首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The insulin-like growth factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs), which regulate IGF activity, play a fundamental role in renal cell proliferation and differentiation. The thyroid hormone is considered to be required for kidney development; excess induces local hypertrophy and hyperplasia. The aim of the present study was to investigate the possible involvement of the IGF/IGFBP system in thyroid hormone-induced renal growth during the development of the rat. Our results show that thyroid hormone withdrawal by 6-propyl-2-thiouracil (PTU)-treatment of rats at all ages had no effect on renal IGFBP-4 mRNA levels, whereas the abundance of the serum protein was decreased compared to controls. Intraperitoneal triiodothyronine (T3) administration to hypothyroid rats resulted in renal hypertrophy associated with a significant upregulation of IGFBP-4 expression with increased levels of renal IGFBP-4 mRNA and serum protein. T3-induced upregulation of IGFBP-4 expression suggests the involvement of the local IGF/IGFBP system in T3-induced renal hypertrophy.  相似文献   

3.
4.
The liver is a major source of circulating insulin-like growth factor I (IGF-I), and it also synthesizes several classes of IGF binding proteins (IGFBPs). Synthesis of IGF-I and IGFBPs is regulated by hormones, growth factors, and cytokines. They are nutritionally regulated and expressed in developmentally specific patterns. To gain insight into cellular regulatory mechanisms that determine hepatic synthesis of IGF-I and IGFBPs and to identify potential target cells for IGF-I within the liver, we studied the cellular sites of synthesis of IGF-I, IGF receptor, growth hormone (GH) receptor, and IGFBPs in freshly isolated rat hepatocytes, endothelial cells, and Kupffer cells. We also localized cellular sites of IGFBP synthesis by in situ hybridization histochemistry. Western ligand and immunoblot analyses were used to determine IGFBP secretion by isolated cells. Two IGF-I mRNA subtypes with different 5' ends (class 1 and class 2) were detected in all isolated liver cell preparations. Type 1 IGF receptor mRNA was detected in endothelial cells, indicating that these cells are a local target for IGF actions in liver. GH receptor was expressed in all cell preparations, consistent with GH regulation of IGF-I and IGFBP synthesis in multiple liver cell types. The IGFBPs expressed striking cell-specific expression. IGFBP-1 was synthesized only in hepatocytes, and IGFBP-3 was expressed in Kupffer and endothelial cells. IGFBP-4 was expressed at high levels in hepatocytes and at low levels in Kupffer and endothelial cells. Cell-specific expression of distinct IGFBPs in the liver provides the potential for cell-specific regulation of hepatic and endocrine actions of IGF-I.  相似文献   

5.
During perinatal development, the regulation of IGF system appears to be growth hormone (GH) independent. By using highly purified primary fetal hepatocytes, we investigated the role of prolactin (PRL) in the regulation of IGF system and hepatocyte proliferation. We also analyzed the consequence of a maternal low-protein (LP) diet on the regulation of IGF, IGF-binding protein (IGFBP), and hepatocyte proliferation by prolactin. Pregnant Wistar rats were fed a control (C) diet (20% protein) or isocaloric (LP; 8%) diet throughout gestation. On day 21.5, fetal hepatocytes were cultured for 4 days and incubated with rat prolactin. In the C hepatocytes, PRL at 100 ng/ml decreased the abundance of IGFBP-1 and IGFBP-2 by 50 (P < 0.05) and 60% (P < 0.01), respectively. It also reduced by 70% the level of IGF-II mRNA (P < 0.01). By contrast, PRL failed to modulate IGFBP-1 and IGFBP-2 production by LP hepatocytes, and this was associated with reduced abundance of the short form of PRL receptor (P < 0.05). PRL had no effect on either the proliferation or the IGF-I production by C and LP hepatocytes, although it reduced the expression of IGF-II. These results suggest that prolactin influences hepatocyte proliferation in vitro by inhibiting IGFBP-1, IGFBP-2, and IGF-II levels, which may coincide with the decline of IGF-II observed in rodents during late gestation in vivo. On the other hand, maternal LP diet induces a resistance of fetal hepatocytes to PRL.  相似文献   

6.
The insulin-like growth factors (IGFs) have been implicated in the growth regulation of human breast cancer. Since the IGFs are associated with specific binding proteins (IGFBPs) which may modulate receptor/ligand interactions, production of IGFBPs by breast cancer cells could alter their IGF-dependent growth. This study examined the expression of IGFBPs 4, 5, and 6 in eight breast cancer cell lines (BCCLs) using ribonuclease (RNase) protection assays. IGFBP-4 mRNA was detected in all BCCLs studied. IGFBP-5 expression was higher in estrogen receptor (ER) positive cells, while IGFBP-6 mRNA was detected in only two ER negative BCCLs. We also found that E2 treatment enhanced the expression of IGFBPs 2, 4, and 5 in T47-D cells. We next studied IGFBP mRNA expression in 40 primary breast tumors. All tumors expressed mRNA for IGFBPs 2–6 but none expressed IGFBP-1 message. IGFBP-3 expression was higher in ER negative tumors, while that of IGFBP-4 and -5 was higher in ER positive specimens. These differences were statistically significant (P < .05). Ligand blot analysis of tumor extracts confirmed the presence of IGFBPs in breast cancer tissues. Thus, differential IGFBP expression in ER positive and negative tumors suggests an important role for this protein in breast cancer biology.  相似文献   

7.
The effects of dexamethasone (Dex) on insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-1 production were investigated in primary cultures of rat hepatocytes. Dex enhanced the secretion of IGFBP-1 as measured by ligand blot analysis but did not show any prominent effect on immunoreactive IGF-I secretion. EC50 of Dex on IGFBP-1 secretion was calculated to be 3 x 10(-8) M. The content of IGFBP-1 mRNA in the cells increased greatly in the presence of Dex but the IGF-I mRNA content did not change significantly under the same conditions. Insulin showed the opposite effect of Dex by decreasing the production of IGFBP-1 and the cellular content of IGFBP-1 mRNA. This effect of insulin was observed also with Dex in the medium. These results show that the gene expression of IGF-I and IGFBP-1 is differently regulated by glucocorticoids and insulin in primary cultures of rat hepatocytes. The results most possibly explain the in vivo effects of glucocorticoids and insulin in regulation of IGF-I and IGFBP-1 production by liver.  相似文献   

8.
Alcoholism can result in fatty liver that can progress to steatohepatitis, cirrhosis, and liver cancer. Mice fed alcohol develop fatty liver through endocannabinoid activation of hepatic CB1 cannabinoid receptors (CB1R), which increases lipogenesis and decreases fatty acid oxidation. Chronic alcohol feeding also up-regulates CB1R in hepatocytes in vivo, which could be replicated in vitro by co-culturing control hepatocytes with hepatic stellate cells (HSC) isolated from ethanol-fed mice, implicating HSC-derived mediator(s) in the regulation of hepatic CB1R (Jeong, W. I., Osei-Hyiaman, D., Park, O., Liu, J., Bátkai, S., Mukhopadhyay, P., Horiguchi, N., Harvey-White, J., Marsicano, G., Lutz, B., Gao, B., and Kunos, G. (2008) Cell Metab. 7, 227–235). HSC being a rich source of retinoic acid (RA), we tested whether RA and its receptors may regulate CB1R expression in cultured mouse hepatocytes. Incubation of hepatocytes with RA or RA receptor (RAR) agonists increased CB1R mRNA and protein, the most efficacious being the RARγ agonist CD437 and the pan-RAR agonist TTNPB. The endocannabinoid 2-arachidonoylglycerol (2-AG) also increased hepatic CB1R expression, which was mediated indirectly via RA, because it was absent in hepatocytes from mice lacking retinaldehyde dehydrogenase 1, the enzyme catalyzing the generation of RA from retinaldehyde. The binding of RARγ to the CB1R gene 5′ upstream domain in hepatocytes treated with RAR agonists or 2-AG was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift and antibody supershift assays. Finally, TTNPB-induced CB1R expression was attenuated by small interfering RNA knockdown of RARγ in hepatocytes. We conclude that RARγ regulates CB1R expression and is thus involved in the control of hepatic fat metabolism by endocannabinoids.  相似文献   

9.
Carnitine palmitoyltransferase I (CPT-I) catalyzes the rate-controlling step in the pathway of mitochondrial fatty acid oxidation. Thyroid hormone will stimulate the expression of the liver isoform of CPT-I (CPT-I alpha). This induction of CPT-I alpha gene expression requires the thyroid hormone response element in the promoter and sequences within the first intron. The peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) is a coactivator that promotes mitochondrial biogenesis, mitochondrial fatty acid oxidation, and hepatic gluconeogenesis. In addition, PGC-1 alpha will stimulate the expression of CPT-I alpha in primary rat hepatocytes. Here we report that thyroid hormone will increase PGC-1 alpha mRNA and protein levels in rat hepatocytes. In addition, overexpression of PGC-1 alpha will enhance the thyroid hormone induction of CPT-I alpha indicating that PGC-1 alpha is a coactivator for thyroid hormone. By using chromatin immunoprecipitation assays, we show that PGC-1 alpha is associated with both the thyroid hormone response element in the CPT-I alpha gene promoter and the first intron of the CPT-I alpha gene. Our data demonstrate that PGC-1 alpha participates in the stimulation of CPT-I alpha gene expression by thyroid hormone and suggest that PGC-1 alpha is a coactivator for thyroid hormone.  相似文献   

10.
11.
Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-β stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-β is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal controls. These findings indicate that human HSCs, in their activated phenotype, constitutively produce IGFBPs. IGF-I and TGF-β differentially regulate IGFBP-3, IGFBP-4, and IGFBP-5 expression, which, in turn, may modulate the in vitro and in vivo action of IGF-I. J. Cell. Physiol. 174:240–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
9-cis Retinoic acid (9cRA) is a promising lead compound to design the retinoid X receptor (RXR) ligands with the ability to simultaneously activate RXR heterodimers with the selectivity to their nuclear receptor partners. In this study, we investigated the effects of 9cRA on the prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) production. 9cRA increased the PGE2 and TXA2 productions in the presence of lipopolysaccharide (LPS). All-trans retinoic acid, the retinoic acid receptor ligand, also increased their production. We revealed that cyclooxygenase (COX)-2 was clearly induced by 9cRA in the presence of LPS. The induction was not suppressed by indomethacin, which completely inhibited the increase in the LPS-stimulated prostanoid production by 9cRA. The expression levels of the toll-like receptor 4 and CD14, which were components of the LPS receptor complex, were increased by 9cRA in the presence and absence of LPS. PGE synthase was also clearly increased by 9cRA in the presence and absence of LPS. In this study, we noted that 9cRA increased the production of PGE2 and TXA2 by the induction of COX-2 and PGE synthase in the presence of LPS. The induction of the LPS receptor complex by 9cRA is able to upregulate the induction of COX-2 by LPS.  相似文献   

13.
The induction of malic enzyme gene expression by triiodothyronine and insulin was severely blunted in rat monolayer hepatocytes cultured on type I collagen compared with that in spherical hepatocytes cultured on a reconstituted basement membrane gel (EHS-gel). Although the mRNA level of thyroid hormone receptor β (TRβ) gradually decreased in the monolayer hepatocytes during culture, the mRNA level in the hepatocytes on EHS-gel was maintained at around the in vivo level. Our results suggest that the maintenance of TRβ mRNA on EHS-gel is responsible for the high responsiveness to thyroid hormone in a hepatocyte culture.  相似文献   

14.
We provide here further data on the dramatic homeotic transformation of tails into limbs which is induced by retinoids during frog tadpole tail regeneration. The effect can still be produced up to nine days after tail amputation by which time tail regeneration has essentially been completed. Complete tail amputation is needed for the effects to be manifest, partial damage of various sorts to the tail is not enough. We show that as well as retinyl palmitate, other retinoids such as all-trans-retinoic acid and TTNPB, which is a RAR specific retinoid, can induce the homeotic transformation. TTNPB has a 300x greater potency than retinoic acid. Prolactin, which inhibits thyroid hormone production, prevents the appearance of limbs on the tail from which we conclude that thyroid hormone is needed. We present preliminary evidence from RT-PCR that all six retinoid receptors, the three retinoic acid receptors (RARs), and the three retinoid X receptors (RXRs), are present in the normal tail blastema and that after retinoid treatment RARα, RXRα, and RXRβ may be up-regulated. Finally, we show that when RA synthesis is inhibited, normal tail regeneration is inhibited. We conclude that tail regeneration depends upon a particular endogenous level of RA, but that when this level is raised by external administration and thyroid hormone receptors are present the up-regulation of certain retinoid receptors allows novel nuclear receptor interactions which results in the induction of limb-specific genes leading to the appearance of limbs on the tail. © 1996 Wiley-Liss, Inc.  相似文献   

15.
16.
Insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) is primarily produced in the liver during inflammation and regulates biological activities of IGF-I. Here we demonstrate that interleukin-1beta (IL-1beta) stimulates IGFBP-1 mRNA production in a dose-dependent manner in hepatocytes from Fisher 344 rats. Employment of c-Jun N-terminal kinase (JNK) inhibitor SP600125 resulted in 3-fold reduction of IGFBP-1 mRNA and protein levels, indicating that IL-1beta-induced IGFBP-1 production is mediated through JNK activation. We further show that hepatocytes from aged rats (20-22 mo), as compared to young (3-4 mo), exhibit up to 2-fold higher levels of IGFBP-1 in response to IL-1beta. IL-1beta-induced phosphorylation of JNK was also significantly higher in aged hepatocytes, and SP600125 treatment eliminated age-related differences in IGFBP-1 mRNA production. Moreover, glutathione depletion in hepatocytes from young rats potently activated JNK, as well as increased IL-1beta-induced IGFBP-1 mRNA levels, suggesting that age-related oxidative stress underlies the upregulated JNK activation and IGFBP-1 expression.  相似文献   

17.
18.
Isolated cells produce insulin-like growth factors (IGFs) and their binding proteins (IGFBPs). Two distinct cell types were studied with regard to IGFBP-2 expression: (i) rat hepatocytes, which produce IGF I at a high rate and thus regulate its plasma concentration; and (ii) rat osteoblasts, which are targets of IGF I action. IGFBP-2 expression is low in hepatocytes prepared from normal adult rats and high in calvaria cells from newborn rats. Retinoic acid stimulates IGFBP-2 production by liver cells. Insulin suppresses both basal and retinoic acid-induced IGFBP-2 mRNA expression in hepatocytes and has no such effect on osteoblasts. Retinoic acid and insulin regulate IGFBP-2 expression in a tissue-specific manner.  相似文献   

19.
20.
Haga Y  Suzuki T  Takeuchi T 《Zoological science》2002,19(10):1105-1112
We previously reported that characteristic deformities were induced by retinoic acid (RA) treatment of the Japanese flounder, Paralichthys olivaceus, at 6-9 days post-hatching (dph). To evaluate the toxic potency of nuclear retinoid receptors in induction of deformities by RA, we here investigated the effects of retinoic acid isomers on postembryonic development of this species. Larvae were exposed to either 25 nM of all-trans RA (atRA), 9-cis RA (9cRA) or 13-cis RA (13cRA) at 6-9 dph. All RA isomers induced deformities in the lower jaw, caudal fin and vertebrae. In the lower jaw, growth retardation of the dentary was evident. In the vertebrae, the major abnormalities were hypertrophy of the centrum, central fusion, and an increase in the number of abdominal vertebrae. Caudal fin deformities included deformity of caudal bone complex and absence of the entire caudal fin. The absence of the hypural primordium at 12 dph was the first sign of abnormality in caudal fin development, and resulted in complete blocking of the caudal fin development. Among the RA isomers, atRA induced the most severe deformity in all skeletons examined. Retinoic acid receptor (RAR) expression was activated by atRA and 9cRA, and pitx2 expression was inhibited in the lower jaw by atRA and 9cRA. Vitamin D receptor (VDR) expression was specifically inhibited by atRA treatment, suggesting that RA inhibits the lower jaw growth by suppressing the expression of these genes. These results suggest that RA exerted toxic effects on the skeletal systems, mainly through the RAR pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号