首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they grow more slowly than insect cells. Rickettsia-permissive arthropod cell lines that can be passaged rapidly are highly desirable for studies on arthropod-Rickettsia interactions. We used two cell lines (Aedes albopictus cell line Aa23 and Anopheles gambiae cell line Sua5B) that have not been used previously for the purpose of rickettsial propagation. We optimized the culture conditions to propagate one transitional-group rickettsial species (Rickettsia felis) and two spotted-fever-group rickettsial species (R. montanensis and R. peacockii) in each cell line. Both cell lines allowed the stable propagation of rickettsiae by weekly passaging regimens. Stable infections were confirmed by PCR, restriction digestion of rompA, sequencing, and the direct observation of bacteria by fluorescence in situ hybridization. These cell lines not only supported rickettsial growth but were also permissive toward the most fastidious species of the three, R. peacockii. The permissive nature of these cell lines suggests that they may potentially be used to isolate novel rickettsiae or other intracellular bacteria. Our results have important implications for the in vitro maintenance of uncultured rickettsiae, as well as providing insights into Rickettsia-arthropod interactions.  相似文献   

2.
Rickettsia peacockii, a spotted fever group rickettsia, is a transovarially transmitted endosymbiont of Rocky Mountain wood ticks, Dermacentor andersoni. This rickettsia, formerly known as the East Side Agent and restricted to female ticks, was detected in a chronically infected embryonic cell line, DAE100, from D. andersoni. We examined infectivity, ability to induce cytopathic effect (CPE) and host cell specificity of R. peacockii using cultured arthropod and mammalian cells. Aposymbiotic DAE100 cells were obtained using oxytetracycline or incubation at 37 degrees C. Uninfected DAE100 sublines grew faster than the parent line, indicating R. peacockii regulation of host cell growth. Nevertheless, DAE100 cellular defenses exerted partial control over R. peacockii growth. Rickettsiae existed free in the cytosol of DAE100 cells or within autophagolysosomes. Exocytosed rickettsiae accumulated in the medium and were occasionally contained within host membranes. R. peacockii multiplied in other cell lines from the hard ticks D. andersoni, Dermacentor albipictus, Ixodes scapularis, and Ixodes ricinus; the soft tick Carios capensis; and the lepidopteran Trichoplusia ni. Lines from the tick Amblyomma americanum, the mosquito Aedes albopictus, and two mammalian cell lines were non-permissive to R. peacockii. High cell densities facilitated rickettsial spread within permissive cell cultures, and an inoculum of one infected to nine uninfected cells resulted in the greatest yield of infected tick cells. Cell-free R. peacockii also were infectious for tick cells and centrifugation onto cell layers enhanced infectivity approximately 100-fold. The ability of R. peacockii to cause mild CPE suggests that its pathogenicity is not completely muted. An analysis of R. peacockii-cell interactions in comparison to pathogenic rickettsiae will provide insights into host cell colonization mechanisms.  相似文献   

3.
4.
5.
An embryonic cell line (DAE100) of the Rocky Mountain wood tick, Dermacentor andersoni, was observed by microscopy to be chronically infected with a rickettsialike organism. The organism was identified as a spotted fever group (SFG) rickettsia by PCR amplification and sequencing of portions of the 16S rRNA, citrate synthase, Rickettsia genus-specific 17-kDa antigen, and SFG-specific 190-kDa outer membrane protein A (rOmpA) genes. Sequence analysis of a partial rompA gene PCR fragment and indirect fluorescent antibody data for rOmpA and rOmpB indicated that this rickettsia was a strain (DaE100R) of Rickettsia peacockii, an SFG species presumed to be avirulent for both ticks and mammals. R. peacockii was successfully maintained in a continuous culture of DAE100 cells without apparent adverse effects on the host cells. Establishing cell lines from embryonic tissues of ticks offers an alternative technique for isolation of rickettsiae that are transovarially transmitted.  相似文献   

6.
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/Munich(T)) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.  相似文献   

7.
The obligate intracellular growth of Rickettsia prowazekii places severe restrictions on the analysis of rickettsial gene expression. With a small genome, predicted to code for 835 proteins, identifying which proteins are differentially expressed in rickettsiae that are isolated from different hosts or that vary in virulence is critical to an understanding of rickettsial pathogenicity. We employed a liquid chromatography (LC)-linear trap quadrupole (LTQ)-Orbitrap mass spectrometer for simultaneous acquisition of quantitative mass spectrometry (MS)-only data and tandem mass spectrometry (MS-MS) sequence data. With the use of a combination of commercially available algorithms and in-house software, quantitative MS-only data and comprehensive peptide coverage generated from MS-MS were integrated, resulting in the assignment of peptide identities with intensity values, allowing for the differential comparison of complex protein samples. With the use of these protocols, it was possible to directly compare protein abundance and analyze changes in the total proteome profile of R. prowazekii grown in different host backgrounds. Total protein extracted from rickettsiae grown in murine, tick, and insect cell lines or hen egg yolk sacs was analyzed. Here, we report the fold changes, including an upregulation of shock-related proteins, in rickettsiae cultivated in tissue culture compared to the level for rickettsiae harvested from hen yolk sacs. The ability to directly compare, in a complex sample, differential rickettsial protein expression provides a snapshot of host-specific proteomic profiles that will help to identify proteins important in intracellular growth and virulence.  相似文献   

8.
9.
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/MunichT) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.  相似文献   

10.
Recombinant murine tumor necrosis factor-alpha (TNF-α) inhibited intracellular growth of Rickettsia tsutsugamushi, Karp strain, in the mouse embryo cell line C3H/10T1/2 clone 8 at doses of 100 to 10 U/ml. The growth inhibitory effect of TNF-α was also evident when peritoneal exudate macrophages or bone marrow-derived macrophages were used as the host cell for rickettsial growth. Interferon-gamma (IFN-γ), at doses up to 1,000 U/ml, did not affect the growth of this strain of rickettsiae in the mouse embryo cell line but, as expected, profoundly inhibited rickettsial growth in peritoneal exudate macrophages and bone marrow-derived macrophages. The effect of TNF-α on rickettsial growth in the mouse embryo cell line was not reproducibly enhanced by IFN-γ. Treatment of the cell line with TNF-α delayed rickettsial cytopathic effects, but the rickettsiae ultimately grew to high numbers in the cells and caused cell death. These findings show that, at least in our system, R. tsutsugamushi is resistant to IFN-γ-mediated antirickettsial effects in cells other than macrophages. The results of this study support the suggestion that TNF-α may inhibit rickettsial growth in cells other than macrophages.  相似文献   

11.
Eighteen species of rickettsiae are reported to cause infections in humans. One of these is Rickettsia helvetica, which is endemic in European and Asian countries and transmitted by the tick Ixodes ricinus. Besides fever, it has been demonstrated to cause meningitis and is also associated with perimyocarditis. One of the initial targets for rickettsiae after inoculation by ticks is the macrophage/monocyte. How rickettsiae remain in the macrophages/monocytes before establishing their infection in vascular endothelial cells remains poorly understood. The main aim of the present study was to investigate the impact on and survival of R. helvetica in a human leukemic monocytic cell line, THP-1. Our results show that R. helvetica survives and propagates in the THP-1 cells. The infection in monocytes was followed for seven days by qPCR and for 30 days by TEM, where invasion of the nucleus was also observed as well as double membrane vacuoles containing rickettsiae, a finding suggesting that R. helvetica might induce autophagy at the early stage of infection. Infected monocytes induced TNF-α which may be important in host defence against rickettsial infections and promote cell survival and inhibiting cell death by apoptosis. The present findings illustrate the importance of monocytes to the pathogenesis of rickettsial disease.  相似文献   

12.
Rickettsia felis, the etiologic agent of spotted fever, is maintained in cat fleas by vertical transmission and resembles other tick-borne spotted fever group rickettsiae. In the present study, we utilized an Ixodes scapularis-derived tick cell line, ISE6, to achieve isolation and propagation of R. felis. A cytopathic effect of increased vacuolization was commonly observed in R. felis-infected cells, while lysis of host cells was not evident despite large numbers of rickettsiae. Electron microscopy identified rickettsia-like organisms in ISE6 cells, and sequence analyses of portions of the citrate synthase (gltA), 16S rRNA, Rickettsia genus-specific 17-kDa antigen, and spotted fever group-specific outer membrane protein A (ompA) genes and, notably, R. felis conjugative plasmids indicate that this cultivatable strain (LSU) was R. felis. Establishment of R. felis (LSU) in a tick-derived cell line provides an alternative and promising system for the expansion of studies investigating the interactions between R. felis and arthropod hosts.  相似文献   

13.
Both the polyamine content and the route of acquisition of polyamines by Rickettsia prowazekii, an obligate intracellular parasitic bacterium, were determined. The rickettsiae grew normally in an ornithine decarboxylase mutant of the Chinese hamster ovary (C55.7) cell line whether or not putrescine, which this host cell required in order to grow, was present. The rickettsiae contained approximately 6 mM putrescine, 5 mM spermidine, and 3 mM spermine when cultured in the presence or absence of putrescine. Neither the transport of putrescine and spermidine by the rickettsiae nor a measurable rickettsial ornithine decarboxylase activity could be demonstrated. However, we demonstrated the de novo synthesis of polyamines from arginine by the rickettsiae. Arginine decarboxylase activity (29 pmol of 14CO2 released per h per 10(8) rickettsiae) was measured in the rickettsiae growing within their host cell. A markedly lower level of this enzymatic activity was observed in cell extracts of R. prowazekii and could be completely inhibited with 1 mM difluoromethylarginine, an irreversible inhibitor of the enzyme. R. prowazekii failed to grow in C55.7 cells that had been cultured in the presence of 1 mM difluoromethylarginine. After rickettsiae were grown in C55.7 in the presence of labeled arginine, the specific activities of arginine in the host cell cytoplasm and polyamines in the rickettsiae were measured; these measurements indicated that 100% of the total polyamine content of R. prowazekii was derived from arginine.  相似文献   

14.
The normal anatomy of rickettsiae has been characterized with the use of R. prowazekii, R. conorii and R. akari in continuous cell cultures L-929, Al, FL and in primary chick embryo fibroblast culture. Rickettsiae are short rod-shaped cells with the dense cytoplasm and the regular structure of the cell wall--cytoplasmic membrane complex. The study has shown the absence of polymorphism in rickettsiae growing under permissive conditions, but at the same time these organisms easily develop into pathological forms. Pathological forms can be detected alongside normal rickettsiae in the same cells. The classification of the pathological forms of rickettsiae is presented. In this classification the compensating (reversible) and destructive (irreversible) forms of alterations, as well as hypertrophic and dystrophic processes on the level of the whole rickettsial cell or its organelles, are pointed out.  相似文献   

15.
16.
A rickettsial strain IO-1 has been isolated from a tick, Ixodes ovatus, in Japan and genetically identified as Rickettsia helvetica, a member of the spotted fever group rickettsiae. Ultrastructural observations were made on the microorganism. The ultrastructure of R. helvetica IO-1 appeared to be generally the same as that previously shown for other rickettsiae of the spotted fever and typhus groups. The rickettsiae were primarily found free in the cytoplasm of L929 cultured cells. Occasionally, the rickettsiae may also invade the host cell nucleus; however, the frequency of the nuclear localization was very low.  相似文献   

17.
Spotted fever group (SFG) rickettsial DNAs were detected in 2.4% of 340 canine blood samples and a pool of 84 tick pool samples (229 ticks) collected in Okinawa, Japan by PCR using a citrate synthase and an SFG rickettsial 190-kDa surface antigen gene primer pair. The sequences of both genes from canine blood and tick samples showed high levels of similarity with those of Rickettsiajaponica and several SFG rickettsiae (R. aeschlimannii, R. massiliae, R. rhipicephali and Bar-29 strain). Phylogenesis of canine blood and tick samples was closely related to that of reference SFG rickettsiae. Serological evidence of SFG rickettsial infection in dogs and humans in Okinawa, where no clinical human cases have been reported, has been obtained. In this study, genetical characterization of SFG rickettsia in Okinawa was investigated phylogenetically.  相似文献   

18.
Taxonomic position of the Rickettsiae: Current knowledge   总被引:8,自引:0,他引:8  
Abstract: The term rickettsiae initially encompassed all intracellular bacteria. Early rickettsial taxonomy was based on a comparison of a few phenotypic characteristics and recently, molecular studies brought new bases for rickettsial taxonomy. All rickettsial species studied so far belong to the alpha and gamma groups of the Proteobacteria. Ehrlichiae complex groups Cowdria ruminantium, Anaplasma marginate and Wolbachia pipientis and the related parthenogenesis and cytoplasmic incompatibility bacteria, whereas Rochalimaea species group with Bartonella bacilliformis. Rickettsia tsutsugainushi may form an independent lineage, whereas molecular data allow to regroup serologically defined typhus and spotted fever group rickettsiae. The true scale of Rickettsia and Coxiella genera remain to be determined.  相似文献   

19.
20.
Analysis of the peptidoglycan of Rickettsia prowazekii.   总被引:1,自引:0,他引:1       下载免费PDF全文
In the present study, peptidoglycan from Rickettsia prowazekii, an obligate intracellular bacterium, was purified. The rickettsial peptidoglycan is like that of gram-negative bacteria; that is, it is sodium dodecyl sulfate insoluble, lysozyme sensitive, and composed of glutamic acid, alanine, and diaminopimelic acid in a molar ratio of 1.0:2.3:1.0. The small amount of lysine found in the peptidoglycan preparation suggests that a peptidoglycan-linked lipoprotein(s) may be present in the rickettsiae. D-Cycloserine, a D-alanine analog which inhibits the biosynthesis of bacterial cell walls, prevented rickettsial growth in mouse L929 cells at a high concentration and altered the morphology of the rickettsiae at a low concentration. These effects were prevented by the addition of D-alanine. This suggests that R. prowazekii contains D-alanine in the peptidoglycan and has D-Ala-D-Ala ligase and alanine racemase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号