首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The ribosomal and transfer ribonucleic acid (tRNA) from Mycoplasma mycoides var. capri, grown in a medium containing uridine-((14)C)-5'-triphosphate and cytidine-(5-(3)H)-5'-triphosphate, were isolated and separated. The uridine in both species of RNA was shown to contain (14)C and the cytidine to contain both (3)H and (14)C. Comparison of the labeling of 4-thiouridine and pseudouridine, obtained from an enzymatic digest of the RNA, indicates that their biosynthetic precursor is uridine, not cytidine. It is probable that ribothymidine and dihydrouridine have the same derivation.  相似文献   

2.
Distinct low molecular weight RNA species that have properties expected for the precursor to tRNA have been isolated from the posterior silkglands of the silkworm Bombyx mori. These RNAs migrate between 4 S and 5 S markers on acrylamide gels and are labeled preferentially in vivo in relation to tRNA. The precursor RNAs can be converted specifically into molecules indistinguishable in size from tRNA upon incubation with “cleavage” enzymes isolated from the silkgland ribosomes. Two of the three low molecular weight RNAs contain the modified residues, pseudouridine, dihydrouridine and ribothymidine, and are methylated in vivo, suggesting that these base modifications occur while the tRNA is still in its precursor stage.  相似文献   

3.
G Chinali  J Horowitz  J Ofengand 《Biochemistry》1978,17(14):2755-2760
The requirement for ribothymidine and pseudouridine in the TpsiCG loop of tRNA for its activity in the ribosome and tRNA-stimulated synthesis of guanosine 5'-triphosphate 3'-diphosphate (pppGpp) by stringent factor has been tested by the use of a purified tRNAPhe (883 pmol of phenylalanine incorporated/A260 unit) in which 92% of the pseudouridine, 98% of the ribothymidine, 98% of the dihydrouridine, and 88% of the uridines were substituted by 5-fluorouridine. This tRNA was quantitatively as active as control tRNA in inducing pppGpp synthesis. With loose-couple ribosomes, the concentration of tRNA needed to give half-maximal reaction was 0.07 micrometer for both normal and fluorouridine-substituted tRNA, with vacant tight-couple ribosomes it was 0.05 micrometer, and with tight couples carrying poly(Phe)-tRNA at the P site the value was 0.02 micrometer. These results show that at the level of intact tRNA there is no special requirement for modified bases in the TpsiCG loop of tRNA in the synthesis of pppGpp.  相似文献   

4.
5.
Transfer RNA from Escherichia coli C6, a Met, Cys, relA mutant, was previously shown to contain an altered tRNAIle which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676–7683). We now report the purification of this altered tRNAIle and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNAIle purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNAIle (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl ∼ AMP · Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNAIle bound more efficiently to its synthetase compared to normal tRNAIle. Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNAIle contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNAIle contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNAIle without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNAIle has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNAIle from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNAIle for aminoacylation is discussed.  相似文献   

6.
The minor bases present in the family of Drosophila tRNAs recognising codons of the type NAA or NAG have been studied. Under standard aminoacylating conditions, the acceptor activities of BrCN-treated tRNA-Lys-5 tRNA-Glu-4 and tRNA-G1n-4 were completely eliminated, suggesting the presence of 2-thiouridine derivatives. The two major lysine tRNA species (tRNA-Lys-2 and tRNA-Lys-5) were purified and their nucleoside content determined both directly and by the tritium derivative technique. Both tRNAs contain 1-methyladenosine, N-2-dimethylguanosine, 7-methylguanosine, 5-methylcytidine, pseudouridine and dihydrouridine, and tRNA-Lys-5 contains 1-methylguanosine. Neither species contain ribothymidine, although both may contain 2'-O-methyl ribothymidine. A nucleoside with ultraviolet spectral properties similar to N-4-acetylcytidine was found in tRNA-Lys-5 and a nucleoside with chromatographic properties the same as N-[9-beta-D-ribofuranosyl)-purin-6-yl-carbamoyl] threonine was found in tRNA-Lys-2. A 2-thiouridine derivative was not found in tRNA-Lys-5 using these chromatographic techniques.  相似文献   

7.
Total mammalian tRNAs contain on the average less than one mole of ribothymidine per mole of tRNA. Mammalian tRNAs can be grouped into at least four classes, depending upon their ribothymidine content at position 23 from the 3′ terminus. Class A contains tRNA in which a nucleoside other than uridine replaces ribothymidine (tRNAiMet); Class B contains tRNA in which one mole of a modified uridine (rT, ψ, or 2′-O-methylribothymidine) is found per mole of tRNA (tRNASer, tRNATrp, and tRNALys, respectively). Class C contains tRNA in which there is a partial conversion of uridine to ribothymidine (tRNAPhe, tRNA1Gly, tRNA2Gly); Class D contains tRNA which totally lacks ribothymidine (tRNAVal). Only those tRNAs in Class C are acceptable substrates for E.coli uridine methylase, under the conditions used in these studies. These observations cannot be adequately explained solely on the basis of the presence or absence of a specific “universal” nucleoside other than U or rT at position 23 from the 3′ terminus. However, correlations can be made between the ribothymidine and 5-methylcytosine content of eucaryotic tRNA. We postulate that the presence of one or more 5-methylcytosines in and adjacent to loop III (minor loop) in individual tRNAs act to regulate the amount of ribothymidine formed by uridine methylase. Several experiments are proposed as tests for this hypothesis.  相似文献   

8.
The specificity of methoxyamine for the cytidine residues in an Escherichia coli leuoine transfer RNA (tRNA1leu is described in detail. Of the six non-hydrogen-bonded cytidine residues in the clover-leaf model of this tRNA, four are very reactive (C-35, 53, 85 and 86) and two are unreactive (C-67 and 79).The specificity of l-cyclohexyl-3-[2-morpholino-(4)-ethyl]carbodiimide methotosylate for the uridine, guanosine and pseudouridine residues in the leucine tRNA was also investigated. The carbodiimide completely modified four uridine residues (U-33, 34, 50 and 51) and partially modified G-37 and Ψ-39. For technical reasons, the sites of partial modification in loop I of the tRNA were difficult to establish. There was no modification of base residues in loop IV nor of U-59 at the base of stem e of the tRNA.The modification patterns described for the leucine tRNA are compared with those observed for the E. coli initiator tRNA1met and su+III tyrosine tRNA. Several general conclusions regarding tRNA conformation are made. In particular, the evidence supporting a diversity of anticodon loop structures amongst tRNAs is discussed.  相似文献   

9.
Selective alkylation of RNA nucleotides is an important field of RNA biochemistry, e.g. in applications of fluorescent labeling or in structural probing experiments, yet detailed structure-function studies of labeling agents are rare. Here, bromomethylcoumarins as reactive compounds for fluorescent labeling of RNA are developed as an attractive scaffold on which electronic properties can be modulated by varying the substituents. Six different 4-bromomethyl-coumarins of various substitution patterns were tested for nucleotide specificity of RNA alkylation using tRNA from Escherichia coli as substrate. Using semi-quantitative LC-MS/MS analysis, reactions at mildly acidic and slightly alkaline pH were compared. For all tested compounds, coumarin conjugates with 4-thiouridine, pseudouridine, guanosine, and uridine were identified, with the latter largely dominating. This data set shows that selectivity of ribonucleotide alkylation depends on the substitution pattern of the reactive dye, and even more strongly on the modulation of the reaction conditions. The latter should be therefore carefully optimized when striving to achieve selectivity. Interestingly, the highest selectivity for labeling of a modified nucleoside, namely of 4-thiouridine, was achieved with a compound whose selectivity was somewhat less dependent on reaction conditions than the other compounds. In summary, bromomethylcoumarin derivatives are a highly interesting class of compounds, since their selectivity for 4-thiouridine can be efficiently tuned by variation of substitution pattern and reaction conditions.  相似文献   

10.
Pus10 is the most recently identified pseudouridine synthase found in archaea and higher eukaryotes. It modifies uridine 55 in the TΨC arm of tRNAs. Here, we report the first quantitative biochemical analysis of tRNA binding and pseudouridine formation by Pyrococcus furiosus Pus10. The affinity of Pus10 for both substrate and product tRNA is high (Kd of 30 nM), and product formation occurs with a Km of 400 nM and a kcat of 0.9 s− 1. Site-directed mutagenesis was used to demonstrate that the thumb loop in the catalytic domain is important for efficient catalysis; we propose that the thumb loop positions the tRNA within the active site. Furthermore, a new catalytic arginine residue was identified (arginine 208), which is likely responsible for triggering flipping of the target uridine into the active site of Pus10. Lastly, our data support the proposal that the THUMP-containing domain, found in the N-terminus of Pus10, contributes to binding of tRNA. Together, our findings are consistent with the hypothesis that tRNA binding by Pus10 occurs through an induced-fit mechanism, which is a prerequisite for efficient pseudouridine formation.  相似文献   

11.
Ribothymidine, generally considered a universal nucleotide in tRNA, is completely absent in five specific wheat embryo tRNAs. These consist of two species of glycine tRNA and three species of threonine tRNA. These tRNAs, all extensively purified, are acceptable substrates for E. coli - ribothymidine forming-uracil methylase, which produces one mole of ribothymidine per mole of tRNA. These five tRNAs account for about 90% of the wheat embryo tRNAs which are substrates for this methylase. Nucleotide sequence analysis of one of these tRNAs, tRNAGlyI, confirmed both the complete absence of ribothymidine at position 23 from the 3′end, and the presence of uridine at that site instead. In addition, it is shown that methylation with E. coli uracil methylase quantitatively converts uridine at position 23 to ribothymidine, while no other uridine in the molecule is affected.Using E. coli uracil methylase as an assay we have detected this class of ribothymidine lacking tRNA, in each case consisting of a few specific species, in other higher organisms, such as wheat seedling, fetal calf liver and beef liver, in addition to wheat embryo. We could not detect this class of tRNA in E. coli or yeast tRNA.  相似文献   

12.
Transformation of 4-thiouridine residues in Escherichia coli transfer ribonucleic acids is achieved under conditions which leave the major bases and the primary structure unaffected. The modifications of 4-thiouridine involve either alteration with N-ethylmaleimide, cyanogen bromide, or hydrogen peroxide, or a photochemical transformation effected by irradiation at 330 nm of tRNA in an organic solvent. These selective modifications were made on unfractionated species (Phe, Leu, fMet, Tyr, and Val) and purified species (Phe, fMet, and Val) of E. coli tRNA with little or no loss in their capacities to be aminoacylated. Of the tRNA species tested, subsequent treatment of 4-thiouridineless-tRNA with sodium borohydride affects only the capacity of tRNAPhe to be aminoacylated. These observations are consistent with the proposal that the cognate ligase recognition site on tRNAPhe is situated in the nonhydrogenbonded dihydrouridine loop area of the molecule.  相似文献   

13.
Purified bulk tRNA from Methanococcus vanielii (carbon source, formate) showed variation in the modified nucleoside pattern reported for Escherichia coli as analyzed by both ion-exchange and thin-layer chromatography. Ribothymidine and 7-methylguanosine were absent; 1-methyladenosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, thiolated nucleosides, pseudouridine, dihydrouridine, and O2'-methylcytidine were quantitated. In vitro methylation by M. Vannielii extracts with S-adenosylmethionine and undermethylated E. coli tRNA revealed active tRNA methyltransferases for formation of methylated residues found in native M. vannielii tRNA, but none for the formation of 7-methylguanosine or ribothymidine. The native M. vannielii tRNA became methylated in the 7-methylguanosine position by E. Coli extracts, but ribothymidine was not formed. Both M. vannielii and E. coli tRNA methyltransferases produced unidentified methylated residues in tRNA's lacking or deficient in ribothymidine.  相似文献   

14.
The nucleotide sequence of rat liver tRNAAsn   总被引:1,自引:0,他引:1  
The major species of asparagine specific tRNA was isolated from rat liver, degraded to oligonucleotides, and shown to have the nucleotide sequence pG-U-C-U-C-U-G-U-m1G-m2G-C-G-C- A-A-D-C-G-G-D-X-A-G-C-G-C-m2G-ψ-ψ-C-G-G-C-U-Q-U-U-t6A-A-C-C-G- A-A-A-G-m7G-D-U-G-G-U-G-G-Z-ψ-C-G-m1A-G-C-C-C-A-C-C-C-A-G-G-G- A-C-G-C-C-AOH. Although this tRNA contains several modified nucleotides in their expected positions, it is unique in having X, 3-(3-Amino-3-carboxy-n-propyl)uridine in loop I rather than in loop III; Q, 7-(4,5-cis-dihydroxyl-1-cyclopenten-3-yl-aminomethyl)-7-deazaguanosine in the wobble position of loop II; and Z, an unknown, and presently uncharacterized nucleoside, at position 23 from the 3′ terminus usually occupied by ribothymidine.  相似文献   

15.
Transfer RNA from Escherichia coli C6, a Met-, Cys-, relA- mutant, was previously shown to contain an altered tRNA(Ile) which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676-7683). We now report the purification of this altered tRNA(Ile) and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNA(Ile) purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNA(Ile) (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl approximately AMP.Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNA(Ile) bound more efficiently to its synthetase compared to normal tRNA(Ile). Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNA(Ile) contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNA(Ile) contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNA(Ile) without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNA(Ile) has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNA(Ile) from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNA(Ile) for aminoacylation is discussed.  相似文献   

16.
It was shown that tRNA fromAzotobacter vinelandii grown in the presence of ammonium chloride lacks ribothymidine while that grown in the absence of the ammonium salt contains this modified nucleoside. [32P]-Labelled tRNA from this organism grown in a medium containing the ammonium salt was digested with RNase T1 and the pseudouridinecontaining tetranucleotide, common to all tRNAs was isolated and analysed for the nucleoside replacing the ribothymidine. It was found to be uridine. Cells previously labelled with [32P]-phosphate in the ammonium salt medium were washed and incubated in the ammonium saltfree medium to test whether ribothymidine would be formed upon removal of the ammonium ions. Methylation of the uridine did not take place.  相似文献   

17.
By culturing Saccharomyces cerevisiae in growth medium containing Mg35SO4, we have determined the extent and variation of tRNA thiolation in this yeast. We find that 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U)1 is the major, if not only, thiolated derivative in S. cerevisiae tRNA. In addition, a comparison of the chromatographic mobility of mcm5s2Up on cellulose thin layers with those reported for unknown uridine derivatives found in purified yeast tRNA digests, leads to the conclusion that at least two of these tRNAs contain this modification.  相似文献   

18.
Summary When cells of Escherichia coli are labeled with 32Pi for long periods of time and the cell content is subjected to electrophoresis in polyacrylamide gels, an RNA band appears which is about 10S in size. This band seems to contain three conformers. After treatment with formamide only a single band appears in this region of the gel, which contains 550 nucleotides as determined from its mobility. The complexity of the fingerprint of this material, after digestion with T1-RNase, is in agreement with the size as determined by the mobility, this confirming that indeed it is a single molecule. Composition of the T1-oligonucleotides was determined by digesting the T1-generated oligonucleotides with pancreatic RNase and T2-RNase. The quantitative and qualitative analysis of these digestions suggests that 10S RNA contains 609 nucleotides. The molecule contains, besides the four regular bases, one copy per molecule of the modified base pseudouridine.10S RNA cannot be processed by cell extracts to tRNA-sized molecules and does not bind significantly to ribosomes, hence it is unlikely to be a tRNA precursor or an mRNA.  相似文献   

19.
Transfer RNAs (tRNAs) play important roles to decode the genetic information contained in mRNA in the process of translation. The tRNA molecules possess conserved nucleotides at specific position to regulate the unique function. However, several nucleotides at different position of the tRNA undergo modification to maintain proper stability and function. The major modifications include the presence of pseudouridine (Ψ) residue instead of uridine and the presence of m5-methylation sites. We found that, Ψ13 is conserved in D-stem, whereas Ψ38 & Ψ39 were conserved in the anti-codon loop (AL) and anti-codon arm (ACA), respectively. Furthermore, Ψ55 found to be conserved in the Ψ loop. Although, fourteen possible methylation sites can be found in the tRNA, cyanobacterial tRNAs were found to possess conserved G9, m3C32, C36, A37, m5C38 and U54 methylation sites. The presence of multiple conserved methylation sites might be responsible for providing necessary stability to the tRNA. The evolutionary study revealed, tRNAMet and tRNAIle were evolved earlier than other tRNA isotypes and their evolution is date back to at least 4000 million years ago. The presence of novel pseudouridination and m5-methylation sites in the cyanobacterial tRNAs are of particular interest for basic biology. Further experimental study can delineate their functional significance in protein translation.  相似文献   

20.
Modification of nucleotides within an mRNA emerges as a key path for gene expression regulation. Pseudouridine is one of the most common RNA modifications; however, only a few mRNA modifiers have been identified to date, and no one mRNA pseudouridine reader is known. Here, we applied a novel genome-wide approach to identify mRNA regions that are bound by yeast methionine aminoacyl tRNAMet synthetase (MetRS). We found a clear enrichment to regions that were previously described to contain pseudouridine (Ψ). Follow-up in vitro and in vivo analyses on a prime target (position 1074 within YEF3 mRNA) demonstrated the importance of pseudouridine for MetRS binding. Furthermore, polysomal and protein analyses revealed that Ψ1074 mediates translation. Modification of this site occurs presumably by Pus6, a pseudouridine synthetase known to modify MetRS cognate tRNA. Consistently, the deletion of Pus6 leads to a decrease in MetRS association with both tRNAMet and YEF3 mRNA. Furthermore, while global protein synthesis decreases in pus6Δ, translation of YEF3 increases. Together, our data imply that Pus6 ‘writes’ modifications on tRNA and mRNA, and both types of RNAs are ‘read’ by MetRS for translation regulation purposes. This represents a novel integrated path for writing and reading modifications on both tRNA and mRNA, which may lead to coordination between global and gene-specific translational responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号