首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Determinants of epithelial cell volume   总被引:1,自引:0,他引:1  
Epithelial cell volume is determined by the concentration of intracellular, osmotically active solutes. The high water permeability of the cell membrane of most epithelia prevents the establishment of large osmotic gradients between the cell and the bathing solutions. Steady-state cell volume is determined by the relative rates of solute entry and exit across the cell membranes. Inhibition of solute exit leads to cell swelling because solute entry continues; inhibition of solute entry leads to cell shrinkage because solute exit continues. Cell volume is then a measure of the rate and direction of net solute movements. Epithelial cells are also capable of regulation of the rate of solute entry and exit to maintain intracellular composition. Feedback control of NaCl entry into Necturus gallbladder epithelial cells is demonstrable after inhibition of the Na,K-ATPase or reduction in the NaCl concentration of the serosal bath. Necturus gallbladder cells respond to a change in the osmolality of the perfusion solution by rapidly regulating their volume to control values. This regulatory behavior depends on the transient activation of quiescent transport systems. These transport systems are responsible for the rapid readjustments of cell volume that follow osmotic perturbation. These powerful transporters may also play a role in steady-state volume regulation as well as in the control of cell pH.  相似文献   

2.
The process of volume change of cells subject to osmotic shocks or isosmotic entrance of permeant solute is formulated on the basis of the accepted structure for the plasma membrane and a physico-chemical approach similar to that recently developed. The effect of relevant parameters is discussed and theoretical equilibrium values for the variables are calculated in connection with water and permeant solute permeability determinations. Although a sorption-diffusional mechanism for solute and/or water volume flow within the membrane is assumed in both cases, the kinetics of volume change is shown to be totally different between them. In the isosmotic process a fixed relationship, given by the total solute concentration, is shown to exist between the permeant solute and volume fluxes to the cell, thereby implying a definite value for the volume fraction of water in the migration pathway, higher than 90%. The bi-phase osmotic regulatory response caused by permeant solute is simulated on the basis of an osmotic and isosmotic processes in series, showing good agreement with general behavior. Finally, an explanation to the problem of volume flow and forces in connection with a diffusional mechanism in biological and artificial membranes, is presented.  相似文献   

3.
The conservation of the cell volume within values compatible with the overall cell functions represents an ubiquitous property, shared by cells comprising the whole biological world. Water transport across membranes constitutes the main process associated to the dynamics of the cell volume, its chronic and acute regulations therefore represent crucial aspects of cell homeostasis. In spite of the biological diversity, the dynamics of the cell volume exhibits common basic features in the diverse types of cells. The purpose of this study is to show that there is a general model capable to describe the basic aspects of the dynamics of the cell volume. It is demonstrated here that the steady states of this model represent asymptotically stable configurations. As illustrations, several cases of non-polarized (i.e., symmetrical) and polarized (e.g., epithelial) cells performing water transport are shown here to represent particular cases of the general model. From a biological perspective, the existence of a general model for the dynamics of the cell volume reveals that, in spite of physiological and morphological peculiarities, there is a basic common design of the membrane transport processes. In view of its stability properties, this basic design may represent an ancestral property that has proven to be successful regarding the overall homeostatic properties of cells.  相似文献   

4.
The nonsolvent volume, b, of a cell permits calculation of cell water volume from measurements of total cell volume, and, consequently, it is used extensively in the determination of membrane permeability coefficients for water and solutes and also in simulations of water and solute fluxes during freezing of cells. The nonsolvent volume is most commonly determined from the ordinate intercept of plots of cell volume as a function of the reciprocal of extracellular nonpermeating solute concentration (so-called Boyle-van't Hoff plots). Once derived, b is often assumed to be constant even under conditions that may differ markedly from those under which it was determined. Our aim was to investigate whether this assumption was valid when cells were exposed to the cryoprotectants glycerol, dimethyl sulphoxide (Me2SO), or propane-1,2-diol. Rabbit corneal keratocytes, a fibroblastic cell type, were exposed to 10% (v/v) cryoprotectant for 30 min at 22°C in solutions containing a range of nonpermeating solute concentrations. Cell volumes were determined by an electronic particle sizer and mode volume plotted as an inverse function of the concentration of nonpermeating solute. The cells behaved as osmometers under all conditions studied, but we found no evidence to suggest that the nonsolvent volume of cells was altered by Me2SO or propane-1,2-diol. Glycerol, however, reduced the slope of the Boyle-van't Hoff plot, but this could be ascribed to the failure of the cells to equilibrate fully with the glycerol over the 30 min exposure time; thus, b was unaffected by glycerol. It may be assumed, therefore, that the nonsolvent volume was not influenced by the presence inside cells of any of these nonelectrolyte cryoprotectants. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Although exposure of cells to extreme hypotonic stress appears to be a purely experimental set up, it has found an application in clinical routine. For years, surgeons have washed the abdominal cavity with distilled water to lyse isolated cancer cells left after surgery. No data are available supporting this practice or evaluating the potential mechanisms of cell injury under these circumstances. Recent evidence indicates that increases in cell volume stimulate release of adenosine triphosphate and autocrine stimulation of purinergic (P2) receptors in the plasma membrane of certain epithelial cell types. Under physiological conditions, purigenic stimulation can contribute to cell volume recovery through activation of solute efflux. In addition, adenosine triphosphate-P2 receptor binding might trigger other mechanisms affecting cell viability after profound hypotonic stress. This study demonstrates a novel pathway of cell death by apoptosis in human colon cancer cells following a short hypotonic stress. This pathway is induced by transitory cell swelling which leads to extracellular release of adenosine triphosphate (ATP) and specific binding of ATP to P2 receptors (probably P2X7). Extracellular ATP induced activation of caspases 3 and 8, annexin V, release of cytochrome c, and eventually cell death. The effect of ATP can be blocked by addition of (i) apyrase to hydrolyse extracellular ATP and (ii) suramin, a P2 receptor antagonist. Finally, (iii) gadolinium pretreatment, a blocker of ATP release, reduces sensitivity of the cells to hypotonic stress. The adenosine triphosphate-P2 receptor cell death pathway suggests that autocrine/paracrine signaling may contribute to regulation of viability in certain cancer cells disclosed with this pathway.  相似文献   

6.
A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241-251), computations predict that 60-80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model generates pseudo-solvent drag. The associated flux-ratio equation is derived.  相似文献   

7.
Summary Structural features of the principal, urine-secreting cells (type 1 cells) of the Malpighian tubules of Carausius are de scribedquantitatively and discussed in relation to possible mechanisms of water and solute transport. Mitochondria are arranged in two bands of about equal volume near to the basal and apical surfaces, suggesting active processes occur at both surfaces. Basal infoldings and apical microvilli which greatly amplify the cell surface are probably primarily devices to increase the passive permeability of the tissue to solutes. They do not provide functionally significant standing-osmotic-gradients. The extensive endoplasmic reticulum is locally differentiated into several components and ramifies between the infoldings and along microvilli but probably is not an intracellular conduit for the majority of urinary constituents. Vesicles and stages in their formation or liberation are observed both basally and apically although they probably do not contribute significantly to transcellular transport. At present it remains a problem to satisfactorily account for observations that the urine of Carausius can be hypotonic.This investigation formed part of a dissertation for the degree of Ph. D. in the University of Newcastle upon Tyne. It is a pleasure to thank Prof. J. Shaw for his advice and encouragement and the Science Research Council for financial support.  相似文献   

8.
植物根系和叶片生长对水分亏缺的原初反应   总被引:14,自引:0,他引:14  
细胞扩张生长是植物受水分亏缺影响最敏感的生理过程之一。主要在对细胞水分导性、细胞壁特性和延伸组织中溶质传输结果分析的基础上 ,从细胞、组织和器官水平上对细胞扩展生长进行了探讨。根系和叶片细胞主要通过以下 2个过程来补偿水分胁迫的作用 :调节扩展生长需要的细胞临界膨压 ;溶质在延伸组织中的运移。此外 ,还探讨了植物根系和叶片生长对水分亏缺的生理适应机制  相似文献   

9.
《Molecular membrane biology》2013,30(3-4):339-365
In rat small intestine, the active transport of organic solutes results in significant depolarization of the membrane potential measured in an epithelial cell with respect to a grounded mucosal solution and in an increase in the transepithelial potential difference. According to the analysis with an equivalent circuit model for the epithelium, the changes in emf's of mucosal and serosal membranes induced by active solute transport were calculated using the measured conductive parameters. The result indicates that the mucosal cell membrane depolarizes while the serosal cell membrane remarkably hyperpolarizes on the active solute transport. Corresponding results are derived from the calculations of emf's in a variety of intestines, using the data that have hitherto been reported. The hyperpolarization of serosal membrane induced by the active solute transport might be ascribed to activation of the serosal electrogenic sodium pump. In an attempt to determine the causative factors in mucosal membrane depolarization during active solute transport, cell water contents and ion concentrations were measured. The cell water content remarkably increased and, at the same time, intracellular monovalent ion concentrations significantly decreased with glucose transport. Net gain of glucose within the cell was estimated from the restraint of osmotic balance between intracellular and extracellular fluids. In contrast to the apparent decreases in intracellular Na+ and K+ concentrations, significant gains of Na+ and K+ occurred with glucose transport. The quantitative relationships among net gains of Na+, K+ and glucose during active glucose transport suggest that the coupling ratio between glucose and Na+ entry by the carrier mechanism on the mucosal membrane is approximately 1:1 and the coupling ratio between Na+-efflux and K+-influx of the serosal electrogenic sodium pump is approximately 4:3 in rat small intestine. In addition to the electrogenic ternary complex inflow across the mucosal cell membrane, the decreases in intracellular monovalent ion concentrations, the temporary formation of an osmotic pressure gradient across the cell membrane and the streaming potential induced by water inflow through negatively charged pores of the cell membrane in the course of an active solute transport in intestinal epithelial cells are apparently all possible causes of mucosal membrane depolarization.  相似文献   

10.
Summary In osmotic experiments involving cells of the euryhaline unicellular green algaChlorella emersonii exposed to hyperosmotic stress by immersion in a range of low molecular weight organic and inorganic solutes, a temporary breakdown in the selective permeability of the plasma membrane was observed during the initial phase of transfer to media of high osmotic strength (up to 2000 mosmol kg–1). Thus, although the cells appeared to obey the Boyle-van't Hoff relationship in all cases, showing approximately linear changes in volume (at high salinity) as a function of the reciprocal of the external osmotic pressure, the extent of change was least for the triitols, propylene glycol and glycerol, intermediate for glucose, sorbitol, NaCl and KCl, with greatest changes in media containing the disaccharides sucrose and maltose. In NaCl-treated cells, uptake of external solute and loss of internal ions was observed in response to hyperosmotic treatment while sucrose-treated cells showed no significant uptake of external solute, although loss of intracellular K+ was observed. These observations suggest that the widely used technique of estimating cellular turgor, and osmotic/nonosmotic volume by means of the changes in volume that occur upon transfer to media containing increasing amounts of either a low molecular weight organic solute or an inorganic salt may be subject to error. The assumption that all algal cells behave as ideal osmometers, with outer membranes that are permeable to water but not to solutes, during the course of such experiments is therefore incorrect, and the data need to be adjusted to take account of hyperosmotically induced external solute penetration and/or loss of intracellular osmotica before meaningful estimates of cell turgor and osmotic volume can be obtained.  相似文献   

11.
The hydraulic water permeability (Lp) of the cell membranes of Necturus gallbladder epithelial cells was estimated from the rate of change of cell volume after a change in the osmolality of the bathing solution. Cell volume was calculated from computer reconstruction of light microscopic images of epithelial cells obtained by the "optical slice" technique. The tissue was mounted in a miniature Ussing chamber designed to achieve optimal optical properties, rapid bath exchange, and negligible unstirred layer thickness. The control solution contained only 80% of the normal NaCl concentration, the remainder of the osmolality was made up by mannitol, a condition that did not significantly decrease the fluid absorption rate in gallbladder sac preparations. The osmotic gradient ranged from 11.5 to 41 mosmol and was achieved by the addition or removal of mannitol from the perfusion solutions. The Lp of the apical membrane of the cell was 1.0 X 10(-3) cm/s . osmol (Posm = 0.055 cm/s) and that of the basolateral membrane was 2.2 X 10(-3) cm/s . osmol (Posm = 0.12 cm/s). These values were sufficiently high so that normal fluid absorption by Necturus gallbladder could be accomplished by a 2.4-mosmol solute gradient across the apical membrane and a 1.1-mosmol gradient across the basolateral membrane. After the initial cell shrinkage or swelling resulting from the anisotonic mucosal or serosal medium, cell volume returned rapidly toward the control value despite the fact that one bathing solution remained anisotonic. This volume regulatory response was not influenced by serosal ouabain or reduction of bath NaCl concentration to 10 mM. Complete removal of mucosal perfusate NaCl abolished volume regulation after cell shrinkage. Estimates were also made of the reflection coefficient for NaCl and urea at the apical cell membrane and of the velocity of water flow across the cytoplasm.  相似文献   

12.
Summary A model based on the canal theory (Katou andFurumoto 1986 a, b) is proposed for the absorption of solute and water at the root periphery. The present canal model in the periphery and the model which was previously proposed for the exudation in the stele (Katou et al. 1987), are organized into a model for radial transport across excised plant roots, in the light of anatomical and physiological knowledge of maize roots. The canal equations for both canals are numerically solved to give quite a good explanation for the observed exudation of maize roots. It is found that the regulation of solute transport has a primary importance in the regulation of water transport across excised roots. The internal cell pressure of the symplast adjusts the water absorption at the root periphery to the water secretion into the vessels. There seems no need for this explanation of the radial water transport across roots to assume cell membranes with low reflection coefficient or variable water permeability. It would seem that the apoplast wall layers play a crucial role in metabolic control of water transport in roots as well as in hypocotyls.Abbreviations J s ex* the theoretically estimated rate of solute exudation per unit surface area of model maize roots - J that of volume exudation per unit surface area of model maize roots - the reflection coefficient of the cell membrane against solutes  相似文献   

13.
Summary Morphologic findings of widely dilated intercellular spaces in fluid transporting epithelia have been claimed as evidence for the existence of an epithelial compartment in which the coupling between solute and water fluxes takes place. The validity of using epithelial geometry in sectioned material as an argument can be questioned. The present report describes the morphological appearance of frog gallbladder epithelium — normal and ouabain-treated — in the living state in vitro and after fixation, dehydration and embedding. Gallbladder segments were photographed in the living state and at the end of each step of the preparative procedure. Direct observations of whole-mounted gallbladder segments were carried out, taking advantage of the possibility of optical sectioning and high resolution by Nomarski-microscopy. The same specimens were then sectioned and examined by conventional light and electron microscopy. The observations were quantitated and showed that the epithelial cells of normal and ouabain-treated gallbladders experienced an average linear shrinkage down to 70% of their length in Ringer's solution, which corresponds to a volume shrinkage down to 35%. Moreover, dilated lateral intercellular spaces appeared during the dehydration and embedding procedure in normal but only very moderately or not at all in ouabain-treated gallbladder specimens.  相似文献   

14.
Isolated internodes of Chara corallina and Nitella flexilis have been used to determine the concentration of one passively permeating solute in the presence of non-permeating solutes. The technique was based on the fact that the shape of the peaks of the biphasic responses of cell turgor (as measured in a conventional way using the cell pressure probe) depended on the concentration and composition of the solution and on the permeability and reflection coefficients of the solutes. Peak sizes were proportional to the concentration of the permeating solute applied to the cell. Thus, using the selective properties of the cell membrane as the sensing element and changes of turgor pressure as the physical signal, plant cells have been used as a new type of biosensor based on osmotic principles. Upon applying osmotic solutions, the responses of cell turgor (P) exactly followed the P(t) curves predicted from the theory based on the linear force/flow relations of irreversible thermodynamics. The complete agreement between theory and experiment was demonstrated by comparing measured curves with those obtained by either numerically solving the differential equations for volume (water) and solute flow or by using an explicit solution of the equations. The explicit solution neglected the solvent drag which was shown to be negligible to a very good approximation. Different kinds of local beers (regular and de-alcoholized) were used as test solutions to apply the system for measuring concentrations of ethanol. The results showed a very good agreement between alcohol concentrations measured by the sensor technique and those obtained from conventional techniques (enzymatic determination using alcohol dehydrogenase or from measurement of the density and refraction index of beer). However, with beer as the test solution, the characean internodes did show irreversible changes of the transport properties of the membranes leading to a shift in the responses when cells were treated for longer than 1 h with diluted beer. The accuracy and sensitivity of the osmotic biosensor technique as well as its possible applications are discussed.  相似文献   

15.
A method was developed to measure the osmotic water permeability (Pf) of plasma membranes in cell layers and applied to cells and epithelia expressing molecular water channels. It was found that the integrated intensity of monochromatic light in a phase contrast or dark field microscope was dependent on relative cell volume. For cells of different size and shape (Sf9, MDCK, CHO, A549, tracheal epithelia, BHK), increased cell volume was associated with decreased signal intensity; generally the signal decreased 10–20% for a twofold increase in cell volume. A theory relating signal intensity to relative cell volume was developed based on spatial filtering and changes in optical path length associated with cell volume changes. Theory predictions were confirmed by signal measurements of cell layers bathed in solutions of various osmolarities and refractive indices. The excellent signal-to-noise ratio of the transmitted light detection permitted measurement of cell volume changes of <1%. The method was applied to characterize transfected cells and tissues that natively express water channels. Pf in control Chinese hamster ovary cells was low (0.0012 cm/s at 23°C) and increased more than fourfold upon stable transfection with aquaporins 1, 2, 4, or 5. Pf in apical and basolateral membranes in polarized epithelial cells grown on porous supports was measured. Pf bl and Pf ap were 0.0011 and 0.0024 cm/s (MDCK cells), and 0.0039 and 0.0052 cm/s (human tracheal cells) at 23°C. In intact toad urinary bladder, basolateral Pf was 0.036 cm/s and apical membrane Pf after vasopressin stimulation was 0.025 cm/s at 23°C. The results establish light microscopy with spatial filtering as a technically simple and quantitative method to measure water permeability in cell layers and provide the first measurement of the apical and basolateral membrane permeabilities of several important epithelial cell types.  相似文献   

16.
Fricke W 《Planta》2004,219(3):507-514
Solutes distribute differentially between leaf tissues and cells. The present study tested the hypothesis that certain solutes are supplied preferentially to the epidermis in the transpiration stream, by-passing mesophyll cells along bundle sheath extensions. Using energy dispersive X-ray analysis of extracted cell sap, the distribution of solutes was studied in the emerged zone (transpiring) and the elongation zone (non-transpiring) of the developing leaf three of barley (Hordeum vulgare L.). The basic distribution of Cl, K, P and Ca between epidermis and bulk tissue, and between cells within the epidermis, was similar in the two leaf regions. However, in the emerged zone differences in solute concentrations between tissues and cells were greater. A local reduction in transpiration rate along the emerged portion of the blade specifically prevented Ca from accumulating to high levels in epidermal cells close to stomata. It is concluded that differences in solute concentrations between epidermal cells and other leaf tissues can be established in the absence of transpiration, but that they require transpiration for their full expression. Peristomatal transpiration appears to be responsible for high Ca in interstomatal cells.Abbreviations EDX-analysis Energy-dispersive X-ray analysis - IS-cell Interstomatal cell - R-cell Ridge cell - TR-cell Trough cell  相似文献   

17.
R. F. Meyer  J. S. Boyer 《Planta》1981,151(5):482-489
Soybean (Glycine max (L.) Merr.) seedlings osmoregulate when the supply of water is limited around the roots. The osmoregulation involves solute accumulation (osmotic adjustment) by the elongating region of the hypocotyls. We investigated the relationship between growth, solute accumulation, and the partitioning of solutes during osmoregulation. Darkgrown seedlings were transplanted to vermiculite containing 1/8 (0.13 x) the water of the controls. Within 12–15 h, the osmotic potential of the elongating region had decreased to-12 bar, but it was-7 bar in the controls. This osmoregulation involved a true solute accumulation by the hypocotyls, since cell volume and turgor were virtually the same regardless of the water regime. The hypocotyls having low water potentials elongated slowly but, when deprived of their cotyledons, did not elongate or accumulate solute. This result indicated a cotyledonary origin for the solutes and a dependence of slow growth on osmotic adjustment. The translocation of nonrespired dry matter from the cotyledons to the seedling axis was unaffected by the availability of water, but partitioning was altered. In the first 12 h, dry matter accumulated in the elongating region of the 0.13 x hypocotyls, and osmotic adjustment occurred. The solutes involved were mostly free amino acids, glucose, fructose, and sucrose, and these accounted for most of the increased dry weight. After osmotic adjustment was complete, dry matter ceased to accumulate in the hypocotyls and bypassed them to accumulate in the roots, which grew faster than the control roots. The proliferation of the roots resulted in an increased root/shoot ratio, a common response of plants to dry conditions.Osmotic adjustment occurred in the elongating region of the hypocotyls because solute utilization for growth decreased while solute uptake continued. Adjustment was completed when solute uptake subsequently decreased, and uptake then balanced utilization. The control of osmotic adjustment was therefore the rate of solute utilization and, secondarily, the rate of solute uptake. Elongation was inhibited by unknown factors(s) despite the turgor and substrates associated with osmotic adjustment. The remaining slow elongation depended on osmotic adjustment and represented some optimum between the necessary inhibition for solute accumulation and the necessary growth for seedling establishment.  相似文献   

18.
Certain epithelial cell lines have morphologic, physiologic, biochemical and pharmacologic characteristics of transporting epithelia from intact organs. In this paper we show that dibutyryl cyclic AMP, 5' AMP, adenosine and cyclic AMP phosphodiesterase inhibitors stimulate hemicyst formation by the dog kidney cell line MDCK. It is suggested that this effect is explained by elevation of intracellular cyclic AMP levels by means of an exogenous non-metabolizable source of cyclic AMP, phosphodiesterase inhibition or adenyl cyclase stimulation. Since hemicyst formation is in part due to transepithelial fluid transport, these findings raise the possibility that this fraction might be modulated by cAMP in an established cell line. We believe that cultured epithelial cells may provide an exploitable model system to investigate at the cellular and subcellular levels, the mechanism by which cyclic AMP modifies water and solute movements across epithelia.  相似文献   

19.
Jarial MS 《Tissue & cell》1992,24(1):139-155
The rectal pads of Schistocerca gregaria are composed of three different cell types: epithelial, secondary and junctional cells. The rectal pads are interconnected by simple rectal cells and both are lined internally by a articular intima. The epithelial cells exhibit extensive infoldings of the apical plasma membranes that are closely associated with mitochondria. Their lateral plasma membranes are highly folded around large mitochondria and enclose intercellular channels and spaces. They are united by belt and spot desmosomes, septate junctions, gap junctions and scalariform junctions, but terminate in a basal syncytium without contacting the basal plasma membranes. The apical and basal cytoplasm contain coated vesicles, dense tubular elements, multivesicular bodies and lysosomes, suggesting receptor-mediated endocytosis of small peptide molecules into the epithelial cells. The apical membrane infoldings of the secondary cells are also associated with large mitochondria. Their basal plasma membranes are covered by connective cell processes and connected with them by spot desmosomes which may be involved in solute recycling. The presence of neurosecretory-like axons near the secondary cells suggests that they exert local control on the function of these cells. The ultrastructural details are examined in relation to their role in solute and water transport.  相似文献   

20.
The routes water takes through membrane barriers is still a matter of debate. Although aquaporins only allow transmembrane water movement along an osmotic gradient, cotransporters are believed to be capable of water transport against the osmotic gradient. Here we show that the renal potassium-chloride-cotransporter (KCC1) does not pump a fixed amount of water molecules per movement of one K+ and one Cl, as was reported for the analogous transporter in the choroid plexus. We monitored water and potassium fluxes through monolayers of primary cultured renal epithelial cells by detecting tiny solute concentration changes in the immediate vicinity of the monolayer. KCC1 extruded K+ ions in the presence of a transepithelial K+ gradient, but did not transport water. KCC1 inhibition reduced epithelial osmotic water permeability Pf by roughly one-third, i.e., the effect of inhibitors was small in resting cells and substantial in hormonal stimulated cells that contained high concentrations of aquaporin-2 in their apical membranes. The furosemide or DIOA (dihydroindenyl-oxy-alkanoic acid)-sensitive water flux was much larger than expected when water passively followed the KCC1-mediated ion flow. The inhibitory effect of these drugs on water flux was reversed by the K+-H+ exchanger nigericin, indicating that KCC1 affects water transport solely by K+ extrusion. Intracellular K+ retention conceivably leads to cell swelling, followed by an increased rate of endocytic AQP2 retrieval from the apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号