首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
《Bone and mineral》1994,24(3):235-244
Growth plate cartilage calcification has been examined in a recently described mouse mutant, tich, which is co-isogenic with the A.TL strain. Long bones were studied from 1-day-old and 1-month-old mice which carried a homozygous recessive gene mutation making them short limbed and dumpy. Specimens were studied by routine histology, scanning electron microscopy and radiography. In 1-day-old tich mice the front of calcified cartilage was recessed behind the advancing periosteum and bone. No similar recess was seen in control mice. At 1 month of age, a number of the long bone growth plates were irregularly thickened, particularly in the central area. This produced a central tongue of non-calcified cartilage (particularly prominent in the proximal tibia) which gave rise to a corresponding pit in the calcified cartilage layer, in macerated specimens. This was accompanied by poor resorption of calcified cartilage. At both ages the presence of the respective defects was radiographically confirmed. At present it is not known whether this is primarily a defect of calcification or resorption but its presence, apparently from a single mutation in a genetically defined mouse strain, makes it a potentially valuable model.  相似文献   

2.
The toothless (tl) osteopetrotic mutation in the rat affects an osteoblast-derived factor that is required for normal osteoclast differentiation. Although the genetic locus remains unknown, the phenotypic impact of the tl mutation on multiple systems has been well characterized. Some of its actions are similar to tumornecrosis factor superfamily member 11(TNFSF11; also called TRANCE, RANKL, ODF and OPGL) null mice. TNFSF11 is a recently described member of the tumor necrosis factor superfamily which, when expressed by activated T cells, enhances the survival of antigen-presenting dendritic cells, and when expressed by osteoblasts, promotes the differentiation and activation of osteoclasts. The skeletal similarities between tl rats and TNFSF11(-/-) mice include 1) profound osteoclastopenia (TNFSF11-null mice, 0% and tl rats 0-1% of normal); 2) persistent, non-resolving osteopetrosis that results from 3) a defect not in the osteoclast lineage itself, but in an osteoblast-derived, osteoclastogenic signal; and 4) a severe chondrodysplasia of the growth plates of long bones not seen in other osteopetrotic mutations. The latter includes thickening of the growth plate with age, disorganization of chondrocyte columns, and disturbances of chondrocyte maturation. These striking similarities prompted us to undertake studies to rule in or out a TNFSF11 mutation in the tl rat. We looked for expression of TNFSF11 mRNA in tl long bones and found it to be over-expressed and of the correct size. We also tested TNFSF11 protein function in the tl rat. This was shown to be normal by flow cytometry experiments in which activated, spleen-derived T-cells from tl rats exhibited normal receptor binding competence, as measured by a recombinant receptor assay. We also found that tl rats develop histologically normal mesenteric and peripheral lymph nodes, which are absent from TNFSF11-null mice. Next, we found that injections of recombinant TNFSF11, which restores bone resorption in null mice, had no therapeutic effect in tl rats. Finally, gene mapping studies using co-segregation of polymorphic markers excluded the chromosomal region containing the TNFSF11 gene as harboring the mutation responsible for the tl phenotype. We conclude that, despite substantial phenotypic similarities to TNFSF11(-/-) mice, the tl rat mutation is not in the TNFSF11 locus, and that its identification must await the results of further studies.  相似文献   

3.
An embryonic lethal mutant was found in Japanese quail and named "stumpy limb (SL)". All SL embryos died at pre-hatching stages, showing brachycephaly, a thickened neck, short upper and lower beaks, and short and thick extremities, while their body length was similar to that of the normal embryos. Observations on the skeleton revealed a globular skull, unusual curvature of the Processus palatinus maxillaris of the upper beak, and shortening and thickening of the appendicular bones. Some embryos showed a bending of the humerus, femur and/or tibiotarsus. Abnormality was more conspicuous in the leg bones than in the wing bones. No conspicuous differences were observed in the vertebrae between the SL and normal embryos. A genetic analysis suggested that the mutation is controlled by an autosomal recessive gene, for which the gene symbol sl was proposed.  相似文献   

4.
Spleen cells from A.TH mice, presensitized in vivo by skin grafting, were restimulated in vitro by A.TL lymphocytes, and A.TH anti-A.TL effector cells were generated. The effector cells lysed, in the CML assay, A.TL blasts. This reaction, which was againstI-region antigens, could be inhibited by the addition to the reaction mixture of anti-La sera directed against A.TL antigens. The inhibition was specific, since normal mouse serum, reciprocal antiserum (A.TL anti-A.TH), and anti-H-2 sera did not have a significant effect on the reaction. The Ia antibodies also specifically inhibited the reaction of A.TH anti-A.TL effector cells against CBA targets. Con A blasts were significantly poorer targets inI-region CML than LPS blasts. As CML targets, macrophages and cells of a mammary adenocarcinoma were as good as, if not better than, the LPS blasts. The experiments support the notion that Ia antigens are the targets in theI-region CML.  相似文献   

5.
MUC1 is a transmembrane mucin with important functions in normal and transformed cells, carried out by the extracellular domain or the cytoplasmic tail. A characteristic feature of the MUC1 extracellular domain is the variable number of tandem repeats (VNTR) region. Alternative splicing may regulate MUC1 expression and possibly function. We developed an RT-PCR method for efficient isolation of MUC1 mRNA isoforms that allowed us to evaluate the extent of alternative splicing of MUC1 and elucidate some of the rules that govern this process. We cloned and analyzed 21, 24, and 36 isoforms from human tumor cell lines HeLa, MCF7, and Jurkat, respectively, and 16 from normal activated human T cells. Among the 78 MUC1 isoforms we isolated, 76 are new and different cells showed varied MUC1 expression patterns. The VNTR region of exon 2 was recognized as an intron with a fixed 5′ splice site but variable 3′ splice sites. We also report that the 3506 A/G SNP in exon 2 can regulate 3′ splice sites selection in intron 1 and produce different MUC1 short isoform proteins. Furthermore, the SNP A to G mutation was also observed in vivo, during de novo tumor formation in MUC1+/?KrasG12D/+PtenloxP/loxP mice. No specific functions have been associated with previously reported short isoforms. We now report that one new G SNP-associated isoform MUC1/Y-LSP, but not the A SNP-associated isoform MUC1/Y, inhibits tumor growth in immunocompetent but not immunocompromised mice.  相似文献   

6.
This study aimed to determine whether telomere length (TL) is a marker of cancer risk or genetic status amongst two cohorts of BRCA1 and BRCA2 mutation carriers and controls. The first group was a prospective set of 665 male BRCA1/2 mutation carriers and controls (mean age 53 years), all healthy at time of enrolment and blood donation, 21 of whom have developed prostate cancer whilst on study. The second group consisted of 283 female BRCA1/2 mutation carriers and controls (mean age 48 years), half of whom had been diagnosed with breast cancer prior to enrolment. TL was quantified by qPCR from DNA extracted from peripheral blood lymphocytes. Weighted and unweighted Cox regressions and linear regression analyses were used to assess whether TL was associated with BRCA1/2 mutation status or cancer risk. We found no evidence for association between developing cancer or being a BRCA1 or BRCA2 mutation carrier and telomere length. It is the first study investigating TL in a cohort of genetically predisposed males and although TL and BRCA status was previously studied in females our results don''t support the previous finding of association between hereditary breast cancer and shorter TL.  相似文献   

7.
A 2.75-year-old Chinese boy presented with typical clinical features of pseudoachondroplasia, including disproportionate short-limb short stature, brachydactyly, genu varus and waddling gait. Radiologically, tubular bones were short with widened metaphyses, irregular and small epiphyses; anterior tonguing or beaking of vertebral bodies were characteristic. DNA sequencing analysis of the COMP gene revealed a heterozygous mutation (c.1511G>A, p.Cys504Tyr) in the patient but his parents were unaffected without this genetic change. The missense mutation (c.1511G>A) was not found in 100 healthy controls and has not been reported previously. Our findings expand the spectrum of known mutations in COMP leading to pseudoachondroplasia.  相似文献   

8.
Using the massively parallel genetic algorithm for RNA folding, we show that the core region of the 3'-untranslated region of the dengue virus (DENV) RNA can form two dumbbell structures (5'- and 3'-DBs) of unequal frequencies of occurrence. These structures have the propensity to form two potential pseudoknots between identical five-nucleotide terminal loops 1 and 2 (TL1 and TL2) and their complementary pseudoknot motifs, PK2 and PK1. Mutagenesis using a DENV2 replicon RNA encoding the Renilla luciferase reporter indicated that all four motifs and the conserved sequence 2 (CS2) element within the 3'-DB are important for replication. However, for translation, mutation of TL1 alone does not have any effect; TL2 mutation has only a modest effect in translation, but translation is reduced by ~60% in the TL1/TL2 double mutant, indicating that TL1 exhibits a cooperative synergy with TL2 in translation. Despite the variable contributions of individual TL and PK motifs in translation, WT levels are achieved when the complementarity between TL1/PK2 and TL2/PK1 is maintained even under conditions of inhibition of the translation initiation factor 4E function mediated by LY294002 via a noncanonical pathway. Taken together, our results indicate that the cis-acting RNA elements in the core region of DENV2 RNA that include two DB structures are required not only for RNA replication but also for optimal translation.  相似文献   

9.
The spleen cells from CFW/D mice injected with dimethylbenzanthracene-induced leukemia virus exhibited a progressive decline in the in vitro response to heterologous erythrocyte antigens in parallel with tumor growth. Cell transfer experiments revealed that this immunodepressed state may involve a B-cell defect rather than extrinsic factors in the cellular environment since: (i) nonresponsiveness could be transferred to irradiated non-tumor-bearing mice with spleen cells, and (ii) T cells from tumorbearing mice cooperated with normal bone marrow cells, but bone marrow from tumorbearing mice did not cooperate with normal T cells. In addition, T cells from the thymic tumor could cooperate with normal bone marrow cells upon transfer to irradiated recipients. TL 485-2 cells, a T-cell line derived from the tumor, could be specifically activated with SRBC thereby indicating that the virus transformed T cells were immunocompetent. Suppressor cells, which appeared in the spleen concomitant with immunodepression and tumor development, may directly raise B-cell thresholds for T-dependent triggering signals since the antibody response of spleen cells from tumor-bearing mice could be restored by adding agents such as LPS, 2 mercaptoethanol, or T cells exogenously preactivated in normal animals. The suppressor cell could be enriched by adherence to plastic and was removed by treatment with carbonyl iron. In addition, it was unlikely that the suppressor cell was a virus-infected cell since transformed, virus-infected cells from the tumor or TL 485-2 cells were not suppressive when added to spleen cells in vitro but rather resulted in a marked, polyclonal enhancement of the PFC response. The interaction of TL 485-2 cells and normal spleen cells resulted in the release of a stimulatory factor which increased DNA synthesis in resting cells as well as increasing PFC. The role of these enhancing factors and suppressor cells in controlling tumor growth remains to be elucidated.  相似文献   

10.
Congenital anomalies have complex etiologies involving both genetic and nongenetic components. Many are sporadic, without obvious evidence for heritability. An important model for these anomalies is a mutation in laboratory mice that is called "disorganization" (Ds), which functions as a variable autosomal dominant and leads to a wide variety of congenital anomalies involving many developmental processes and systems. Variable expressivity, asymmetrical manifestations, and low penetrance suggest that somatic events determine the location and nature of these anomalies. A statistical analysis suggests that occurrence of anomalies in mice with the Ds mutation follows a Poisson distribution. These results suggest that congenital anomalies in mice with the Ds mutation occur independently of each other. We propose that Ds causes a heritable predisposition to congenital anomalies and that Ds and appropriate somatic events combine to compromise normal development. We also propose that some sporadic, nonheritable congenital anomalies involve somatic mutations at Ds-like loci. Ds may therefore serve not only as a model for developmental anomalies in cell fate and pattern formation but also for complex developmental traits showing variable expressivity, low penetrance, and sporadic occurrence in mice and humans.  相似文献   

11.
We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a E157*Mhda) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a E157*Mhda mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a E157*Mhda mice are the first mouse model for a mutation within the Fam46a gene.  相似文献   

12.
Spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD) is a rare skeletal dysplasia with only a few cases reported in the literature. Affected individuals have a disproportionate short stature with a short and stiff neck and trunk. The limbs appear relatively long and may show flexion contractures of the distal joints. The most remarkable radiographic features are the delayed and impaired ossification of the vertebral bodies as well as the presence of large epiphyseal ossification centers and wide growth plates in the long tubular bones. Numerous pseudoepiphyses of the short tubular bones in hands and feet are another remarkable feature of the disorder. Genome wide homozygosity mapping followed by a candidate gene approach resulted in the elucidation of the genetic cause in three new consanguineous families with SMMD. Each proband was homozygous for a different inactivating mutation in NKX3-2, a homeobox-containing gene located on chromosome 4p15.33. Striking similarities were found when comparing the vertebral ossification defects in SMMD patients with those observed in the Nkx3-2 null mice. Distinguishing features were the asplenia found in the mutant mice and the radiographic abnormalities in the limbs only observed in SMMD patients. The absence of the latter anomalies in the murine model may be due to the perinatal death of the affected animals. This study illustrates that NKX3-2 plays an important role in endochondral ossification of both the axial and appendicular skeleton in humans. In addition, it defines SMMD as yet another skeletal dysplasia with autosomal-recessive inheritance and a distinct phenotype.  相似文献   

13.
There is an intimate relationship between muscle and bone throughout life. However, how alterations in muscle functions in disease impact bone homeostasis is poorly understood. Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by progressive muscle atrophy. In this study we analyzed the effects of ALS on bone using the well established G93A transgenic mouse model, which harbors an ALS-causing mutation in the gene encoding superoxide dismutase 1. We found that 4-month-old G93A mice with severe muscle atrophy had dramatically reduced trabecular and cortical bone mass compared with their sex-matched wild type (WT) control littermates. Mechanically, we found that multiple osteoblast properties, such as the formation of osteoprogenitors, activation of Akt and Erk1/2 pathways, and osteoblast differentiation capacity, were severely impaired in primary cultures and bones from G93A relative to WT mice; this could contribute to reduced bone formation in the mutant mice. Conversely, osteoclast formation and bone resorption were strikingly enhanced in primary bone marrow cultures and bones of G93A mice compared with WT mice. Furthermore, sclerostin and RANKL expression in osteocytes embedded in the bone matrix were greatly up-regulated, and β-catenin was down-regulated in osteoblasts from G93A mice when compared with those of WT mice. Interestingly, calvarial bone that does not load and long bones from 2-month-old G93A mice without muscle atrophy displayed no detectable changes in parameters for osteoblast and osteoclast functions. Thus, for the first time to our knowledge, we have demonstrated that ALS causes abnormal bone remodeling and defined the underlying molecular and cellular mechanisms.  相似文献   

14.
We describe a murine autosomal recessive mutation claw paw (gene symbol clp), which in homozygous clp/clp mice produces striking abnormalities of limb posture within the first one or two postnatal days. Affected animals have delayed and abnormal myelination in the peripheral nervous system but not in the central nervous system, and also have persistently blocked myelination of small caliber axons that are myelinated in normal mice. Both abnormalities suggest that an important effect of the clp mutation is to impair the putative signaling mechanism by which an axon instructs a Schwann cell whether or not to myelinate it. The early onset of behavioral abnormalities in clp/clp mutant mice, as well as certain other features of the disorder, suggest that some effects of the clp gene are not accounted for by the pathological findings. The clp gene has been mapped to chromosome 7 near the Gpi-1 locus.  相似文献   

15.
Osteochondrodystrophy (ocd) is a new autosomal recessive mouse mutation characterized by a short, slightly domed head, reduced body size, disproportionately shortened long bones of the legs, supination of the forefeet, and short thickened tail. Histologically, the epiphyses are thinner than normal. The columnar organization of the proliferative zone of cartilage is disorderly, with pleomorphic and occasionally necrotic chondrocytes. Osteochondrodystrophy has been mapped to a position near the centromere of mouse chromosome (Chr) 19.  相似文献   

16.
The role of Ia-positive accessory cells in the generation of a secondary cytotoxic response to tumor-associated antigens induced by Moloney murine sarcoma virus (M-MSV) was evaluated. Spleen cells from M-MSV-immune A.TL mice, depleted of accessory cells by anti-Iak serum plus C treatment and stimulated in secondary mixed leukocyte tumor cell culture (MLTC) with syngeneic Ia-negative A6ATL Moloney leukemic cells, failed to generate virus-specific cytotoxic T lymphocytes (CTL). CTL generation in Ia-depleted MLTC may be reconstituted by the addition of nonimmune Ia-positive spleen or peritoneal cells obtained not only from syngeneic A.TL but also from I-incompatible A.TH mice. This lack of restriction observed in accessory cell function is explained in terms of a nonspecific mechanism of CTL triggering mediated by soluble factors. In fact, IL 2 as well as supernatants obtained from I region-incompatible cultures consisting of M-MSV-immune, Ia-depleted A.TL spleen cells and A.TH Ia-positive cells, reconstituted secondary virus-specific CTL generation.  相似文献   

17.
We have used selective breeding with house mice to study coadaptation of morphology and physiology with the evolution of high daily levels of voluntary exercise. Here, we compared hindlimb bones and muscle masses from the 11th generation of four replicate High Runner (HR) lines of house mice bred for high levels of voluntary wheel running with four non‐selected control (C) lines. Mass, length, diameter, and depth of the femur, tibia‐fibula, and metatarsal bones, as well as masses of gastrocnemius and quadriceps muscles, were compared by analysis of covariance with body mass or body length as the covariate. Mice from HR lines had relatively wider distal femora and deeper proximal tibiae, suggesting larger knee surface areas, and larger femoral heads. Sex differences in bone dimensions were also evident, with males having thicker and shorter hindlimb bones when compared with females. Several interactions between sex, linetype, and/or body mass were observed, and analyses split by sex revealed several cases of sex‐specific responses to selection. A subset of the HR mice in two of the four HR lines expressed the mini‐muscle phenotype, characterized mainly by an ~50% reduction in hindlimb muscle mass, caused by a Mendelian recessive mutation, and known to have been under positive selection in the HR lines. Mini‐muscle individuals had elongated distal elements, lighter and thinner hindlimb bones, altered 3rd trochanter muscle insertion positions, and thicker tibia‐fibula distal widths. Finally, several differences in levels of directional or fluctuating asymmetry in bone dimensions were observed between HR and C, mini‐ and normal‐muscled mice, and the sexes. This study demonstrates that skeletal dimensions and muscle masses can evolve rapidly in response to directional selection on locomotor behavior.  相似文献   

18.
K P Giese  R Martini  G Lemke  P Soriano  M Schachner 《Cell》1992,71(4):565-576
We have used homologous recombination in embryonic stem cells to generate mice carrying a mutation in the gene encoding P0, an immunoglobulin-related recognition molecule and the major protein of peripheral nervous system myelin. These mice are deficient in normal motor coordination and exhibit tremors and occasional convulsions. Axons in their peripheral nerves are severely hypomyelinated and a subset of myelin-like figures and axons degenerate. The mutation leads to an abnormal regulation of some, but not all, molecules involved in myelination. These results demonstrate that P0 is essential for the normal spiraling, compaction, and maintenance of the peripheral myelin sheath and the continued integrity of associated axons. They further suggest that this protein conveys a signal that regulates Schwann cell gene expression.  相似文献   

19.
The quantity of thymus-leukemia (TL) antigens expressed by murine leukemia cells is significantly greater than that expressed by somatic hybrids of such cells. Based upon the results of 125I-lactoperoxidase labeling and antibody absorption procedures, and corrected for size differences between the two cell types, the quantity of TL antigens expressed by RADA-1 cells, a radiation-induced murine leukemia cell line of strain A/J mice, is approximately 5.0 times greater than that of somatic hybrids of RADA-1 and LM(TK)? cells. LM(TK)? cells are a thymidine kinase-deficient TL(-) mouse fibroblast cell line. The quantity of TL antigens expressed is related only in part to their susceptibility to lysis by TL antibodies and guinea pig complement (GPC). RADA-1 cells resist lysis. The quantity of TL antigens expressed by RADA-1 cells is analogous to that formed by nonneoplastic thymocytes obtained from F1 hybrids of two strains of TL(+) and TL(-) mice; cells from both strains are sensitive to TL antiserum and GPC. ASL-1 cells, a spontaneously occurring leukemia cell line of A/J mice, express TL antigens in significantly higher quantities than any of the cell types examined. Exposed to TL antisera, the quantity of TL antigens of ASL-1 cells, but not that of hybrid cells, gradually diminishes. ASL-1 cells convert over a 6-h period of exposure to antibody and guinea pig complement (GPC) resistance; hybrid cells remain sensitive. However, ASL-1 cells converted to TL antibody and GPC resistance continue for a time to express TL antigens in quantities similar to that of sensitive F1 thymocytes and resistant RADA-1 cells. RADA-1 X LM(TK)? hybrid cells, which are sensitive to TL antibodies and GPC, express the lowest quantities of TL antigens of any of the cell types examined. It is likely that differences in the quantities of TL antigens expressed by different cell lines reflect genetic mechanisms controlling TL antigen expression. The failure of TL antisera to affect the quantities of TL antigens expressed by hybrid cells is taken as an indication that genetic controls governing antigen expression may be distinguished from those involved in regulating responsiveness to specific antiserum.  相似文献   

20.
The purified protein derivative (PPD)-specific proliferative responses of T cells from human peripheral blood are shown to be dependent on antigen-presenting cells (APC) which bear HLA-DR antigen detected by the monoclonal anti-HLA-DR antibody. The serological cross-reactivity of murine A.TH anti-A.TL antibody was observed in human APC. By absorption experiments using H-2 congenic mice, the serological cross-reactivity of A.TH anti-A.TL antibody with human APC is mapped in the I-E subregion. Thus, anti-I-Ek antibody reacts with the Ia-like molecule(s) on human APC. Murine allo-anti-I-Ek antibody does not always react with determinants of Ia-like molecule(s) on human APC, since this antibody did not eliminate PPD-specific proliferative responses in one particular case. Thus, anti-I-Ek antibody seems to react some type of the polymorphic determinants but not of the shared determinants of human Ia-like molecule(s) on APC. The relationship between the cross-reactive molecule detected by murine allo-anti-I-Ek antibody and the HLA-DR antigen remains to be analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号