首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies against actin and myosin from smooth muscle, which may react with contractile elements from both muscular and muscle-like cells, were applied to fresh frozen sections of adult guinea-pig testis. Sections stained with an antibody against pectoralis (striated) muscle myosin or with non-immune globulin were used for controls. Peritubular cells of the lamina propria surrounding seminiferous tubulus contained large amounts of actin and myosin as judged by the intensity of immunofluorescence. Sertoli cells did not stain with the antibodies. Our results support the concept of peritubular cells being the critical force for the contractility of seminiferous tubules.  相似文献   

2.
Summary Antibodies against actin and myosin from smooth muscle, which may react with contractile elements from both muscular and muscle-like cells, were applied to fresh frozen sections of adult guinea-pig testis. Sections stained with an antibody against pectoralis (striated) muscle myosin or with non-immune globulin were used for controls. Peritubular cells of the lamina propria surrounding seminiferous tubulus contained large amounts of actin and myosin as judged by the intensity of immunofluorescence. Sertoli cells did not stain with the antibodies. Our results support the concept of peritubular cells being the critical force for the contractility of seminiferous tubules.  相似文献   

3.
Structural information is presented for three muscle systems—mammalian smooth muscle at rest and partially active, living toad striated muscle at rest and contracting, and glycerinated rabbit psoas muscle under various conditions of pH and ionic environment. In the smooth muscle no evidence of organized myosin filaments has been found. In the striated muscle the myosin-to-actin distance can vary widely, according to sarcomere length and to muscle treatment, both at rest and during contraction. In the discussion it is suggested that muscle should be considered as a colloidal system and that there need not necessarily be any chemical bonding (cross-linking) involved in the contractile process.  相似文献   

4.
At present, male infertility remains an urgent medical concern. From year to year, despite advances in methods of diagnosis and treatment, medicine encounters an increasing number of infertile couples with male infertility playing a leading role. Prerequisites for fertility disorders very frequently appear in childhood. Urologists consider cryptorchidism a leading cause of male infertility. The aim of our study was to establish the relationship between testicular descent to the scrotum and the age of the fetus. Material and methods. The study was conducted using 195 specimens of male fetuses aged 4–10 months with 81.0–375.0 mm parietalcoccygeal length (PCL) using the methods of macromicroscopic, conventional, and microslide preparation under control of binocular loupes and morphometry. Results. At the beginning of the fetal period of human ontogenesis (fetuses 81.0–135.0 mm PCL), the right and left testicles are mainly located above the corresponding deep inguinal ring and they are less often located in a region of the iliac fossae. An analysis of topographic and anatomical features of the male reproductive glands in 5-month-old fetuses (136.0–185.0 mm PCL) revealed that the testicles were located within the large pelvis, with the lower end of both the right and left testicles located above the entrance to the deep inguinal ring at a distance that equals the length of the pelvic part of the gubernaculum testis—3.2 ± 0.3 mm (right) and 2.8 ± 0.2 mm (left). In 11 fetuses aged 7 months (231.0–270.0 mm PCL), the lower ends of the testicles and their gubernaculum testis are immersed in the corresponding deep inguinal ring. In eight fetuses, the testicles were within the deep inguinal ring. A combination of many factors contributes to the final migration of a testicle through the inguinal canal into the scrotum (fetuses: 270.0 cm–290.0 mm PCL), including muscle contraction of the anterolateral abdominal wall, an increase in intra-abdominal pressure, contractile capacity of the gubernaculum testis of the testicle, the vaginal process of the peritoneum, and the neuro-muscular system. We believe that the gubernaculum testis is a particularly significant factor in testicular descent to the scrotum. The gubernaculum testis is maximally developed prior to migration of a testicle through the inguinal canal (eighth month of antenatal development), as evidenced by the prevalence of smooth muscle cells over connective tissue elements. An analysis of testicular topography in fetuses aged 9 months (311.0–345.0 mm PCL) revealed that testicles were located in the scrotum in nine fetuses, near the superficial inguinal ring in six fetuses, within the inguinal canal in four cases, and in the deep inguinal ring in one case. In fetuses aged 10 months (346.0–375.0 mm PCL), testicles were located in the scrotum in 13 cases and within the inguinal canal in seven cases. According to our research, the fusion of layers of the vaginal process of the peritoneum occurs in fetuses aged 9–10 months, resulting in the disappearance of the communication of its cavity with the peritoneum. A delay in the fusion of the peritoneal vaginal process layers at the end of the fetal period is an anatomic prerequisite for the occurrence of congenital inguinal-scrotal hernias. Conclusions. It has been found that the rate of testicular descent to the scrotum does not always coincide with the corresponding stage of fetal development. An accelerated development of the gubernaculum testis in fetuses aged 5–8 months is a major factor of heterochronic development of a testicle and subsequent testicular descent into the scrotum.  相似文献   

5.
Role of myosin light chain kinase in muscle contraction   总被引:2,自引:0,他引:2  
In resting striated muscles of the rabbit muscle in vivo, the phosphorylatable light chain is partially phosphorylated. Tetanic stimulation increased the level of phosphorylation more rapidly in fast twitch than in slow twitch muscle. In both types of muscle the rate of dephosphorylation was relatively slow. In rabbit fast twitch muscles, phosphorylation levels persisted significantly above the resting value for some time after posttetanic potentiation had disappeared. The role of myosin light chain kinase in modulating contractile response in striated muscle is uncertain. In vertebrate smooth muscle the role of myosin phosphorylation appears to be different from that in striated muscle despite the general similarity of the actomyosin system in both tissues. Although phosphorylation in vitro increases the Mg2+ -ATPase of actomyosin, a number of features imply that a somewhat complex relationship exists between the level of phosphorylation and the actin activation of the Mg2+ -ATPase in vertebrate smooth muscle. Contrary to many earlier reports, preparations of smooth muscle actomyosin can be obtained with Mg2+ -ATPase activities comparable to those of actomyosin from skeletal muscle. Preliminary evidence is presented that suggests that phosphorylation changes the Ca2+ sensitivity of the Mg2+ -ATPase of smooth muscle actomyosin.  相似文献   

6.
Actin-myosin II filament-based contractile structures in striated muscle, smooth muscle, and nonmuscle cells also contain the actin filament-crosslinking protein alpha-actinin. In striated muscle sarcomeres, interactions between the myosin-binding protein titin and alpha-actinin in the Z-line provide an important structural linkage. We previously discovered a titin-like protein, smitin, associated with the contractile apparatus of smooth muscle cells. Purified native smooth muscle alpha-actinin binds with nanomolar affinity to smitin in smitin-myosin coassemblies in vitro. Smooth muscle alpha-actinin also interacts with striated muscle titin. In contrast to striated muscle alpha-actinin interaction with titin and smitin, which is significantly enhanced by PIP2, smooth muscle alpha-actinin interacts with smitin and titin equally well in the presence and absence of PIP2. Using expressed regions of smooth muscle alpha-actinin, we have demonstrated smitin-binding sites in the smooth muscle alpha-actinin R2-R3 spectrin-like repeat rod domain and a C-terminal domain formed by cryptic EF-hand structures. These smitin-binding sites are highly homologous to the titin-binding sites of striated muscle alpha-actinin. Our results suggest that direct interaction between alpha-actinin and titin or titin-like proteins is a common feature of actin-myosin II contractile structures in striated muscle and smooth muscle cells and that the molecular bases for alpha-actinin interaction with these proteins are similar, although regulation of these interactions may differ according to tissue.  相似文献   

7.
The development of contractile apparatus was subjected to comparative analysis during ontogenesis of the mussel Mytilus trossulus. Indirect immunofluorescence with the polyclonal antibody against mussel twitchin, a protein of thick filaments, and florescent phalloidin as a marker of filamentous cell actin were used to monitor changes in the developing muscle system at different larval stages. The first definitive muscle structures were found at the late trochophore stage (36 h after fertilization) and starting from the midveliger stage (96 h), striated muscles, which are never present in adult mussels, were distinctly seen. The striated muscle periodicity was 1.25 microm in both mussle larvae and adult scallop. The contractile activities of veliger and adult muscles were measured using an electronic signal-processing videosystem. This work is the first complex study of morphological, biochemical, and physiological characteristics of the muscle system in the larvae and adult mollusks.  相似文献   

8.
This study of the testicular capsule of rat, dog, cat and human has confirmed the presence of three layers, viz., the tunica vaginalis, the tunica albuginea proper and an innermost tunica vasculosa. Smooth muscle cells are present in the tunica albuginea of all four species and are more prominent at the posterior pole of the testis where the capsule merges with the mediastinum testis. In the rat and the dog, a few striated muscle fibers also are present. While the tunica albuginea is to be considered as a dense connective tissue, the arrangement of the collagen bundles and the presence of a relatively high content of elastic fibers probably permits changes in size of the testis following spontaneous contractions of the muscle elements, which are known to occur. The role of the testicular capsule in sperm transport is discussed in relation to other factors, the spontaneous contractions of the capsule presumably having a “pumping” action and aiding the movement of non-motile spermatozoa from the testis to the epididymis. The presence of striated muscle fibers in two species is of interest and, while these may function in a similar manner to the smooth muscle, they may represent simply an unusual differentiation of embryonic myoblasts.  相似文献   

9.
Recent evidence suggested a positive correlation between environmental estrogens (EEs) and high incidence of abnormalities in male urogenital system, but the mechanism remains unclear. Diethylstilbestrol (DES) is a nonsteroidal synthetic estrogen that disrupts the morphology and proliferation of gubernaculum testis cells, but the underlying mechanism is unclear. In this study, mouse gubernaculum testis cells were pretreated with phospholipase C (PLC) inhibitor U‐73122 and then treated with DES. The results demonstrated that U‐73122 impaired DES‐evoked intracellular Ca2+ mobilization in gubernaculum testis cells and inhibited DES‐induced proliferation of gubernaculum testis cells. Mechanistically, we found that U‐73122 inhibited DES‐induced activation of cAMP‐response element binding protein (CREB) in gubernaculum testis cells. In conclusion, these data suggest that the effects of DES on mouse gubernaculum testis cells are mediated by PLC‐Ca2+‐CREB pathway.

Significance of the study

Environmental estrogens remain a serious threat to male reproductive health, and it is important to understand the mechanism by which EEs affect the male productive system. Here we explore potential mechanisms how the proliferation and contractility of gubernaculum testis cells are regulated by diethylstilbestrol. Our findings provide the first evidence that PLC‐Ca2+‐CREB signalling pathway mediates the nongenomic effects of diethylstilbestrol on gubernaculum testis cells. These findings provide new insight into the role of diethylstilbestrol in the aetiology of male reproductive dysfunction and will help develop better approaches for the prevention and therapy of male reproductive malformation.  相似文献   

10.
Smooth muscles are important constituents of vertebrate organisms that provide for contractile activity of internal organs and blood vessels. Basic molecular mechanism of both smooth and striated muscle contractility is the force-producing ATP-dependent interaction of the major contractile proteins, actin and myosin II molecular motor, activated upon elevation of the free intracellular Ca2+ concentration ([Ca2+]i). However, whereas striated muscles display a proportionality of generated force to the [Ca2+]i level, smooth muscles feature molecular mechanisms that modulate sensitivity of contractile machinery to [Ca2+]i. Phosphorylation of proteins that regulate functional activity of actomyosin plays an essential role in these modulatory mechanisms. This provides an ability for smooth muscle to contract and maintain tension within a broad range of [Ca2+]i and with a low energy cost, unavailable to a striated muscle. Detailed exploration of these mechanisms is required to understand the molecular organization and functioning of vertebrate contractile systems and for development of novel advances for treating cardiovascular and many other disorders. This review summarizes the currently known and hypothetical mechanisms involved in regulation of smooth muscle Ca2+-sensitivity with a special reference to phosphorylation of regulatory proteins of the contractile machinery as a means to modulate their activity.  相似文献   

11.
12.
The descent of the testis in the fetal calf is reviewed, and the role in that process of the swelling reaction of the gubernaculum testis is discussed. The testes of 30 Dutch Friesian fetuses were examined by dissection and light microscopy of sections prepared from chemically and frozen-fixed specimens. The gubernaculum remains unattached to the scrotal fasciae until descent is completed. Shortening of the intra-abdominal gubernaculum and displacement of the testis begins at fetal week 11; the swelling reaction of the gubernaculum occurs between weeks 14 and 15. The testis is at the deep inguinal ring by week 15, and by week 20 it is in the scrotal position and the gubernaculum has regressed. It is proposed that the swelling of the gubernaculum dilates the vaginal ring and enlarges the inguinal canal. The clinical importance of these anatomical relationships and changes is discussed.  相似文献   

13.
D W Frederiksen 《Biochemistry》1979,18(9):1651-1656
Porcine aortic myosin is a smooth muscle contractile protein similar to its striated muscle counterpart. Electrophoresis in sodium dodecyl sulfate indicates that the molecule consists of three classes of subunits with polypeptide chain molecular weights of 192,000, 19,000, and 15,000. At 277 nm the absorption spectrum gives an extinction coefficient for aortic myosin of 0.558 cm2/mg; the circular dichroism spectrum of the protein indicates that aortic myosin contains about 70% of its residues in the alpha-helical configuration. Amino acid analysis shows that the smooth muscle myosin has significantly more arginine and leucine and significantly less valine and isoleucine than rabbit skeletal muscle myosin. Other studies yielded these data: Vapp = 0.716 mL/g [eta] = 0.213 mL/mg, S20, w = 5.84 x 10(-13)S. Similar studies with rabbit skeletal muscle myosin indicate that Vapp = 0.711 mL/g and S20, w = 6.36 x 10(-13)S. These properties suggest that aortic myosin, like skeletal muscle myosin, behaves hydrodynamically like a rigid rod.  相似文献   

14.
1. On electrophoresis in dissociating conditions the tropomyosins isolated from skeletal muscles of mammalian, avian and amphibian species migrated as two components. These were comparable with the alpha and beta subunits of tropomyosin present in rabbit skeletal muscle. 2. The alpha and beta components of all skeletal-muscle tropomyosins contained 1 and 2 residues of cysteine per 34000g respectively. 3. The ratio of the amounts of alpha and beta subunit present in skeletal muscle tropomyosins was characteristic for the muscle type. Muscle consisting of slow red fibres contained a greater proportion of beta-tropomyosin than muscles consisting predominantly of white fast fibres. 4. Mammalian and avian cardiac muscle tropomyosins consisted of alpha-tropomyosin only. 5. Mammalian and avian smooth-muscle tropomyosins differed both chemically and immunologically from striated-muscle tropomyosins. 6. Antibody raised against rabbit skeletal alpha-tropomyosin was species non-specific, reacting with all other striated muscle alpha-tropomyosin subunits tested. 7. Antibody raised against rabbit skeletal beta-tropomyosin subunit was species-specific.  相似文献   

15.
The purpose of this study was to investigate the role of cyclic GMP (cGMP) in the effects of nitric oxide (NO) on urethral striated muscle and its involvement in contractile function. The localization of cGMP, neuronal NO synthase (nNOS), vimentin, and neuronal markers was assessed by immunofluorescence in the sheep and rat urethra and the expression of nNOS was determined in Western blots. Nerve-mediated contractile responses to electrical field stimulation (EFS) were recorded in the sheep urethra. The scant nitrergic innervation of the striated muscle layer suggests that autonomic control of its activity is unlikely. The striated fiber itself may be the source of high levels NO produced by sarcolemmal and/or cytosolic μ or α variant of nNOS. This endogenous NO may provoke high basal production of soluble guanylate cyclase (GC) dependent cGMP, mainly in non-NO producing muscle fibers, which is not further enhanced by NO donors. cGMP co-localizes with neurofilament and PGP 9.5 at muscle endplates. Modulators of the cGMP pathway did not affect nerve-mediated contractile activity induced by EFS, suggesting that cGMP is not a significant mediator of neuromuscular transmission. In addition, NO donors did increase the accumulation of cGMP in dense networks of vimentin immunoreactive interstitial cells of Cajal (ICC), whose function is not yet known. These data suggest that there is a strong but non-regulated production of cGMP under resting conditions, which does not seem to affect contractile function. Modulation of cholinergic neurotransmission by NO through cGMP-independent mechanisms cannot be discarded.  相似文献   

16.
A conformational change accompanying Ca2+ binding to troponin C (TnC) constitutes the initial event in contractile regulation of vertebrate striated muscle. We replaced endogenous TnC in single skinned fibers from rabbit psoas muscle with a modified form of cardiac TnC (cTnC) which, unlike native cTnC, probably contains an intramolecular disulfide bond. We found that such activating TnC (aTnC) enables force generation and shortening in the absence of calcium. With aTnC, both force and shortening velocity were the same at pCa 9.2 and pCa 4.0. aTnc could not be extracted under conditions which resulted in extraction of endogenous TnC. Thus, aTnC provides a stable model for structural studies of a calcium binding protein in the active conformation as well as a useful tool for physiological studies on the primary and secondary effects of Ca2+ on the molecular kinetics of muscle contraction.  相似文献   

17.
The contractile systems of vertebrate smooth and striated muscles are compared. Smooth muscles contain relatively large amounts of actin and tropomyosin organized into thin filaments, and smaller amounts of myosin in the form of thick filaments. The protein contents are consistent with observed thin:thick filament ratios of about 15-18:1 in smooth compared to 2:1 in striated muscle. The basic characteristics of both types of contractile proteins are similar; but there are a variety of quantitative differences in protein structures, enzymatic activities and filament stabilities. Biochemical and X-ray diffraction data generally support recent ultrastructural evidence concerning the organization of the myofilaments in smooth muscle, although a basic contractile unit comparable to the sarcomere in striated muscle has not been discerned. Myofilament interactions and contraction in smooth muscle are controlled by changes in the Ca2+ concentration. Recent evidence suggests the Ca2+-binding regulatory site is associated with the myosin in vertebrate smooth muscle (as in a variety of invertebrate muscles), rather than with troponin which is the regulatory protein associated with the thin filament in vertebrate striated muscle.  相似文献   

18.
The sliding filament theory of contraction that was developed for striated muscle is generally believed to be also applicable to smooth muscle. However, the well-organized myofilament lattice (i.e., the sarcomeric structure) found in striated muscle has never been clearly delineated in smooth muscle. There is evidence that the myofilament lattice in some smooth muscles, such as airway smooth muscle, is malleable; it can be reshaped to fit a large range of cell dimensions while the maximal overlap between the contractile filaments is maintained. In this review, some early models of the structurally static contractile apparatus of smooth muscle are described. The focus of the review, however, is on the recent findings supporting a model of structurally dynamic contractile apparatus and cytoskeleton for airway smooth muscle. A list of unanswered questions regarding smooth muscle ultrastructure is also proposed in this review, in the hope that it will provide some guidance for future research.  相似文献   

19.
E. Vendrely 《Andrologie》1995,5(3):303-308
Gonadal development is intimately linked to that of the mesonephros. The primordial testes differentiate in the dorsal region of the embryonic abdomen, behind the coelomic cavity. To reach their final location within the scrotum, the testes descend into the pelvis, pass through the abdominal wall by the inguinal canal, and attach to the base of the scrotal pouch. Testicular migration therefore comprises three stages, each requiring its own mecanism (s). The genital ducts (epididymis, vas deferens) and ligament which attaches the testis to the scrotal wall (gubernaculum testis) certainly play an essential role in these migratory events. The first phase is quite passive, associated with the growth of the abdominal cavity. In the second phase, the gubernaculum enlarges and shortens, pulling the testis through the inguinal canal. Finally, the gubernaculum, as a short, fibrous ligament, attaches the testis to the scrotal wall.  相似文献   

20.
In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号