首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymorphisms in DNA repair genes may be associated with differences in DNA repair capacity, thereby influencing the individual susceptibility to smoking-related cancer. We investigated the association of 10 base-excision and nucleotide-excision repair gene polymorphisms (XRCC1 -77 T/C, Arg194Trp, Arg280His and Arg399Gln; APE1 Asp148Glu; OGG1 Ser326Cys; XPA -4 G/A; XPC PAT; XPD Asp312Asn and Lys751Gln) with lung cancer risk in Caucasians. Genotypes were determined by PCR-RFLP and PCR-single base extension assays in 110 lung cancer patients and 110 age- and sex-matched controls, and the results were analyzed using logistic regression adjusted for relevant covariates. A significant association between the APE1 Asp148Glu polymorphism and lung cancer risk was found, with adjusted odds ratios (OR) of 3.38 (p=0.001) for the Asp/Glu genotype and 2.39 (p=0.038) for the Glu/Glu genotype. Gene-smoking interaction analyses revealed a statistically significant interaction between cumulative cigarette smoking and the XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms: these polymorphisms were significantly associated with lung cancer in nonsmokers and light smokers (<25 PY; OR=4.92, p=0.021 for XRCC1 399 Gln/Gln; OR=3.62, p=0.049 for XPD 751 Gln/Gln), but not in heavy smokers (> or =25 PY; OR=0.68, p=0.566 for XRCC1 399 Gln/Gln; OR=0.46, p=0.295 for XPD 751 Gln/Gln). Both the XRCC1 Arg194Trp and Arg280His as well as the OGG1 Ser326Cys heterozygous genotypes were associated with a significantly reduced risk for lung cancer (OR=0.32, p=0.024; OR=0.25, p=0.028; OR=0.51, p=0.033, respectively). No associations with lung cancer risk were found for the XRCC1 -77 T/C, the XPA -4 G/A and the XPC PAT polymorphisms. In conclusion, the APE1 Asp148Glu polymorphism is highly predictive for lung cancer, and cumulative cigarette smoking modifies the associations between the XRCC1 Arg399Gln and the XPD Lys751Gln polymorphisms and lung cancer risk.  相似文献   

2.
Colorectal cancer represents a complex disease where susceptibility may be influenced by genetic polymorphisms in the DNA repair system. In the present study we investigated the role of nine single nucleotide polymorphisms in eight DNA repair genes on the risk of colorectal cancer in a hospital-based case-control population (532 cases and 532 sex- and age-matched controls). Data analysis showed that the variant allele homozygotes for the Asn148Glu polymorphism in the APE1 gene were at a statistically non-significant increased risk of colorectal cancer. The risk was more pronounced for colon cancer (odds ratio, OR: 1.50; 95% confidence interval, CI: 1.01-2.22; p=0.05). The data stratification showed increased risk of colorectal cancer in the age group 64-86 years in both individuals heterozygous (OR: 1.79; 95% CI: 1.04-3.07; p=0.04) and homozygous (OR: 2.57; 95% CI: 1.30-5.06; p=0.007) for the variant allele of the APE1 Asn148Glu polymorphism. Smokers homozygous for the variant allele of the hOGG1 Ser326Cys polymorphism showed increased risk of colorectal cancer (OR: 4.17; 95% CI: 1.17-15.54; p=0.03). The analysis of binary genotype combinations showed increased colorectal cancer risk in individuals simultaneously homozygous for the variant alleles of APE1 Asn148Glu and hOGG1 Ser326Cys (OR: 6.37; 95% CI: 1.40-29.02; p=0.02). Considering the subtle effect of the DNA repair polymorphisms on the risk of colorectal cancer, exploration of gene-gene and gene-environmental interactions with a large sample size with sufficient statistical power are recommended.  相似文献   

3.
Oxidative stress has been implicated in etiopathogenesis of Graves' disease (GD). Increased lipid peroxidation and oxidative DNA damage have been found in GD patients. Oxidative DNA damage is mainly repaired by the base‐excision repair (BER) pathway. Polymorphisms in DNA‐repair genes have been associated with the increased risk of various diseases and could also be related to the etiology of GD. Therefore, we conducted a study including 197 patients with GD and age‐ and sex‐matched 303 healthy subjects to examine the role of single‐nucleotide polymorphisms of BER genes, APE/Ref‐1 (codon 148) and XRCC1 (codons 194 and 399) as a risk factor for GD. These polymorphisms were determined by quantitative real‐time PCR and melting curve analysis using LightCycler. No significant association was observed between the variant alleles of APE/Ref‐1 codon 148 [odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.69–1.17], XRCC1 codon 194 (OR = 1.24, 95% CI = 0.79–1.94), and XRCC1 codon 399 (OR = 1.12, 95% CI = 0.86–1.46) and GD. These preliminary results suggest that APE/Ref‐1 (codon 148) and XRCC1 (codons 194 and 399) polymorphisms are not significant risk factors for developing GD. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.  相似文献   

5.
Context: X-ray repair cross-complementing groups 1 and 3 (XRCC1 and XRCC3) and xeroderma pigmentosum group D (XPD) are mainly involved in base excision repair, homologous recombination repair, and nucleotide excision repair of DNA repair pathways, respectively. Previous studies have demonstrated that their gene polymorphisms were associated with some cancer susceptibility. Objective and design: To investigate the effect of XPD Lys751Gln, XRCC1 Arg399Gln, Arg194Trp, Arg280His, and XRCC3 Thr241Met polymorphisms on the risk of nasopharyngeal carcinoma (NPC), a population-based case-control study of 153 NPC patients and 168 healthy controls among Sichuan population was conducted. Results: Our results showed that XRCC1 codon 194 Trp allele was associated with an increased risk of NPC (odds ratio [OR] = 1.828, 95% confidence interval [CI]: 1.286-2.598), and XPD codon 751Gln allele was associated with a borderline decrease of NPC (OR = 0.600, 95% CI: 0.361-1.000); combination analysis showed that individuals with both putative genotypes of XPD codon 751 Lys/Lys and XRCC1 codon 194 Arg/Trp or Trp/Trp have a significantly elevated risk of NPC (OR = 2.708, 95% CI: 1.338-5.478). Conclusion: The results indicated that XRCC1 codon 194 Trp allele and XPD codon 751 Lys allele may be contributing factors in the risk of NPC.  相似文献   

6.
Single-nucleotide polymorphisms in genes involved in DNA-damage-induced responses are reported frequently to be a risk factor in various cancer types. Here we analysed polymorphisms in 5 genes involved in DNA repair (XPD Asp312Asn and Lys751Gln,XRCC1 Arg399Gln,APE1 Asp148Glu,NBS1 Glu185Gln, andXPA G-4A) and in a gene involved in regulation of the cell-cycle (CCND1 A870G). We compared their frequencies in groups of colon, head and neck, and breast cancer patients, and 2 healthy control groups: (1) matched healthy Polish individuals and (2) a NCBI database control group. Highly significant differences in the distribution of genotypes of theAPE1, XRCC1 andCCND1 genes were found between colon cancer patients and healthy individuals. The 148AspAPE1 allele and the 399GlnXRCC1 allele apparently increased the risk of colon cancer (OR=1.9–2.3 and OR=1.5–2.1, respectively). Additionally, frequencies ofXPD genotypes differed between healthy controls and patients with colon or head and neck cancer. Importantly, no differences in the distribution of these polymorphisms were found between healthy controls and breast cancer patients. The data clearly indicate that the risk of colon cancer is associated with single-nucleotide polymorphism in genes involved in base-excision repair and DNA-damage-induced responses.  相似文献   

7.
There was analyzed single nucleotide polymorphisms of DNA excision repair enzyme genes hOGG, XPD, XPG, XRCC1 in 98 Siberian Group of Chemical Enterprises cancer patients and 148 healthy donors. No association was observed between the analyzed polymorphisms and malignant tumors in both control and subgroup (under study) of persons exposed to occupational ionizing radiation. Heterozygosis for the genes hOGG and XPD was found to be a protective factor to malignant tumors in exposed persons: the odds ratio = 0.42 (95% CI 0.18-0.98; p = 0.044) for the 326Ser/Cys genotype of the hOGG gene and 0.48 (95% CI 0.23-0.99; p = = 0.047) the 751Lys/Gln genotype of the XPD gene. The data obtained show a possible modifying role of the hOGG and XPD gene polymorphisms for malignant tumors risk in exposed persons.  相似文献   

8.
Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC]n microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC]n microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120 kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873 mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele > or =20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations.  相似文献   

9.
Polymorphisms of DNA repair genes are associated with renal cell carcinoma   总被引:2,自引:0,他引:2  
DNA repair gene alterations have been shown to cause a reduction in DNA repair capacity and may influence an individual's susceptibility to carcinogenesis. Single nucleotide polymorphisms (SNPs) of DNA repair genes have been shown to cause a reduction in repair activity. We hypothesized that SNPs of DNA repair genes may be a risk factor for renal cell carcinoma (RCC). To test this hypothesis, DNA samples from 112 cases of renal cell cancer and healthy controls (n=180) were analyzed by PCR-RFLP to determine the genotypic frequency of six different polymorphic loci on five DNA repair genes (XRCC1, XPC, ERCC1, XRCC3, and XRCC7). The chi(2) test was applied to compare the genotype frequency between patients and controls. We found that the frequency of 399Gln variant at XRCC1 Arg399Gln was significantly higher in RCC cases than in controls (OR=2.83, 95%CI=1.24-6.49, P=0.01). The frequency of T-A haplotype of XRCC1 194 Trp and XRCC1 399Gln was significantly higher in RCC than controls. No differences in genotypes were observed at the other sites. This is the first report on SNPs of DNA repair genes in renal cell carcinoma that suggests XRCC1 399Gln polymorphism may be a risk factor for RCC. Our present data suggest that the XRCC1 399Gln allele may be linked to susceptibility for RCC.  相似文献   

10.
Several studies have reported that the genes involved in DNA repair and in the maintenance of genome integrity play a crucial role in protecting against mutations that lead to cancer. Epidemiologic evidence has shown that the inheritance of genetic variants at one or more loci results in a reduced DNA repair capacity and in an increased risk of cancer. Polymorphisms have been identified in several DNA repair genes, such as XRCC1, XPD, XRCC3, and RAD51, but the influence of specific genetic variants on repair phenotype and cancer risk has not yet been clarified. This was a case-control study design with three case groups: 53 women with breast cancer and family history; 33 women with sporadic breast cancer; 175 women with no breast cancer but with family history. The control group included 120 women with no breast cancer and no family history. The PCR-RFLP method was used to analyze the XRCC1-Arg399Gln, XPD-Lys751Gln, XRCC3-Thr241Met, and RAD51-G135C polymorphisms. No statistically significant differences were found between the case groups and the control group for any of the polymorphisms analyzed, and also between the breast cancer and family history group and the sporadic breast cancer group. Sample sizes of women with breast cancer, whether familial or sporadic, were insufficient to show any small true differences between the groups, but we have to consider that currently there is no clear consensus with respect to the association of these polymorphisms with breast cancer risk. Considering the data available, it can be conjectured that if there is any risk association between these single-nucleotide polymorphisms and breast cancer, this risk will probably be minimal. The greater the risk associated with cancer, the smaller the sample size required to demonstrate this association, and the data of different studies are usually, therefore, more concordant.  相似文献   

11.
Single nucleotide polymorphisms of DNA repair genes alter protein function and modulate DNA repair efficiency in various cancers. The X-ray repair cross-complementing group (XRCC) is responsible for the repair of DNA base damage and single-strand breaks. The aim of our study was to investigate the association of XRCC1 Arg399Gln and XRCC3 Thr241Met polymorphisms with the susceptibility to develop oral squamous cell carcinoma (OSCC) in Turkish subjects. One hundred eleven patients with OSCC and 148 healthy controls were recruited for the study. Genetic analysis was performed using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP). We found that the XRCC1 Arg399Gln Gln/Gln genotype and Gln allele were risk factors for OSCC. Also, Arg/Arg genotype and Arg allele had protective effects against OSCC. Relative to XRCC3 Thr241Met polymorphism, carrying homozygote variants (Thr/Thr and Met/Met) was related with elevated OSCC risk. However, the heterozygote genotype and Thr allele variants were shown to be protective against OSCC. We suggest that XRCC1 Arg399Gln Gln/Gln genotype, Gln allele, and homozygote variants of XRCC3 Thr241Met polymorphism may be a risk factor for predisposition of OSCC in Turkish. In addition, XRCC3 Thr241Met genotype could be associated with tumor size and level of daily smoking.  相似文献   

12.
Zhu Y  Yang H  Chen Q  Lin J  Grossman HB  Dinney CP  Wu X  Gu J 《DNA Repair》2008,7(2):141-148
XPC, a key protein in the nucleotide excision repair (NER) pathway, recognizes damaged DNA and initiates NER. Genetic variations in the XPC gene might be associated with altered DNA repair capacities (DRC). In this study, we genotyped three XPC polymorphisms, Ala499Val (C-->T), PAT (-/+) and Lys939Gln (A-->C), and measured the DNA damage/DRC by alkaline comet assay challenged by BPDE and gamma-radiation in 476 healthy subjects. We also evaluated the associations between DNA damage/DRC and genotypes of XPC polymorphisms. Compared with the XPC Lys939Gln homozygous wild type (AA) subjects, subjects with the variant alleles (AC and CC) had significantly higher DNA damages induced by BPDE (Median and 95% confidence interval [CI]: 3.16 (3.01-3.44) vs. 2.88 (2.51-3.05), P=0.01), and gamma-radiation (4.18 (3.94-4.44) vs. 3.71 (3.49-4.04), P=0.01). However, subjects with the variant alleles (CT and TT) of Ala499Val exhibited a 8.6% and 13.1% decrease in DNA damages induced by BPDE (P=0.05) and gamma-radiation (P=0.001), respectively. Significant correlations were found between genotypes and induced DNA damages in XPC Lys939Gln (For BPDE: R=0.12, P=0.01; for gamma-radiation: R=0.094, P=0.046) and Ala499Val (For BPDE: R=-0.11, P=0.03; for gamma-radiation: R=-0.16, P=0.0009). The haplotypes "T-A" (in the order of Ala499Val-PAT-Lys939Gln) was associated with the lowest DNA damages. Our results suggested that the DRC of host cells might be modulated by specific XPC polymorphisms.  相似文献   

13.
Differences in response to carcinogenic agents are due to the allelic variants of the genes that control it. Key genes are those involved in the repair of the DNA damage caused by such agents. This paper describes the results of a case-control epidemiological study designed to determine the genotypes of four of these genes in persons exposed to a single genotoxic factor, i.e. asbestos, who had or had not developed malignant mesothelioma (MM). Our working hypothesis was that an imperfect DNA repair, as revealed by subtle polymorphic variants, could reduce protection against the chronic DNA insult provoked by asbestos and eventually result in mutagenesis and cancer. Seven variants (i.e. XRCC1-R399Q-NCBI SNP, XRCC1-R194W, XRCC3-T241M, XRCC3-IVS6-14, XPD-K751Q, XPD-D312N, OGG1-S326C) were investigated in 81 patients and 110 age and sex-matched controls, all residents at Casale Monferrato, a Piedmontese town highly exposed to asbestos pollution. Unconditional multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). When considered as a categorical variable, XRCC1-399Q showed an increased OR both in heterozygotes (OR=2.08; 95% CI=1.00-4.33) and homozygotes (2.38; 95% CI=0.82-6.94), although individual ORs were not significant. When it was considered as a continuous variable OR was significant (OR=1.68; 95% CI: 1.02-2.75). When genotypes were divided into "non-risk" and "risk" genotypes, i.e. those thought to be associated with increased risk in the light of the functional significance of the variants, XRCC1-399Q (Q homozygotes+Q/R heterozygotes versus R homozygotes) had an OR=2.147 (95% CI: 1.08-4.28), whereas that of XRCC3-241T (T homozygotes+M/T heterozygotes versus M homozygotes) was 4.09 (95% CI: 1.26-13.21) and that of OGG1-326C was increased, though not significantly. None of the haplotypes showed a significantly different frequency between patients and controls. This is the first report of an association between polymorphisms in DNA repair genes and asbestos-associated MM. Our data indicate that genetic factors are involved in MM development.  相似文献   

14.
The association of tumor differentiation and estrogen receptor expression with the prognosis of breast cancer has been well established. Nevertheless, little is yet reported about the association of morphological characteristics of the tumor, estrogen receptor status and polymorphisms in low penetrance genes. The aim of the present study was to investigate a possible association between DNA repair gene polymorphisms (XRCC1, XPD, XRCC3, and RAD51) with histological type, grade and hormone receptor expression in a series of breast cancers. A cross-sectional study was carried out to evaluate 94 women with breast carcinoma, who had already been selected and included in a study on the association of DNA repair gene polymorphisms. For immunohistochemistry, formalin-fixed, paraffin-embedded tissue samples from breast tumors were consecutively retrieved from the histopathology files of our institution. DNA obtained from blood samples of the same patients was investigated for the presence of the following polymorphisms: Arg-399Gln located in the XRCC1 gene; 135C/G located in the RAD51 gene; Lys751Gln located in the XPD gene and Thr241Met located in the XRCC3 gene. Polymorphisms were considered to be independent variables and hormone receptor expression and the morphological characteristics of the tumors comprised the dependent variables. No statistically significant association was found between gene polymorphisms and hormone receptor status. The association between XRCC1-Arg399Gln polymorphism and ductal carcinoma was statistically significant (P = 0.02). The association of the XPD-Lys751Gln polymorphism with histological grade was also tatistically significant (p = 0.05). In conclusion, the XRCC1 genotype was found to be associated with ductal carcinoma histotypes and XPD genotype with low histological grade, which is the most frequent pattern of sporadic breast carcinomas.  相似文献   

15.
Gangwar R  Manchanda PK  Mittal RD 《Genetica》2009,136(1):163-169
Identifying risk factors for human cancers should consider combinations of genetic variations and environmental exposures. Several polymorphisms in DNA repair genes have impact on repair and cancer susceptibility. We focused on X-ray repair cross-complementing group 1 (XRCC1), Xeroderma pigmentosum D (XPD) and apurinic/apyrimidinic endonuclease (APE1) as these are most extensively studied in cancer. Present study was conducted to determine distribution of XRCC1 C26304T, G27466A, G23591A, APE1 T2197G and XPD A35931C gene polymorphisms in North Indian population and compare with different populations globally. PCR-based analysis was conducted in 209 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of XRCC1 C26304T were 91.1% C(Arg); G27466A 62.9% G(Arg); G23591A 60.3% G(Arg); APE1 T2197G 75.1% T(Asp) and XPD A35931C 71.8% A(Lys). The variant allele frequency were 8.9% T(Trp) in XRCC1 C26304T; 37.1% A(His) in G27466A; 39.7% A(Gln) in G23591A; 24.9% G(Glu) in APE1 and 28.2% C(Gln) in XPD respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity. Our results suggest that frequency in these DNA repair genes exhibit distinctive pattern in India that could be attributed to ethnicity variation. This could assist in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.  相似文献   

16.
Breast cancer (BC) is the most prevalent type worldwide, besides being one of the most common causes of death among women. It has been suggested that sporadic BC is most likely caused by low-penetrance genes, including those involved in DNA repair mechanisms. Furthermore, the accumulation of DNA damage may contribute to breast carcinogenesis. In the present study, the relationship between two DNA repair genes, viz., XRCC1 (Arg399Gln) and XRCC3 (Thr241Met) polymorphisms, and the levels of chromosome damage detected in 65 untreated BC women and 85 healthy controls, was investigated. Chromosome damage was evaluated through micronucleus assaying, and genotypes determined by PCR-RFLP methodology. The results showed no alteration in the risk of BC and DNA damage brought about by either XRCC1 (Arg399Gln) or XRCC3 (Thr241Met) action in either of the two groups. Nevertheless, on evaluating BC risk in women presenting levels of chromosome damage above the mean, the XRCC3Thr241Met polymorphism was found to be more frequent in the BC group than in the control, thereby leading to the conclusion that there is a slight association between XRCC3 (241 C/T) genotypes and BC risk in the subgroups with higher levels of chromosome damage.  相似文献   

17.
Several potential functional polymorphisms in the DNA repair gene X-ray repair cross-complementing group 1 (XRCC1) Arg399Gln (rs25487), Arg194Trp (rs1799782), Arg280His (rs25489) and X-ray repair cross-complementing group 3 (XRCC3) T241M (rs861539) have been implicated in colorectal cancer (CRC) risk, but the results are conflicting. Here, we performed a meta-analysis of 23 published case control datasets and assessed genetic heterogeneity between those datasets. All the case–control studies published from January 2000 to June 2012 on the association between those polymorphisms and CRC risk were identified by searching the electronic literature Medline. Statistical analysis was performed with the software programs Review Manager (version 4.2). For overall CRC, no significant association was observed, the pooled odds ratios for XRCC1 Arg399Gln, Arg194Trp, Arg280His, and XRCC3 T241M were 1.02 (95 % CI: 0.93, 1.12), 1.03 (95 % CI: 0.94, 1.14), 0.98 (95 % CI: 0.85, 1.13) and 1.03 (95 % CI: 0.85, 1.26), respectively. Furthermore, no significant association was observed in subgroup analyses based on ethnicity. The results suggested that these four SNPs evaluated are not associated with risk of CRC.  相似文献   

18.
Genetic polymorphisms in DNA repair genes might influence the repair activities of the enzymes predisposing individuals to cancer risk. Owing to the presence of these genetic variants, interethnic differences in DNA repair capacity have been observed in various populations. The present study was undertaken to determine the allele and genotype frequencies of two common non-synonymous SNPs, XRCC3 p.Thr241>Met (C?>?T, rs861539) and XPD p.Lys751>Gln (T?>?G, rs13181) in a healthy Tunisian population and to compare them with HapMap ( http://www.hapmap.org/ ) populations. Also, we predicted their eventual functional effect based on bioinformatics tools. The genotypes of 154 healthy and unrelated individuals were determined by PCR-RFLP procedure. Our findings showed a close relatedness with Caucasians from European ancestry which might be explained by the strategic geographic location of Tunisia in the Mediterranean, thus allowing exchanges with Europeans countries. The in silico predictions showed that p.Thr241>Met substitution in XRCC3 protein was predicted as possibly damaging, indicating that it is likely to have functional consequences as well. To the best of our knowledge, this is the first study in this regard in Tunisia. So, these data could provide baseline database and help us to explore the relationship of XRCC3 and XPD polymorphisms with both cancer risk and DNA repair variability in our population.  相似文献   

19.
Background Hepatocellular carcinoma (HCC) is one of the life-threatening malignancies worldwide with hepatitis B and C virus infection as the major risk factor. The risk of HCC might also increase because of the hereditary genetic defects in DNA repair genes. In this regard, X-ray cross-complementing group 1 gene (XRCC1) is a major DNA repair gene involved in base excision repair (BER). Aim The present study was designed with an aim to find out any possible association between XRCC1 (codons 194, 280, and 399) polymorphisms and the risk of developing hepatitis virus-related HCC in Indian population. Methods A total of 407 subjects comprising (170 controls, 174 chronic viral hepatitis, and 63 HCC subjects) were included in the study. PCR–RFLP was used for the genotyping of the three codons of XRCC1. Results The study revealed that two genotypes Arg194Trp and Arg280His increased the risk of HCC by 2.27- (95% CI = 1.01–5.08; P < 0.001) and 4.95-folds (95% CI = 2.48–9.89; P < 0.001), respectively. Interestingly, the risk for HCC was further enhanced by 35.96 (95% CI = 11.64–110.91; P < 0.001) and 5.28 times (95% CI = 2.81–9.09; P < 0.001) when the genotype Arg280His was found in association with Arg194Trp and Arg399Gln, respectively. Conclusion These preliminary results suggest a positive association of XRCC1 genotypes and risk of hepatitis virus-related HCC in India.  相似文献   

20.
Association between the polymorphism of DNA repair genes XRCC1 Arg399ln and XRCC3 Thr241Met and the frequency of chromosomal aberrations in the uranium workers was studied. The Gln/Gln genotype of gene XRCC1 was associated with a significant increase in the number of chromosomal aberrations as compared to the corresponding homozygous wild type Arg/Arg (p < 0.05). The frequency of chromosomal aberrations in heterozygous carriers of the XRCC3gene Thr/Met was lower than in the homozygous carriers of the wild type Thr/Thr (p < 0.001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号