首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa keratitis is one of the most destructive diseases of the cornea. The host response to this infection is critical to the outcome, and is regulated by cytokines produced in the ocular tissue. In this study, we assessed the relative contribution of the cytokines produced in the cornea to the inflammatory response of the whole eye to gain a better understanding of the inflammatory and regulatory processes in the ocular environment during localized corneal infection. C57BL/6 mice were challenged by topical application of P. aeruginosa to wounded corneas. Corneas and whole eyes were harvested 24 h post-challenge and bacterial numbers, myeloperoxidase levels and the levels of cytokines known to be important in keratitis were determined. The site of production of IL-6 and KC in the retina was determined by in situ hybridization. Before infection, 90% of macrophage inflammatory protein (MIP)-2 and approximately 80% of all IFN-gamma and IL-10 produced constitutively in the eye was found outside the cornea. Twenty-four hours after infection, bacterial numbers, levels of myeloperoxidase, and levels of MIP-2 and IL-1 were not different, whether measured in cornea or whole eye. However, expression of IL-6, KC, IFN-gamma and IL-10 was significantly greater in whole eyes than in the corneas of infected eyes. The cells expressing IL-6 and KC in the retina were identified by in situ hybridization. This study indicates that during corneal inflammation, the response of the whole eye as well as the cornea needs to be considered.  相似文献   

2.
Pseudomonas aeruginosa can cause ulcerative bacterial keratitis or contact lens-induced acute red eye (CLARE) in humans. The present study used a mouse model of ocular infection and inflammation to examine the relationship between TNF-alpha and inflammation in the cornea in response to challenge with either a strain of P. aeruginosa causing keratitis or a CLARE strain. Constitutive TNF-alpha mRNA was detected in the epithelium, mainly towards the periphery. After infection with the keratitis-inducing strain (6294), TNF-alpha expression was elevated four-fold by 24 h post-challenge. No detectable induction of TNF-alpha mRNA was seen with CLARE strain (Paer1) challenge at any time point. The TNF-alpha protein production detected by ELISA showed a corresponding pattern to the mRNA expression, which also correlated with pathological changes. These results suggest that invasive strains of P. aeruginosa create greater pathological changes as a result of elevated TNF-alpha production, which contributes to inflammation during keratitis in vivo.  相似文献   

3.
Polymorphonuclear neutrophils (PMN) in Pseudomonas aeruginosa-infected cornea are required to clear bacteria from affected tissue, yet their persistence may contribute to irreversible tissue destruction. This study examined the role of C-X-C chemokines in PMN infiltration into P. aeruginosa-infected cornea and the contribution of these mediators to disease pathology. After P. aeruginosa challenge, corneal PMN number and macrophage inflammatory protein-2 (MIP-2) and KC levels were compared in mice that are susceptible (cornea perforates) or resistant (cornea heals) to P. aeruginosa infection. While corneal PMN myeloperoxidase activity (indicator of PMN number) was similar in both groups of mice at 1 and 3 days postinfection, by 5-7 days postinfection corneas of susceptible mice contained a significantly greater number of inflammatory cells. Corneal MIP-2, but not KC, levels correlated with persistence of PMN in the cornea of susceptible mice. To test the biological relevance of these data, resistant mice were treated systemically with rMIP-2. This treatment resulted in increased corneal PMN number and significantly exacerbated corneal disease. Conversely, administration of neutralizing MIP-2 pAb to susceptible mice reduced both PMN infiltration and corneal destruction. Collectively, these findings support an important role for MIP-2 in recruitment of PMN to P. aeruginosa-infected cornea. These data also strongly suggest that a timely down-regulation of the host inflammatory response is critical for resolution of infection.  相似文献   

4.
Pseudomonas aeruginosa is a leading cause of blinding corneal ulcers worldwide. To determine the role of type III secretion in the pathogenesis of P. aeruginosa keratitis, corneas of C57BL/6 mice were infected with P. aeruginosa strain PAO1 or PAK, which expresses ExoS, ExoT, and ExoY, but not ExoU. PAO1- and PAK-infected corneas developed severe disease with pronounced opacification and rapid bacterial growth. In contrast, corneas infected with ΔpscD or ΔpscJ mutants that cannot assemble a type III secretion system, or with mutants lacking the translocator proteins, do not develop clinical disease, and bacteria are rapidly killed by infiltrating neutrophils. Furthermore, survival of PAO1 and PAK strains in the cornea and development of corneal disease was impaired in ΔexoS, ΔexoT, and ΔexoST mutants of both strains, but not in a ΔexoY mutant. ΔexoST mutants were also rapidly killed in neutrophils in vitro and were impaired in their ability to promote neutrophil apoptosis in vivo compared with PAO1. Point mutations in the ADP ribosyltransferase (ADPR) regions of ExoS or ExoT also impaired proapoptotic activity in infected neutrophils, and exoST(ADPR-) mutants replicated the ΔexoST phenotype in vitro and in vivo, whereas mutations in rho-GTPase-activating protein showed the same phenotype as PAO1. Together, these findings demonstrate that the pathogenesis of P. aeruginosa keratitis in ExoS- and ExoT-producing strains is almost entirely due to their ADPR activities, which subvert the host response by targeting the antibacterial activity of infiltrating neutrophils.  相似文献   

5.
Infiltration of neutrophils and eosinophils into the mammalian cornea can result in loss of corneal clarity and severe visual impairment. To identify mediators of granulocyte recruitment to the corneal stroma, we determined the relative contribution of chemokine receptors CXC chemokine receptor (CXCR)-2 (IL-8R homologue) and CCR1 using a murine model of ocular onchocerciasis (river blindness) in which neutrophils and eosinophils migrate from peripheral vessels to the central cornea. CXCR2(-/-) and CCR1(-/-) mice were immunized s.c. and injected into the corneal stroma with Ags from the parasitic helminth Onchocerca volvulus. We found that production of macrophage-inflammatory protein (MIP)-2, KC, and MIP-1 alpha was localized to the corneal stroma, rather than to the epithelium, which was consistent with the location of neutrophils in the cornea. CCR1 deficiency did not inhibit neutrophil or eosinophil infiltration to the cornea or development of corneal opacification. In marked contrast, neutrophil recruitment to the corneas of CXCR2(-/-) mice was significantly impaired (p < 0.0001 compared with control, BALB/c mice) with only occasional neutrophils detected in the central cornea. Furthermore, CXCR2(-/-) mice developed only mild corneal opacification compared with BALB/c mice. These differences were not due to impaired KC and MIP-2 production in the corneal stroma of CXCR2(-/-) mice, which was similar to BALB/c mice. Furthermore, although MIP-1 alpha production was lower in CXCR2(-/-) mice than BALB/c mice, eosinophil recruitment to the cornea was not impaired. These observations demonstrate the critical role for CXCR2 expression in neutrophil infiltration to the cornea and may indicate a target for immune intervention in neutrophil-mediated corneal inflammation.  相似文献   

6.
Pseudomonas aeruginosa ocular infection causes extensive corneal neovascularization. The purpose of the present study was to investigate the role of the angiogenic factors macrophage inflammatory protein-2 (MIP-2) and vascular endothelial growth factor (VEGF) in the regulation of corneal neovascularization during P. aeruginosa ocular infection. After administering anti-MIP-2 antibody or control antibody, mouse corneas were challenged with P. aeruginosa. The expression of MIP-2 and VEGF was detected using an ELISA from ocular homogenates. Corneal neovascularization was examined by histology. The cellular sources of MIP-2 and VEGF were identified by immunohistochemistry. In addition, protein expression of MIP-2 and VEGF in isolated corneas was measured to determine the ability of the cornea to produce these two mediators. Results showed that the expression of MIP-2 and VEGF was significantly (P < 0.05) elevated after bacterial infection, and high levels of these two mediators paralleled the extensive corneal neovascularization seen at later stages of the infection. Anti-MIP-2 antibody treatment resulted in a significant (P < 0.05) reduction in VEGF expression and in corneal neovascularization. Both corneal resident cells and infiltrating neutrophils had the ability to produce MIP-2 and VEGF after stimulation. The present study demonstrates that both MIP-2 and VEGF are important mediators in the regulation of corneal neovascularization caused by P. aeruginosa infection, and that MIP-2 regulates the production of VEGF.  相似文献   

7.
Keratocan and lumican are keratan-sulfate proteoglycans (KSPG), which have a critical role in maintaining corneal clarity. To determine whether these KSPGs have a role in corneal inflammation, we examined Kera(-/-) and Lum(-/-) mice in a model of lipopolysaccharide (LPS)-induced keratitis in which wild-type mice develop increased corneal thickness and haze due to neutrophil infiltration to the corneal stroma. Corneal thickness increases caused by LPS mice were significantly lower in Kera(-/-) and Lum(-/-) than wild-type mice. Further, LPS-injected Lum(-/-) mice had elevated corneal haze levels compared with that of Kera(-/-) and wild-type. At 24 h post-injection, total enhanced green fluorescent protein-positive bone marrow-derived inflammatory cells in chimeric mice was significantly lower in Kera(-/-) mice and Lum(-/-) mice compared with wild-type mice. Neutrophil infiltration was inhibited in Kera(-/-) and Lum(-/-) mice at 6 and 24 h post-stimulation, with Lum(-/-) corneas having the most profound defect in neutrophil migration. Reconstitution of keratocan and lumican expression in corneas of Kera(-/-) and Lum(-/-) mice using adeno-keratocan and adeno-lumican viral vectors, respectively, resulted in normal neutrophil infiltration in response to LPS. Immunoprecipitation/Western blot analysis showed that lumican and keratocan core proteins bind the CXC chemokine KC during a corneal inflammatory response, indicating that corneal KSPGs mediate neutrophil recruitment to the cornea by regulating chemokine gradient formation. Together, these data support a significant role for lumican and keratocan in a corneal inflammatory response with respect to edema, corneal clarity, and cellular infiltration.  相似文献   

8.
Interleukin-8 (IL-8) is a proinflammatory cytokine released at sites of tissue damage by various cell types. One important function of IL-8 is to recruit neutrophils into sites of inflammation and to activate their biological activity. Stromal keratitis induced by herpes simplex virus type 1 (HSV-1) is characterized by an initial infiltration of neutrophils. This study was carried out to determine whether cells resident in the cornea synthesize IL-8 after virus infection. Pure cultures of epithelial cells and keratocytes established from human corneas were infected with HSV-1, and the medium overlying the cells was subsequently assayed for IL-8 by an enzyme-linked immunosorbent assay. Cytokine mRNA levels in cell lysates were monitored by Northern (RNA) blot analysis. It was found that virus infection of keratocyte cultures led to the synthesis of IL-8-specific mRNA with more than 30 ng of IL-8 made per 10(6) cells. Neither UV-inactivated virus nor virus-free filtrates collected from HSV-1-infected keratocytes could induce IL-8 protein or mRNA, suggesting that viral gene expression was needed for induction of IL-8 gene expression. Unlike keratocytes, HSV-1-infected epithelial cells failed to synthesize IL-8 protein or mRNA. However, these cells readily produced both molecules following tumor necrosis factor alpha stimulation. HSV-1 had similar titers in both cell types. Thus, the failure to induce IL-8 synthesis was not due to an inability of the virus to replicate in epithelial cells. The capacity of HSV-1-infected corneal keratocytes to synthesize IL-8 suggests that these cells can contribute to the induction of the acute inflammatory response seen in herpes stromal keratitis.  相似文献   

9.
Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing.  相似文献   

10.
Pseudomonas aeruginosa keratitis destroys the cornea in susceptible (B6), but not resistant (BALB/c) mice. To determine mechanisms mediating resistance, the role of IFN-gamma, IL-12, and IL-18 was tested in BALB/c mice. RT-PCR analysis detected IFN-gamma mRNA expression levels in cornea that were significantly increased at 1-7 days postinfection. IL-18 mRNA was detected constitutively in cornea and, at 1-7 days postinfection, levels were elevated significantly, while no IL-12 mRNA was similarly detected. To test whether IL-18 contributed to IFN-gamma production, mice were treated with anti-IL-18 mAb. Treatment decreased corneal IFN-gamma mRNA levels, and bacterial load and disease increased/worsened, compared with IgG-treated mice. To stringently examine the role of IFN-gamma in bacterial killing, knockout (-/-) vs wild-type (wt) mice also were tested. All corneas perforated, and bacterial load was increased significantly in -/- vs wt mice. Because disease severity was increased in IFN-gamma(-/-) vs IL-18-neutralized mice, and since IL-18 also induces production of TNF, we tested for TNF-alpha in both groups. ELISA analysis demonstrated significantly elevated corneal TNF-alpha protein levels in IFN-gamma(-/-) vs wt mice after infection. In contrast, RT-PCR analysis of IL-18-neutralized vs IgG-treated infected mice revealed decreased corneal TNF-alpha mRNA expression. Next, to resolve whether TNF was required for bacterial killing, TNF-alpha was neutralized in BALB/c mice. No difference in corneal bacterial load was detected in neutralized vs IgG-treated mice. These data provide evidence that IL-18 contributes to the resistance response by induction of IFN-gamma and that IFN-gamma is required for bacterial killing.  相似文献   

11.
The purpose of this study is to investigate the expression of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, during re-epithelialization in wounded corneas of vitamin A-deficient mice. Epithelial defects were created in the corneas of normal and Vitamin A-deficient mice with a microgrinder. Wounded corneas were stained with fluorescein and photographed for evaluation of re-epithelialization. Histological examination and immunohistochemical analysis of TSP-1 expression were also performed on the specimens from wounded corneas. In vitamin A-deficient mice, re-epithelialization of the wounded corneal epithelium was significantly delayed compared with that in normal mice. TSP-1 was detectable neither in the unwounded corneal epithelium of normal mice nor in that of vitamin A-deficient mice. In normal mice, linear staining of TSP-1 was observed on the wounded corneal surface and stroma at 30 min and 8 h to 16 h, respectively, after abrasion, and this TSP-1 expression disappeared at 36 to 48 h, when re-epithelialization was completed. In contrast, no TSP-1 staining was observed in the wounded corneas of vitamin A-deficient mice, except for the endothelial cells, throughout the wound healing process. Histological examination revealed a progressive increase in polymorphonuclear neutrophil infiltration in the stroma of the corneas of vitamin A-deficient mice during the healing process. These findings suggest that vitamin A may modulate the expression of TSP-1 in the corneas to accelerate the re-epithelialization of wounded corneas.  相似文献   

12.
We reported previously that surfactant protein D (SP-D) was present in human tears and corneal epithelial cells, and that it contributed to tear fluid protection of those cells against Pseudomonas aeruginosa invasion. This suggested a role in ocular innate immunity. Here, we explored the effects of bacterial challenge on SP-D expression by human corneal epithelial cells. Results showed that these cells produced and secreted SP-D constitutively in culture, and that production (mRNA, protein) and secretion of SP-D were upregulated after exposure to heat-killed P. aeruginosa or to purified flagellin or lipopolysaccharide. To begin exploring the mechanism for flagellin-mediated SP-D induction, cells were exposed to purified flagellin or flagellin mutated in the TLR-5-binding domain (L94A, L88A) which reduces IL-8 secretion by A549 respiratory cells. Mutated flagellin did not upregulate IL-8 expression in corneal epithelial cells, but did induce SP-D responses. Mitogen-activated protein kinase inhibitors, especially the JNK inhibitor SP600125, reduced secretion of SP-D, but not production, in the presence of P. aeruginosa. These data show that while SP-D and IL-8 corneal responses are each induced by P. aeruginosa or its antigens, they can involve different regions of the same ligand. The data suggest that separate mechanisms may regulate SP-D secretion and production by human corneal epithelia.  相似文献   

13.
14.
Evidence suggests that Pseudomonas aeruginosa stromal keratitis and corneal perforation (susceptibility) is a CD4(+) T cell-regulated inflammatory response following experimental P. aeruginosa infection. This study examined the role of Langerhans cells (LC) and the B7/CD28 costimulatory pathway in P. aeruginosa-infected cornea and the contribution of costimulatory signaling by this pathway to disease pathology. After bacterial challenge, the number of LC infiltrating the central cornea was compared in susceptible C57BL/6 (B6) vs resistant (cornea heals) BALB/c mice. LC were more numerous at 1 and 6 days postinfection (p.i.), but were similar at 4 days p.i., in susceptible vs resistant mice. Mature, B7 positive-stained LC in the cornea and pseudomonas Ag-associated LC in draining cervical lymph nodes also were increased significantly p.i. in susceptible mice. To test the relevance of these data, B6 mice were treated systemically and subconjunctivally with neutralizing B7 (B7-1/B7-2) mAbs. Treatment decreased corneal disease severity and reduced significantly the number of B7-positive cells as well as the recruitment and activation of CD4(+) T cells in the cornea. IFN-gamma mRNA levels also were decreased significantly in the cornea and in draining cervical lymph nodes of mAb-treated mice. When CD28(-/-) animals were tested, they exhibited a less severe disease response (no corneal perforation) than wild-type B6 mice and had a significantly lower delayed-type hypersensitivity response to heat-killed pseudomonas Ag. These results support a critical role for B7/CD28 costimulation in susceptibility to P. aeruginosa ocular infection.  相似文献   

15.
Among bacterial pathogens, Pseudomonas (P.) aeruginosa infection is the most sight threatening. The corneal innate immune responses are key mediators of the host’s defense to P. aeruginosa. Using a mouse model of Pseudomonas keratitis, we evaluated the protective effects of topical application of flagellin, a ligand for Toll-Like receptor 5 (TLR5), on the development of Pseudomonas keratitis and elucidated the underlying mechanisms. Topical application of purified flagellin 6 and 24 h prior to P. aeruginosa inoculation on injured mouse corneas significantly attenuated clinical symptoms of P. aeruginosa keratitis, decreased bacterial burden, and suppressed infection induced inflammation in the B6 mouse cornea. Topical application of flagellin on wounded cornea induced PMN infiltration and markedly upregulated cathelicidin-related antimicrobial peptide (CRAMP) expression. In PMN depleted mice, flagellin promoted bacterial clearance in the cornea compared to that of the PBS treated mice, but was unable to prevent corneal perforation and systemic bacterial dissemination and sepses. Deletion of CRAMP increased corneal susceptibility to P. aeruginosa and abolished flagellin-induced protection in B6 mice. Our findings illustrate the profound protective effect of flagellin on the cornea innate defense, a response that can be exploited for prophylactic purposes to prevent contact lens associated Pseudomonas keratitis.  相似文献   

16.
Interleukin-17 (IL-17), mainly produced by activated (memory) T cells, has been found in the corneas from herpetic stromal keratitis (HSK) patients. To better understand the role of IL-17 and to optimize fidelity to human recurrent HSK, in this study, we utilized a mouse model of recurrent HSK, examined the expression of IL-17 and Th17 cells, and determine the alterability of virus-induced corneal inflammation after anti-IL-17 antibody treatment during murine recurrent HSK. We found that Th17 cells were obviously up-regulated in both cornea and DLNs of recurrent mice. Peak IL-17 protein present in recurrent cornea in conjunction with peak opacity mediated by CD4+ T cells. Systemic administration of anti-IL-17 antibody resulted in a diminished severity of corneal opacity, neovascularization, and CD4+ T cells infiltration compared to control. Anti-IL-17 treatment down-regulated the mRNA and protein levels of TNF-α expression in recurrent corneas, and decreased HSV-specific DTH responses. Our results indicate that elevated IL-17 expression may be involved in the development of recurrent HSK. The likely mechanisms of action for IL-17 are through up-regulating TNF-α expression and promoting HSV-specific DTH responses. Thus, IL-17 might constitute a useful target for therapeutic intervention in recurrent HSK.  相似文献   

17.
To investigate a role of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, in corneal epithelial wound healing, we analyzed the expression of TSP-1 in the normal and wounded mouse corneal epithelia and the effect of exogenous TSP-1 on the wound healing. In immunohistochemical analyses of unwounded corneas, TSP-1 was only detectable in endothelial cells. In contrast, TSP-1 appeared on the wounded corneal surface and on the corneal stroma, at 30 min and 8-16 h, respectively, after making an abrasion on the corneal epithelium. This expression of TSP-1 disappeared after 36-48 h, when re-epithelialization was completed. The TSP-1 mRNA level in the wounded corneas increased as much as three fold compared with that in the unwounded corneas. In organ culture, exogenous TSP-1 stimulated the re-epithelialization of corneal epithelial wounds whereas anti-TSP-1 antibody significantly inhibited the re-epithelialization. These findings suggest the possibility that epithelial defects in the corneas stimulate the expression of TSP-1 in the wound area, resulting in the accelerated re-epithelialization of the cornea.  相似文献   

18.
The aim of the current study was to evaluate the effects of five different treatment combinations to find out whether propolis could be an alternative or an adjunctive treatment, in experimental Pseudomonas aeruginosa keratitis. Intrastromal P. aeruginosa strains were given to both eyes of 20 young New Zealand white rabbits. The rabbits were randomly divided equally into five treatment groups; ciprofloxacin and dexamethasone drops (C+D), ciprofloxacin drop (C), ciprofloxacin and propolis drops (C+P), propolis drop (P), 3% ethanol drop (control), respectively. Directly before the first treatment and 108 h after inoculation, the eyes were examined by slit lamp to assess the corneal opacity and rabbits were sacrificed for bacterial count. The mean corneal opacity scores and the mean bacterial counts log cfu/ml were significantly different in the treatment groups (P=0.001; ANOVA). According to post hoc tests for both the mean bacterial counts and corneal opacity scores, C+D, C, C+P groups were found to be statistically the same (P>0.05), and although the P group had significantly better scores than the control group it did not reach the scores of the rest of the treatment groups (P<0.01). We conclude that propolis may be a useful adjunctive agent but should not be regarded as a replacement for traditional antibiotic therapy for P. aeruginosa keratitis in rabbits.  相似文献   

19.
Herpetic stromal keratitis (HSK) is an immunopathologic disease triggered by infection of the cornea with HSV. Key events in HSK involve the interaction between cornea-infiltrating inflammatory cells and resident cells. This interaction, in which macrophages, producing IL-1 and TNF-alpha, and IFN-gamma-producing Th1 cells play a crucial role, results in the local secretion of immune-modulatory factors and a major influx of neutrophils causing corneal lesions and blindness. The Th1-derived cytokine IL-17 has been shown to play an important role in several inflammatory diseases characterized by a massive infiltration of neutrophils into inflamed tissue. Here we show that IL-17 is expressed in corneas from patients with HSK and that the IL-17R is constitutively expressed by human corneal fibroblasts (HCF). IL-17 exhibited a strong synergistic effect with TNF-alpha on the induction of IL-6 and IL-8 secretion by cultured HCF. Secreted IL-8 in these cultures had a strong chemotactic effect on neutrophils. IL-17 also enhanced TNF-alpha- and IFN-gamma-induced secretion of macrophage-inflammatory proteins 1alpha and 3alpha, while inhibiting the induced secretion of RANTES. Furthermore, considerable levels of IFN-gamma-inducible protein 10 and matrix metalloproteinase 1 were measured in stimulated HCF cultures, while the constitutive secretion of monocyte chemotactic protein 1 remained unaffected. The data presented suggest that IL-17 may play an important role in the induction and/or perpetuation of the immunopathologic processes in human HSK by modulating the secretion of proinflammatory and neutrophil chemotactic factors by corneal resident fibroblasts.  相似文献   

20.
Pseudomonas aeruginosa keratitis destroys the cornea in susceptible Th1 responder C57BL/6 (B6), but not resistant Th2 responder (BALB/c) mice. To determine whether single Ig IL-1R-related molecule (SIGIRR) played a role in resistance, mRNA and protein expression levels were tested. Both were constitutively expressed in the cornea of the two mouse groups. A disparate mRNA and protein expression pattern was detected in the cornea of BALB/c vs B6 mice after infection. SIGIRR protein decreased significantly in BALB/c over B6 mice at 1 day postinfection. Thus, BALB/c mice were injected with an anti-SIGIRR Ab or IgG control. Anti-SIGIRR Ab over control-treated mice showed increased corneal opacity, stromal damage, and bacterial load. Corneal mRNA levels for IL-1beta, MIP-2, IL-1R1, TLR4, IL-18, and IFN-gamma and protein levels for IL-1beta and MIP-2 also were significantly up-regulated in anti-SIGIRR Ab over control mice, while no changes in polymorphonuclear cell number, IL-4, or IL-10 mRNA expression were detected. To further define the role of SIGIRR, RAW264.7 macrophage-like cells were transiently transfected with SIGIRR and stimulated with heat-killed P. aeruginosa or LPS. SIGIRR transfection significantly decreased mRNA levels for IL-1R1, TLR4, and type 1 immune response-associated cytokines (IL-12, IL-18, and IFN-gamma) as well as proinflammatory cytokines IL-1beta and MIP-2 protein expression. SIGIRR also negatively regulated IL-1 and LPS, but not poly(I:C)-mediated signaling and NF-kappaB activation. These data provide evidence that SIGIRR is critical in resistance to P. aeruginosa corneal infection by down-regulating type 1 immunity, and that it negatively regulates IL-1 and TLR4 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号