-dependent methanogenesis was further enhanced to 99% when the temperature was shifted from 30°C to 17°C, or when the soil had been planted with rice. This enhancement was partially due to an increased utilization of dissolved H2 by chloroform-insensitive non-methanogenic bacteria, most probably homoacetogens, so that CH4 production was almost completely restricted to H2-syntrophic MBA. The activity of MBA, as measured by the conversion of 14CO2 to 14CH4, was stimulated by glucose, lactate, and ethanol to a similar or greater extent than by exogenous H2. Propionate and acetate had no effect.  相似文献   

18.
Abstract: The concentration of glutamine increases in the brain after hepatectomy. In the present studies the conversion of intravenously given [14C]acetate to [14C]glutamate and [14C]glutamine was studied in control rats and in rats at 6 h after complete hepatectomy. The incorporation of label into glutamate was only slightly inhibited, but the further incorporation into glutamine was greatly inhibited, after hepatectomy. These data, and previous data using [14C]glucose as precursor, indicate that synthesis of glutamine in brain is inhibited after hepatectomy, and suggest that its concentration must increase because degradation is inhibited to an even greater extent.  相似文献   

19.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1, (3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-: 14C]alanine, [1-14C]glutamate, and [1, (3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate, [1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

20.
Abstract— The disposition of newly synthesized ACh subsequent to depletion of vesicular endogenous ACh by stimulation was studied in the electromotor nerve terminals of Torpedo marmorata using [3H]acetate as a precursor of ACh. Little vesicular [3H]ACh could be isolated from tissue immediately after stimulation at 1 Hz. After 3 h post-stimulation recovery the newly synthesized [3H]ACh is found predominantly in a subpopulation of vesicles distinct from the vesicles containing most of the endogenous poorly labelled ACh. Restimulation of the tissue causes release of highly labelled ACh with a specific radioactivity (SRA) comparable to that of the newly synthesized [3H]ACh in the highly labelled subpopulation of vesicles and significantly greater than the SRA of ACh in the main vesicular pool or the total tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号