首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In bacteria, ribosomes stalled on truncated mRNAs are rescued by transfer-messenger RNA (tmRNA) and its protein partner SmpB. Acting like tRNA, the aminoacyl-tmRNA/SmpB complex is delivered to the ribosomal A site by EF-Tu and accepts the transfer of the nascent polypeptide. Although SmpB binding within the decoding center is clearly critical for licensing tmRNA entry into the ribosome, it is not known how activation of EF-Tu occurs in the absence of a codon–anticodon interaction. A recent crystal structure revealed that SmpB residue His136 stacks on 16S rRNA nucleotide G530, a critical player in the canonical decoding mechanism. Here we use pre-steady-state kinetic methods to probe the role of this interaction in ribosome rescue. We find that although mutation of His136 does not reduce SmpB''s affinity for the ribosomal A-site, it dramatically reduces the rate of GTP hydrolysis by EF-Tu. Surprisingly, the same mutation has little effect on the apparent rate of peptide-bond formation, suggesting that release of EF-Tu from the tmRNA/SmpB complex on the ribosome may occur prior to GTP hydrolysis. Consistent with this idea, we find that peptidyl transfer to tmRNA is relatively insensitive to the antibiotic kirromycin. Taken together, our studies provide a model for the initial stages of ribosomal rescue by tmRNA.  相似文献   

2.
In bacteria, stalled ribosomes are recycled by a hybrid transfer-messenger RNA (tmRNA). Like tRNA, tmRNA is aminoacylated with alanine and is delivered to the ribosome by EF-Tu, where it reacts with the growing polypeptide chain. tmRNA entry into stalled ribosomes poses a challenge to our understanding of ribosome function because it occurs in the absence of a codon-anticodon interaction. Instead, tmRNA entry is licensed by the binding of its protein partner, SmpB, to the ribosomal decoding center. We analyzed a series of SmpB mutants and found that its C-terminal tail is essential for tmRNA accommodation but not for EF-Tu activation. We obtained evidence that the tail likely functions as a helix on the ribosome to promote accommodation and identified key residues in the tail essential for this step. In addition, our mutational analysis points to a role for the conserved K(131)GKK tail residues in trans-translation after peptidyl transfer to tmRNA, presumably EF-G-mediated translocation or translation of the tmRNA template. Surprisingly, analysis of A1492, A1493, and G530 mutants reveals that while these ribosomal nucleotides are essential for normal tRNA selection, they play little to no role in peptidyl transfer to tmRNA. These studies clarify how SmpB interacts with the ribosomal decoding center to license tmRNA entry into stalled ribosomes.  相似文献   

3.
Translational release factors decipher stop codons in mRNA and activate hydrolysis of peptidyl-tRNA in the ribosome during translation termination. The mechanisms of these fundamental processes are unknown. Here we have mapped the interaction of bacterial release factor RF1 with the ribosome by directed hydroxyl radical probing. These experiments identified conserved domains of RF1 that interact with the decoding site of the 30S ribosomal subunit and the peptidyl transferase site of the 50S ribosomal subunit. RF1 interacts with a binding pocket formed between the ribosomal subunits that is also the interaction surface of elongation factor EF-G and aminoacyl-tRNA bound to the A site. These results provide a basis for understanding the mechanism of stop codon recognition coupled to hydrolysis of peptidyl-tRNA, mediated by a protein release factor.  相似文献   

4.
Peptide release on the ribosome is catalyzed in the large subunit peptidyl transferase center by release factors on recognition of stop codons in the small subunit decoding center. Here we examine the role of the decoding center in this process. Mutation of decoding center nucleotides or removal of 2'OH groups from the codon--deleterious in the related process of tRNA selection--has only mild effects on peptide release. The miscoding antibiotic paromomycin, which binds the decoding center and promotes the critical steps of tRNA selection, instead dramatically inhibits peptide release. Differences in the kinetic mechanism of paromomycin inhibition on stop and sense codons, paired with correlated structural changes monitored by chemical footprinting, suggest that recognition of stop codons by release factors induces specific structural rearrangements in the small subunit decoding center. We propose that, like other steps in translation, the specificity of peptide release is achieved through an induced-fit mechanism.  相似文献   

5.
Peptide release on the ribosome is catalyzed by protein release factors (RFs) on recognition of stop codons positioned in the A site of the small ribosomal subunit. Here we show that the 2' OH of the peptidyl-tRNA substrate plays an essential role in catalysis of the peptide release reaction. These observations parallel earlier studies of the mechanism of the peptidyl transfer reaction and argue that related mechanisms are at the heart of catalysis for these reactions.  相似文献   

6.
Structural dynamics of ribosomal RNA during decoding on the ribosome   总被引:5,自引:0,他引:5  
Decoding is a multistep process by which the ribosome accurately selects aminoacyl-tRNA (aa-tRNA) that matches the mRNA codon in the A site. The correct geometry of the codon-anticodon complex is monitored by the ribosome, resulting in conformational changes in the decoding center of the small (30S) ribosomal subunit by an induced-fit mechanism. The recognition of aa-tRNA is modulated by changes of the ribosome conformation in regions other than the decoding center that may either affect the architecture of the latter or alter the communication of the 30S subunit with the large (50S) subunit where the GTPase and peptidyl transferase centers are located. Correct codon-anticodon complex formation greatly accelerates the rates of GTP hydrolysis and peptide bond formation, indicating the importance of crosstalk between the subunits and the role of the 50S subunit in aa-tRNA selection. In the present review, recent results of the ribosome crystallography, cryoelectron microscopy (cryo-EM), genetics, rapid kinetics and biochemical approaches are reviewed which show that the dynamics of the structure of ribosomal RNA (rRNA) play a crucial role in decoding.  相似文献   

7.
The synthesis of a peptidyl-tRNA photoaffinity analog, 2-nitro-4-azidophenoxy-4′-phenylacetyl-phenylalanyl-tRNAPhe is described. Covalent attachment of this analog to Escherichia coli 70 S ribosomes requires poly(U)-stimulated binding prior to photolysis. Peptidyl site binding is indicated by the ability of puromycin to release the peptidyl moiety from non-photolyzed samples. Covalently attached 2-nitro-4-azidophenoxy-4-phenylacetyl-Phe-tRNAPhe can subsequently participate in peptidyl transfer with [3H]Phe-tRNAPhe bound at the aminoacyl site. This means that the covalent reaction does not produce sufficient distortion of the peptidyl site and its bound tRNA to inactivate the peptidyl transference. If peptidyl transfer with [3H]Phe-tRNAPhe is allowed to proceed before photolysis, covalent reaction can still occur. In all cases, the main reaction products are two 50 S ribosomal proteins, L11 and L18. The results strongly indicate that these two proteins either form part of the peptidyl transferase center or are located adjacent to it. Presumably, α-halocarbonyl affinity reagents used previously failed to identify these two proteins because they lack easily accessible, reactive nucleophilic groups.  相似文献   

8.
The ribosomal peptidyl transferase center is responsible for two fundamental reactions, peptide bond formation and nascent peptide release, during the elongation and termination phases of protein synthesis, respectively. We used in vitro genetics to investigate the functional importance of conserved 23S rRNA nucleotides located in the peptidyl transferase active site for transpeptidation and peptidyl-tRNA hydrolysis. While mutations at A2451, U2585, and C2063 (E. coli numbering) did not significantly affect either of the reactions, substitution of A2602 with C or its deletion abolished the ribosome ability to promote peptide release but had little effect on transpeptidation. This indicates that the mechanism of peptide release is distinct from that of peptide bond formation, with A2602 playing a critical role in peptide release during translation termination.  相似文献   

9.
A late-acting quality control process for mature eukaryotic rRNAs   总被引:1,自引:0,他引:1  
Ribosome biogenesis is a multifaceted process involving a host of trans-acting factors mediating numerous chemical reactions, RNA conformational changes, and RNA-protein associations. Given this high degree of complexity, tight quality control is likely crucial to ensure structural and functional integrity of the end products. We demonstrate that ribosomal RNAs (rRNAs) containing individual point mutations, in either the 25S peptidyl transferase center or 18S decoding site, that adversely affect ribosome function are strongly downregulated in Saccharomyces cerevisiae. This downregulation occurs via decreased stability of the mature rRNA contained in fully assembled ribosomes and ribosomal subunits. Thus, eukaryotes possess a quality-control mechanism, nonfunctional rRNA decay (NRD), capable of detecting and eliminating the rRNA component of mature ribosomes.  相似文献   

10.
Peptide bond formation and peptidyl-tRNA hydrolysis are the two elementary chemical reactions of protein synthesis catalyzed by the ribosomal peptidyl transferase ribozyme. Due to the combined effort of structural and biochemical studies, details of the peptidyl transfer reaction have become increasingly clearer. However, significantly less is known about the molecular events that lead to peptidyl-tRNA hydrolysis at the termination phase of translation. Here we have applied a recently introduced experimental system, which allows the ribosomal peptidyl transferase center (PTC) to be chemically engineered by the introduction of non-natural nucleoside analogs. By this approach single functional group modifications are incorporated, thus allowing their functional contributions in the PTC to be unravelled with improved precision. We show that an intact ribose sugar at the 23S rRNA residue A2602 is crucial for efficient peptidyl-tRNA hydrolysis, while having no apparent functional relevance for transpeptidation. Despite the fact that all investigated active site residues are universally conserved, the removal of the complete nucleobase or the ribose 2′-hydroxyl at A2602, U2585, U2506, A2451 or C2063 has no or only marginal inhibitory effects on the overall rate of peptidyl-tRNA hydrolysis. These findings underscore the exceptional functional importance of the ribose moiety at A2602 for triggering peptide release.  相似文献   

11.
12.
In eubacteria, termination of translation is signaled by any one of the stop codons UAA, UAG, and UGA moving into the ribosomal A site. Two release factors, RF1 and RF2, recognize and bind to the stop codons with different affinities and trigger the hydrolysis of the ester bond that links the polypeptide with the P-site tRNA. Cryo-electron microscopy (cryo-EM) results obtained in this study show that ribosome-bound RF1 is in an open conformation, unlike the closed conformation observed in the crystal structure of the free factor, allowing its simultaneous access to both the decoding center and the peptidyl-transferase center. These results are similar to those obtained for RF2, but there is an important difference in how the factors bind to protein L11, which forms part of the GTPase-associated center of the large ribosomal subunit. The difference in the binding position, C-terminal domain for RF2 versus N-terminal domain for RF1, explains a body of L11 mutation studies that revealed differential effects on the activity of the two factors. Very recent data obtained with small-angle X-ray scattering now reveal that the solution structure of RF1 is open, as here seen on the ribosome by cryo-EM, and not closed, as seen in the crystal.  相似文献   

13.
Yonath A 《Biological chemistry》2003,384(10-11):1411-1419
In the ribosome, the decoding and peptide bond formation sites are composed entirely of ribosomal RNA, thus confirming that the ribosome is a ribozyme. Precise alignment of the aminoacylated and peptidyl tRNA 3'-ends, which is the major enzymatic contribution of the ribosome, is dominated by remote interactions of the tRNA double helical acceptor stem with the distant rims of the peptidyl transferase center. An elaborate architecture and a sizable symmetry-related region within the otherwise asymmetric ribosome guide the A --> P passage of the tRNA 3'-end by a spiral rotatory motion, and ensures its outcome: stereochemistry suitable for peptide bond formation and geometry facilitating the entrance of newly formed proteins into their exit tunnel.  相似文献   

14.
W D Picking  O W Odom  B Hardesty 《Biochemistry》1992,31(50):12565-12570
A coumarin derivative was covalently attached to either the amino acid or the 5' end of phenylalanine-specific transfer RNA (tRNA(phe)). Its fluorescence was quenched by methyl viologen when the tRNA was free in solution or bound to Escherichia coli ribosomes. Methyl viologen as a cation in solution has a strong affinity for the ionized phosphates of a nucleic acid and so can be used to qualitatively measure the presence of RNA in the immediate vicinity of the tRNA-linked coumarins upon binding to ribosomes. Fluorescence lifetime measurements indicate that the increase in fluorescence quenching observed when the tRNAs are bound into the peptidyl site of ribosomes is due to static quenching by methyl viologen bound to RNA in the immediate vicinity of the fluorophore. The data lead to the conclusion that the ribosome peptidyl transferase center is rich in ribosomal RNA. Movement of the fluorophore at the N-terminus of the nascent peptide as it is extended or movement of the tRNA acceptor stem away from the peptidyl transferase center during peptide bond formation appears to result in movement of the probe into a region containing less rRNA.  相似文献   

15.
Puromycin inhibits the interaction of peptidyl-tRNA analogues AcPhe-tRNAox-redPhe, AcPhe-tRNAPhe and fMet-tRNAfMet with the donor (P-) site of Escherichia coli ribosomes. affects almost equally both the rate of the binding and the equilibrium of the system. This means that the effect is due to direct competition for the P-site, but not due to the indirect influence via the acceptor (A-) site. The inhibition was observed also in 30 S ribosomal subunits, therefore the puromycin binding site is situated far from the peptidyl transferase center. Quantitative measurements show that the affinity of puromycin for its new ribosomal binding site is similar to its affinity for the acceptor site of the peptidyl transferase center.  相似文献   

16.
Ribosome-stimulated hydrolysis of guanosine-5'-triphosphate (GTP) by guanosine triphosphatase (GTPase) translation factors drives protein synthesis by the ribosome. Allosteric coupling of GTP hydrolysis by elongation factor Tu (EF-Tu) at the ribosomal GTPase center to messenger RNA (mRNA) codon:aminoacyl-transfer RNA (aa-tRNA) anticodon recognition at the ribosomal decoding site is essential for accurate and rapid aa-tRNA selection. Here we use single-molecule methods to investigate the mechanism of action of the antibiotic thiostrepton and show that the GTPase center of the ribosome has at least two discrete functions during aa-tRNA selection: binding of EF-Tu(GTP) and stimulation of GTP hydrolysis by the factor. We separate these two functions of the GTPase center and assign each to distinct, conserved structural regions of the ribosome. The data provide a specific model for the coupling between the decoding site and the GTPase center during aa-tRNA selection as well as a general mechanistic model for ribosome-stimulated GTP hydrolysis by GTPase translation factors.  相似文献   

17.

Background  

The ribosome is a two-subunit enzyme known to exhibit structural dynamism during protein synthesis. The intersubunit bridges have been proposed to play important roles in decoding, translocation, and the peptidyl transferase reaction; yet the physical nature of their contributions is ill understood. An intriguing intersubunit bridge, B2a, which contains 23S rRNA helix 69 as a major component, has been implicated by proximity in a number of catalytically important regions. In addition to contacting the small ribosomal subunit, helix 69 contacts both the A and P site tRNAs and several translation factors.  相似文献   

18.
Muto H  Nakatogawa H  Ito K 《Molecular cell》2006,22(4):545-552
The arrest sequence, FXXXXWIXXXXGIRAGP, of E. coli SecM interacts with the ribosomal exit tunnel, thereby interfering with translation elongation. Here, we studied this elongation arrest in vitro using purified translation components. While a simplest scenario would be that elongation is arrested beyond Pro166, the last arrest-essential amino acid, and that the Pro166 codon is positioned at the P site of the ribosomal peptidyl transferase center (PTC), our toeprint analyses revealed that the ribosome actually stalls when the Pro166 codon is positioned at the A site. Northern hybridization identification of the polypeptide bound tRNA and mass determination showed that the last amino acid of the arrested peptidyl-tRNA is Gly165, which is only inefficiently transferred to Pro166. Also, puromycin does not effectively release the arrested peptidyl-tRNA under the conditions of A site occupancy by Pro166-tRNA. These results reveal that secM-encoded Pro166-tRNA functions as a nonpolypeptide element in fulfilling SecM's role as a secretion monitor.  相似文献   

19.
The decoding of stop signals in mRNA requires protein release factors. Two classes of factor are found in both prokaryotes and eukaryotes, a decoding factor and a stimulatory recycling factor. These factors form complexes at the active centre of the ribosome and mimic in overall shape the complexes found at other stages of protein synthesis. The decoding release factor is shaped like a tRNA and has a domain for codon recognition at the decoding site of the ribosome, and a domain for peptidyl-tRNA hydrolysis that is inferred to be near the peptidyltransferase centre. Initial interaction of the decoding factor with the ribosome is a low fidelity event involving multiple contacts with the ribosomal components. A subsequent discrimination step, at present poorly defined, ensures high fidelity of codon recognition.  相似文献   

20.
Scanning transmission electron microscopic images of transfer RNAs reveal the molecular dimensions and compact morphology of these small macromolecules in unprecedented detail. Selective labeling of a sulfhydryl group on 2-thiocytidine enzymatically inserted at position 75 at the 3' end of yeast tRNA(Phe) with an undecagold cluster permits identification of this specific tRNA site by dark field STEM. Imaging of a single nucleotide at a defined location on the tRNA molecule should make it possible to localize in situ tRNAs at the A, P, and E sites of the ribosomal peptidyl transferase center, and in complexes of tRNA with enzymes and elongation factors. In addition, this approach may be used for the highly specific topographical mapping of other RNAs and/or biological macromolecular complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号