首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cystic fibrosis, the mutation of the CFTR protein causes reduced transepithelial Cl secretion. As recently proposed, beside its role of Cl channel, CFTR may regulate the activity of other channels such as a Ca2+-activated Cl channel. Using a calcium imaging system, we show, in adenovirus-CFTR infected Chinese Hamster Ovary (CHO) cell monolayers, that CFTR can act as a regulator of intracellular [Ca2+] i ([Ca2+] i ), involving purino-receptors. Apical exposure to ATP or UTP produced an increase in ([Ca2+] i in noninfected CHO cell monolayers (CHO-WT), in CHO monolayers infected with an adenovirus-CFTR (CHO-CFTR) or infected with an adenovirus-LacZ (CHO-LacZ). The transient [Ca2+] i increase produced by ATP or UTP could be mimicked by activation of CFTR with forskolin (20 μm) in CHO-CFTR confluent monolayers. However, forskolin had no significant effect on [Ca2+] i in noninfected CHO-WT or in CHO-LacZ cells. Pretreatment with purino-receptor antagonists such as suramin (100 μm) or reactive blue-2. (100 μm), and with hexokinase (0.28 U/mg) inhibited the [Ca2+] i response to forskolin in CHO-CFTR infected cells. Taken together, our experiments provide evidence for purino-receptor activation by ATP released from the cell and regulation of [Ca2+] i by CFTR in CHO epithelial cell membranes. Received: 5 April 1999/Revised: 28 June 1999  相似文献   

2.
HKC‐8 cells are a human‐derived renal proximal tubular cell line and provide a useful model system for the study of human renal cell function. In this study, we aimed to determine [Ca2+]i signalling mediated by P2 receptor in HKC‐8. Fura‐2 and a ratio imaging method were employed to measure [Ca2+]i in HKC‐8 cells. Our results showed that activation of P2Y receptors by ATP induced a rise in [Ca2+]i that was dependent on an intracellular source of Ca2+, while prolonged activation of P2Y receptors induced a rise in [Ca2+]i that was dependent on intra‐ and extracellular sources of Ca2+. Pharmacological and molecular data in this study suggests that TRPC4 channels mediate Ca2+ entry in coupling to activation of P2Y in HKC‐8 cells. U73221, an inhibitor of PI‐PLC, did not inhibit the initial ATP‐induced response; whereas D609, an inhibitor of PC‐PLC, caused a significant decrease in the initial ATP‐induced response, suggesting that P2Y receptors are coupled to PC‐PLC. Although P2X were present in HKC‐8, The P2X agonist, α,β me‐ATP, failed to cause a rise in [Ca2+]i. However, PPADS at a concentration of 100 µM inhibits the ATP‐induced rise in [Ca2+]i. Our results indicate the presence of functional P2Y receptors in HKC‐8 cells. ATP‐induced [Ca2+]i elevation via P2Y is tightly associated with PC‐PLC and TRP channel. J. Cell. Biochem. 109: 132–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Adenosine 5′-triphosphate (ATP) is an extracellular signal that regulates various cellular functions. Cellular secretory activities are enhanced by ATP as well as by cholinergic and adrenergic stimuli. The present study aimed to determine which purinoceptors play a role in ATP-induced changes in the intracellular concentration of calcium ions ([Ca2+]i) and in the fine structure of acinar cells of rat lacrimal glands. ATP induced exocytotic structures, vacuolation and an increase in [Ca2+]i in acinar cells. The removal of extracellular Ca2+ or the use of Ca2+ channel blockers partially inhibited the ATP-induced [Ca2+]i increase. U73122 (an antagonist of PLC) and heparin (an antagonist of IP3 receptors) did not completely inhibit the ATP-induced [Ca2+]i increase. P1 purinoceptor agonists did not induce any changes in [Ca2+]i, whereas suramin (an antagonist of P2 receptors) completely inhibited ATP-induced changes in [Ca2+]i. A P2Y receptor agonist, 2-MeSATP, induced a strong increase in [Ca2+]i, although UTP (a P2Y2,4,6 receptor agonist) had no effect, and reactive blue 2 (a P2Y receptor antagonist) resulted in partial inhibition. The potency order of ATP analogs (2-MeSATP > ATP ⋙ UTP) suggested that P2Y1 played a significant role in the cellular response to ATP. BzATP (a P2X7 receptor agonist) induced a small increase in [Ca2+]i, but α,β-meATP (a P2X1,3 receptor agonist) had no effect. RT-PCR indicated that P2X2,3,4,5,6,7 and P2Y1,2,4,12,14 are expressed in acinar cells. In conclusion, the response of acinar cells to ATP is mediated by P2Y (especially P2Y1) as well as by P2X purinoceptors.  相似文献   

4.
In cystic fibrosis airway epithelia, mutation of the CFTR protein causes a reduced response of Cl secretion to secretagogues acting via cAMP. Using a Ca2+ imaging system, the hypothesis that CFTR activation may permit ATP release and regulate [Ca2+] i via a receptor-mediated mechanism, is tested in this study. Application of external nucleotides produced a significant increase in [Ca2+] i in normal (16HBE14o cell line and primary lung culture) and in cystic fibrosis (CFTE29o cell line) human airway epithelia. The potency order of nucleotides on [Ca2+] i variation was UTP ≫ ATP > UDP > ADP > AMP > adenosine in both cell types. The nucleotide [Ca2+] i response could be mimicked by activation of CFTR with forskolin (20 μm) in a temperature-dependent manner. In 16HBE14o cells, the forskolin-induced [Ca2+] i response increased with increasing temperature. In CFTE29o cells, forskolin had no effect on [Ca2+] i at body temperature-forskolin-induced [Ca2+] i response in CF cells could only be observed at low experimental temperature (14°C) or when cells were cultured at 26°C instead of 37°C. Pretreatment with CFTR channel blockers glibenclamide (100 μm) and DPC (100 μm), with hexokinase (0.5 U/mg), and with the purinoceptor antagonist suramin (100 μm), inhibited the forskolin [Ca2+] i response. Together, these results demonstrate that once activated, CFTR regulates [Ca2+] i by mediating nucleotide release and activating cell surface purinoceptors in normal and CF human airway epithelia. Received: 3 April 2000/Revised: 30 June 2000  相似文献   

5.
Bone marrow stromal cells (BMSCs) are an interesting subject of research because they have characteristics of mesenchymal stem cells. We investigated intracellular Ca2+ signaling in rat BMSCs. Agonists for purinergic receptors increased intracellular Ca2+ levels ([Ca2+]i). The order of potency followed ATP = UTP > ADP = UDP. ATP‐induced rise in [Ca2+]i was suppressed by U73122 and suramin, but not by pyridoxalphosphate‐6‐azophenyl‐2′,4′‐disulfonic acid (PPADS), suggesting the functional expression of G protein‐coupled P2Y2 receptors. RT‐PCR and immunohistochemical studies also showed the expression of P2Y2 receptors. [Ca2+]i response to UTP changed with cell density. The UTP‐induced rise in [Ca2+]i was greatest at high density. Vmax (maximum Ca2+ response) and EC50 (agonist concentration that evokes 50% of Vmax) suggest that the amount and property of P2Y2 receptors were changed by cell density. Note that UTP induced Ca2+ oscillation at only medium cell density. Pharmacological studies indicated that UTP‐induced Ca2+ oscillation required Ca2+ influx by store‐operated Ca2+ entry. Carbenoxolone, a gap junction blocker, enhanced Ca2+ oscillation. Immunohistochemical and quantitative real‐time PCR studies revealed that proliferating cell nuclear antigen (PCNA)‐positive cells declined but the mRNA expression level of the P2Y2 receptor increased as cell density increased. Co‐application of fetal calf serum with UTP induced Ca2+ oscillation at high cell density. These results suggest that the different patterns observed for [Ca2+]i mobilization with respect to cell density may be associated with cell cycle progression. J. Cell. Physiol. 219: 372–381, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Purinergic signaling may be involved in embryonic development of the heart. In the present study, the effects of purinergic receptor stimulation on cardiomyogenesis of mouse embryonic stem (ES) cells were investigated. ADP or ATP increased the number of cardiac clusters and cardiac cells, as well as beating frequency. Cardiac-specific genes showed enhanced expression of α-MHC, MLC2v, α-actinin, connexin 45 (Cx45), and HCN4, on both gene and protein levels upon ADP/ATP treatment, indicating increased cardiomyogenesis and pacemaker cell differentiation. Real-time RT-PCR analysis of purinergic receptor expression demonstrated presence of P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y4, and P2Y6 on differentiating ES cells. ATP and ADP as well as the P2X agonists β,γ-methylenadenosine 5′-triphosphate (β,γ-MetATP) and 8-bromoadenosine 5′-triphosphate (8-Br-ATP) but not UTP or UDP transiently increased the intracellular calcium concentration ([Ca2+]i) as evaluated by the calcium indicator Fluo-4, whereas no changes in membrane potential were observed. [Ca2+]i transients induced by ADP/ATP were abolished by the phospholipase C-β (PLC-β) inhibitor U-73122, suggesting involvement of metabotropic P2Y receptors. Furthermore, partial inhibition of [Ca2+]i transients was achieved in presence of MRS2179, a selective P2Y1 receptor antagonist, whereas PPADS, a non-selective P2 receptor inhibitor, completely abolished the [Ca2+]i response. Consequently, cardiomyocyte differentiation was decreased upon long term co-incubation of cells with ADP and P2 receptor antagonists. In summary, activation of purinoceptors and the subsequent [Ca2+]i transients enhance the differentiation of ES cells toward cardiomyocytes. Purinergic receptor stimulation may be a promising strategy to drive the fate of pluripotent ES cells into a particular population of cardiomyocytes.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9468-1) contains supplementary material, which is available to authorized users.  相似文献   

7.
Biased agonism describes a multistate model of G protein-coupled receptor activation in which each ligand induces a unique structural conformation of the receptor, such that the receptor couples differentially to G proteins and other intracellular proteins. P2Y receptors are G protein-coupled receptors that are activated by endogenous nucleotides, such as adenosine 5′-triphosphate (ATP) and uridine 5′-triphosphate (UTP). A previous report suggested that UTP may be a biased agonist at the human P2Y11 receptor, as it increased cytosolic [Ca2+], but did not induce accumulation of inositol phosphates, whereas ATP did both. The mechanism of action of UTP was unclear, so the aim of this study was to characterise the interaction of UTP with the P2Y11 receptor in greater detail. Intracellular Ca2+ was monitored in 1321N1 cells stably expressing human P2Y11 receptors using the Ca2+-sensitive fluorescent indicator, fluo-4. ATP evoked a rapid, concentration-dependent rise in intracellular Ca2+, but surprisingly, even high concentrations of UTP were ineffective. In contrast, UTP was slightly, but significantly more potent than ATP in evoking a rise in intracellular Ca2+ in 1321N1 cells stably expressing the human P2Y2 receptor, with no difference in the maximum response. Thus, the lack of response to UTP at hP2Y11 receptors was not due to a problem with the UTP solution. Furthermore, coapplying a high concentration of UTP with ATP did not inhibit the response to ATP. Thus, contrary to a previous report, we find no evidence for an agonist action of UTP at the human P2Y11 receptor, nor does UTP act as an antagonist.  相似文献   

8.
Purinergic P2Y2 G-protein coupled receptors play a key role in the regulation of hepatic Ca2+ signaling by extracellular ATP. The concentration of copper in serum is about 20 μM. Since copper accumulates in the liver in certain disease states, the purpose of these studies was to assess the effects of copper on P2Y2 receptors in a model liver cell line. Exposure to a P2Y2 agonist UTP increased [Ca2+]i by stimulating Ca2+ release from thapsigargin-sensitive Ca2+ stores. Pretreatment of HTC cells for several minutes with copper did not affect cell viability, but potently inhibited increases in [Ca2+]i evoked by UTP and thapsigargin. During this pretreatment, copper was not transported into the cytosol, and inhibited P2Y2 receptors in a concentration-dependent manner with the IC50 of about 15 μM. These results suggest that copper inhibits P2Y2 receptors through the effects on thapsigargin-sensitive Ca2+ stores by acting from an extracellular side. Further experiments indicated that these effect of copper may lead to inhibition of regulatory volume decrease (RVD) evoked by hypotonic solution. Thus, copper may contribute to defective regulation of purinergic signaling and liver cell volume in diseases associated with the increased serum copper concentration.  相似文献   

9.
Extracellular nicotinamide adenine dinucleotide (NAD+) is known to increase the intracellular calcium concentration [Ca2+]i in different cell types and by various mechanisms. Here we show that NAD+ triggers a transient rise in [Ca2+]i in human monocytes activated with lipopolysaccharide (LPS), which is caused by a release of Ca2+ from IP3-responsive intracellular stores and an influx of extracellular Ca2+. By the use of P2 receptor-selective agonists and antagonists we demonstrate that P2 receptors play a role in the NAD+-induced calcium response in activated monocytes. Of the two subclasses of P2 receptors (P2X and P2Y) the P2Y receptors were considered the most likely candidates, since they share calcium signaling properties with NAD+. The identification of P2Y1 and P2Y11 as receptor subtypes responsible for the NAD+-triggered increase in [Ca2+]i was supported by several lines of evidence. First, specific P2Y1 and P2Y11 receptor antagonists inhibited the NAD+-induced increase in [Ca2+]i. Second, NAD+ was shown to potently induce calcium signals in cells transfected with either subtype, whereas untransfected cells were unresponsive. Third, NAD+ caused an increase in [cAMP]i, prevented by the P2Y11 receptor-specific antagonist NF157.  相似文献   

10.
Nucleotides play an important role in brain development and may exert their action via ligand-gated cationic channels or G protein-coupled receptors. Patch-clamp measurements indicated that in contrast to AMPA, ATP did not induce membrane currents in human midbrain derived neuronal progenitor cells (hmNPCs). Various nucleotide agonists concentration-dependently increased [Ca2+]i as measured by the Fura-2 method, with the rank order of potency ATP > ADP > UTP > UDP. A Ca2+-free external medium moderately decreased, whereas a depletion of the intracellular Ca2+ storage sites by cyclopiazonic acid markedly depressed the [Ca2+]i transients induced by either ATP or UTP. Further, the P2Y1 receptor antagonistic PPADS and MRS 2179, as well as the nucleotide catalyzing enzyme apyrase, allmost abolished the effects of these two nucleotides. However, the P2Y1,2,12 antagonistic suramin only slightly blocked the action of ATP, but strongly inhibited that of UTP. In agreement with this finding, UTP evoked the release of ATP from hmNPCs in a suramin-, but not PPADS-sensitive manner. Immunocytochemistry indicated the co-localization of P2Y1,2,4-immunoreactivities (IR) with nestin-IR at these cells. In conclusion, UTP may induce the release of ATP from hmNPCs via P2Y2 receptor-activation and thereby causes [Ca2+]i transients by stimulating a P2Y1-like receptor.  相似文献   

11.
Abstract: We found that extracellular ATP can increase the intracellular Ca2+ concentration ([Ca2+]i) in mouse pineal gland tumor (PGT-β) cells. Studies of the [Ca2+]i rise using nucleotides and ATP analogues established the following potency order: ATP, adenosine 5′-O-(3-thiotriphosphate) ≥ UTP > 2-chloro-ATP > 3′-O-(4-benzoyl)benzoyl ATP, GTP ≥ 2-methylthio ATP, adenosine 5′-O-(2-thiodiphosphate) (ADPβS) > CTP. AMP, adenosine, α,β-methyleneadenosine 5′-triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and UMP had little or no effect on the [Ca2+]i rise. Raising the extracellular Mg2+ concentration to 10 mM decreases the ATP-and UTP-induced [Ca2+]i rise, because the responses depend on the ATP4? and UTP4? concentrations, respectively. The P2U purinoceptor-selective agonist UTP and the P2Y purinoceptor-selective agonist ADPβS induce inositol 1,4,5-trisphosphate generation in a concentration-dependent manner with maximal effective concentrations of ~100 µM. In sequential stimulation, UTP and ADPβS do not interfere with each other in raising the [Ca2+]i. Costimulation with UTP and ADPβS results in additive inositol 1,4,5-trisphosphate generation to a similar extent as is achieved with ATP alone. Pretreatment with pertussis toxin inhibits the action of UTP and ATP by maximally 45–55%, whereas it has no effect on the ADPβS response. Treatment with 1 µM phorbol 12-myristate 13-acetate inhibits the ADPβS-induced [Ca2+]i rise more effectively than the ATP- and UTP-induced responses. These results suggest that P2U and P2Y purinoceptors coexist on PGT-β cells and that both receptors are linked to phospholipase C.  相似文献   

12.
Using a two-wave fluorescence probe, Fura-2, we studied changes in the intracellular concentration of calcium ions ([Ca2+]i) resulting from activation of muscarinic and purine receptors in single myocytes of the guinea-pig small intestine. Applications of the respective agonists added to the normal Krebs solution (1.0, 10.0, and 100.0 μM carbachol, CCh, as well as 10.0 and 100.0 μM ATP) induced a rise in the [Ca2+]i. Carbachol evoked an increase in the [Ca2+]i, including two components (a rapid and a plateaulike), while ATP under analogous conditions led only to a short-lasting rise in the [Ca2+]i. Transients induced by CCh or ATP applied in different concentrations, which exceeded a certain level, did not significantly differ from each other in their amplitudes, i.e., they were generated according to an all-or-none principle. In the nominally Ca-and Mg-free solution, CCh and ATP induced only rapid increases in the [Ca2+]i in myocytes. The absence of the slow component in the [Ca2+]i elevation upon the action of CCh under such conditions indicates that the effect of ATP, as compared with that of CCh, is not related to activation of the entry of Ca2+ ions into cells through voltage-operated calcium channels. After the addition of CCh, repeated application of CCh or ATP induced no effect, while application of CCh after the addition of ATP initiated a rise in the [Ca2+]i. These data show that intracellular calcium stores are depleted completely upon the action of CCh, while they are depleted only partially after the action of ATP. An inhibitor of phospholipase C (PLC), U-73122 (5.0 μM), completely blocked rises in the [Ca2+]i induced by both CCh and ATP; therefore, the release of Ca2+ ions from the intracellular calcium stores after application of these agonists is mediated by PLC. We hypothesize that the difference in the release of Ca2+ ions from the intracellular stores observed in our experiments upon activation of choline and purine receptors (partial and complete depletion of the stores upon the action of ATP and CCh, respectively) is responsible for the opposite functional effects of the above-mentioned neurotransmitters on smooth muscles. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 3–10, January–February, 2006.  相似文献   

13.
To study changes in the cytoplasmic Ca2+ concentration ([Ca2+]i) and the total amount of calcium in cells, we used, respectively, the fluorescent dye fura 2/AM and the metallochrome dye arsenazo III. The total amount of calcium in acinar cells after their incubation in calcium-free ATP-containing extracellular solution decreased. The action of ATP induced a dose-dependent increase in the [Ca2+]i; the EC50 was, on average, 130 ± ± 36 μM. Calcium transients induced by ATP demonstrated no desensitization. Against the background of a blocker of ionotropic P2X receptors, pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid, we observed a decrease in the ATP-induced calcium transients by 72%. In addition, these transients were reduced by 65% in the calcium-free milieu, while after thapsigargin-induced exhaustion of the endoplasmic reticulum store they disappeared. This is indicative of the involvement of metabotropic P2Y receptors in the formation of the above calcium transients. Therefore, P2X and P2Y receptors participate in ATP-induced calcium signalling in acinar cells of the submandibular salivary gland; activation of these channels results in a rise in the [Ca2+]i. The P2X receptors to a higher extent contribute to the formation of calcium signals; the P2Y-determined increase in the [Ca2+]i is smaller (equal to about 35%). Therefore, the functionally active ligand-operated ionotropic P2Y receptors and metabotropic G protein-related P2Y receptors do exist in acinar cells of the submandibular salivary gland and play an important role in the control of functioning of this gland. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 395–402, September–December, 2005.  相似文献   

14.
In the present study, we show that the extracellular addition of nicotinamide adenine dinucleotide (NAD+) induces a transient rise in [Ca2+]i in human monocytes caused by an influx of extracellular calcium. The NAD+-induced Ca2+ response was prevented by adenosine triphosphate (ATP), suggesting the involvement of ATP receptors. Of the two subtypes of ATP receptors (P2X and P2Y), the P2X receptors were considered the most likely candidates. By the use of subtype preferential agonists and antagonists, we identified P2X1, P2X4, and P2X7 receptors being engaged in the NAD+-induced rise in [Ca2+]i. Among the P2X receptor subtypes, the P2X7 receptor is unique in facilitating the induction of nonselective pores that allow entry of ethidium upon stimulation with ATP. In monocytes, opening of P2X7 receptor-dependent pores strongly depends on specific ionic conditions. Measuring pore formation in response to NAD+, we found that NAD+ unlike ATP lacks the ability to induce this pore-forming response. Whereas as little as 100 μM ATP was sufficient to activate the nonselective pore, NAD+ at concentrations up to 2 mM had no effect. Taken together, these data indicate that despite similarities in the action of extracellular NAD+ and ATP there are nucleotide-specific variations. So far, common and distinct features of the two nucleotides are only beginning to be understood.  相似文献   

15.
We explored the relationship between nucleotide-evoked changes in intracellular free calcium ([Ca2+] i ) and anion secretion by measuring [Ca2+] i and I SC simultaneously in Fura-2-loaded, cultured equine sweat gland epithelia. Apical ATP, UTP or UDP elicited sustained increases in [Ca2+] i that were initiated by the mobilization of cytoplasmic Ca2+ but maintained by Ca2+ influx. However, although these nucleotides also increased I SC , this response was transient whereas the [Ca2+] i signals were sustained. Experiments in which external Ca2+ was removed/replaced showed that Ca2+ entering nucleotide-stimulated cells elicited very little change in I SC . Cross desensitization experiments showed that UTP-stimulated epithelia became insensitive to ATP but that UTP could increase both [Ca2+] i and I SC in ATP-stimulated cells by activating `pyrimidinoceptors' essentially insensitive to ATP. Thapsigargin evoked a sustained rise in [Ca2+] i that was accompanied by a maintained increase in I SC . However, this increase in I SC was dependent upon external Ca2+ and so the responses to nucleotides and thapsigargin have different properties. ATP increased I SC in thapsigargin-treated cells without causing any rise in [Ca2+] i while ionomycin increased both parameters. The data therefore show that apical P2Y receptors allow nucleotides to increase I SC via two mechanisms, one of which appears to be [Ca2+] i -independent control of anion channels. Received: 8 December 1998/Revised: 23 April 1999  相似文献   

16.
Urinary tract infections are commonly caused by α-hemolysin (HlyA)-producing Escherichia coli. In erythrocytes, the cytotoxic effect of HlyA is strongly amplified by P2X receptors, which are activated by extracellular ATP released from the cytosol of the erythrocytes. In renal epithelia, HlyA causes reversible [Ca2+]i oscillations, which trigger interleukin-6 (IL-6) and IL-8 release. We speculate that this effect is caused by HlyA-induced ATP release from the epithelial cells and successive P2 receptor activation. Here, we demonstrate that HlyA-induced [Ca2+]i oscillations in renal epithelia were completely prevented by scavenging extracellular ATP. In accordance, HlyA was unable to inflict any [Ca2+]i oscillations in 132-1N1 cells, which lack P2R completely. After transfecting these cells with the hP2Y2 receptor, HlyA readily triggered [Ca2+]i oscillations, which were abolished by P2 receptor antagonists. Moreover, HlyA-induced [Ca2+]i oscillations were markedly reduced in medullary thick ascending limbs isolated from P2Y2 receptor-deficient mice compared with wild type. Interestingly, the following HlyA-induced IL-6 release was absent in P2Y2 receptor-deficient mice. This suggests that HlyA induces ATP release from renal epithelia, which via P2Y2 receptors is the main mediator of HlyA-induced [Ca2+]i oscillations and IL-6 release. This supports the notion that ATP signaling occurs early during bacterial infection and is a key player in the further inflammatory response.  相似文献   

17.
Subtypes of purinergic receptors involved in modulation of cytoplasmic calcium ion concentration ([Ca2+]i) and insulin release in mouse pancreatic β-cells were examined in two systems, pancreatic islets in primary culture and beta-TC6 insulinoma cells. Both systems exhibited some physiological responses such as acetylcholine-stimulated [Ca2+]i rise via cytoplasmic Ca2+ mobilization. Addition of ATP, ADP, and 2-MeSADP (each 100 μM) transiently increased [Ca2+]i in single islets cultured in the presence of 5.5 mM (normal) glucose. The potent P2Y1 receptor agonist 2-MeSADP reduced insulin secretion significantly in islets cultured in the presence of high glucose (16.7 mM), whereas a slight stimulation occurred at 5.5 mM glucose. The selective P2Y6 receptor agonist UDP (200 μM) transiently increased [Ca2+]i and reduced insulin secretion at high glucose, whereas the P2Y2/4 receptor agonist UTP and adenosine receptor agonist NECA were inactive. [Ca2+]i transients induced by 2-MeSADP and UDP were antagonized by suramin (100 μM), U73122 (2 μM, PLC inhibitor), and 2-APB (10 or 30 μM, IP3 receptor antagonist), but neither by staurosporine (1 μM, PKC inhibitor) nor depletion of extracellular Ca2+. The effect of 2-MeSADP on [Ca2+]i was also significantly inhibited by MRS2500, a P2Y1 receptor antagonist. These results suggested that P2Y1 and P2Y6 receptor subtypes are involved in Ca2+ mobilization from intracellular stores and insulin release in mouse islets. In beta-TC6 cells, ATP, ADP, 2-MeSADP, and UDP transiently elevated [Ca2+]i and slightly decreased insulin secretion at normal glucose, while UTP and NECA were inactive. RT-PCR analysis detected mRNAs of P2Y1 and P2Y6, but not P2Y2 and P2Y4 receptors.  相似文献   

18.
Reetz  G.  Wiesinger  H.  Reiser  G. 《Neurochemical research》1997,22(5):621-628
Oscillations of cytosolic Ca2+ activity ([Ca2+]i) induced by stimulation with ATP in rat astrocytes in primary cultures were analysed. Astrocytes, prepared from the brains of newborn rats, loaded with the fluorescent Ca2+ indicator fura-2/AM, were continuously stimulated with ATP (10 M). ATP caused a large initial [Ca2+ peak, followed by regular [Ca2+]i oscillations (frequencies 1–5/min). Astrocytes were identified by glial fibrillary acidic protein staining of cells after [Ca2+]i recording. The oscillations were reversibly blocked by the P2 purinoceptor antagonist suramin (30 M). Influx of extracellular Ca2+ and mobilization of Ca2+ from intracellular stores both contributed to the oscillations. The effects of hypertonic and hypotonic superfusion medium on ATP-induced [Ca2+]i oscillations were examined. Hypertonic medium (430 mOsm) reversibly suppressed the ATP-induced oscillations. Hypotonic medium (250 mOsm), in spite of having heterogeneous effects, most frequently induced a rise in [Ca2+]i, or reversibly increased the frequency of the oscillations. Thus, a change in cell volume might be closely connected with [Ca2+]i oscillations in astrocytes indicating that [Ca2+]i oscillations in glial cells play an important role in regulatory volume regulation in the brain.  相似文献   

19.
Abstract: Extracellular ATP has neurotransmitter-like properties in the CNS and PNS that are mediated by a cell-surface P2 purinergic receptor. In the present study, we have extensively characterized the signal transduction pathways that are associated with activation of a P2U receptor in a cultured neuroblastoma × glioma hybrid cell line (NG108-15 cells). The addition of ≥1 μM ATP to NG108-15 cells caused a transient increase in [Ca2+]i that was inhibited by 40% when extracellular calcium was chelated by EGTA. ATP concentrations ≥500 μM also elicited a sustained increase in [Ca2+]i that was inhibited when extracellular calcium was chelated by EGTA. The increase in [Ca2+]i elicited by ATP occurred concomitantly with the hydrolysis off [32P]-phosphatidylinositol 4,5-bisphosphates and an increase in the level of inositol 1,4,5-trisphosphate. ATP also caused a time- and dose-dependent increase in levels of [3H]inositol monophosphates in lithium-treated cells. Separation of the inositol monophosphate isomers by ion chromatography revealed a specific increase in the level of inositol 4-monophosphate. The magnitude of the increase in [Ca2+]i elicited by ATP correlated with the concentration of the fully ionized form of ATP (ATP4-) in the medium and not with the concentration of magnesium-ATP (MgATP2-). Similar to ATP, UTP also induced polyphosphoinositide breakdown, inositol phosphate formation, and an increase in [Ca2+]i. ADP, ITP, TTP, GTP, ATP-γS, 2-methylthio ATP, β,γ-imidoATP or 3′-O-(4-benzoyl)benzoylATP, but not CTP, AMP, β,γ-methylene ATP, or adenosine, also caused an increase in [Ca2+]i. In cells labeled with [32P]Pi or [14C]-arachidonic acid, ATP caused a transient increase in levels of labeled phosphatidic acids, but had no effect on levels of arachidonic acid. The increase in phosphatidic acid levels elicited by ATP apparently was not due to activation of a phospholipase D because ATP did not induce the formation of phosphatidylethanol in [14C]myristic acid-labeled cells incubated in the presence of ethanol. These findings support the hypothesis that a P2 nucleotide receptor in NG108-15 cells is coupled to a signal transduction pathway involving the activation of a phospholipase C and a plasma membrane calcium channel, but not the activation of phospholipases A2 and D.  相似文献   

20.
The effect of extracellular ATP was studied in PC12 cells, a neurosecretory line that releases ATP. The addition of micromolar concentrations of ATP to PC12 cells evoked a transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i), as measured with the Ca2+-dye fura 2. AMP and adenosine were without effect, ruling out the involvement of P1 receptors in mediating this response. The increase in [Ca2+]i was reduced in calcium-free media and virtually eliminated by the addition of EGTA, suggesting that calcium influx was the primary response initiated by extracellular ATP. Nucleotide triphosphates such as UTP and, to a lesser degree, ITP also evoked an increase in [Ca2+]i while GTP and CTP had little effect. In order to identify the receptor subtype mediating this response, the efficacy of ATP and ATP cogeners was assessed. The rank order potency was ATP > adenosine 5′-[γ-thio]triphosphate > ADP > 2-methylthioadenosine triphosphate (2-MeSATP) ~ adenosine 5′-[β-thio]diphosphate ? adenosine 5′-[αβ-methylene] triphosphate, adenosine 5′-[βγ-imido]triphosphate. This profile is not characteristic of either the P2X or the conventional P2Y receptors. The Ca2+ response exhibited desensitization to ATP that was dependent on the extracellular metabolism of ATP. UTP was equally effective in desensitizing the response. ATP, UTP, ITP, and to a much lesser extent 2MeSATP increased inositol phosphate production in a dose-dependent manner, suggesting receptor coupling to phosphatidylinositol-specific phospholipase C. These data are consistent with the view that PC12 cells express a class of non-P2Y nucleotide receptors (P2N) that mediate calcium influx and the accumulation of inositol phosphates. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号