首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To help understand the functional properties of inner and outer dynein arms in axonemal motility, sliding velocities of outer doublets were measured in disintegrating axonemes of Chlamydomonas mutants lacking either of the arms. Measurements under improved solution conditions yielded significantly higher sliding velocities than those observed in a previous study [Okagaki and Kamiya, 1986, J. Cell Biol. 103:1895-1902]. As in the previous study, it was found that the velocities in axonemes of wild type (wt) and a mutant (oda1) missing the outer arm differ greatly: 18.5 +/- 4.1 microns/sec for wt and 4.4 +/- 2.3 microns/sec for oda1 at 0.5 mM Mg-ATP. In contrast, axonemes of two types of mutants (ida2 and ida4) that lacked different sets of two inner-arm heavy chains displayed velocities almost identical with the wild-type velocity. Moreover, axonemes of a non-motile double mutant ida2 X ida4 underwent sliding disintegration at a similar high velocity, although less frequently than in axonemes of single mutants. These observations support the hypothesis that the inner and outer dynein arms in disintegrating axonemes drive microtubules at different speeds and it is the faster outer arm that determines the overall speed when both arms are present. The inner arm may be important for the initiation of sliding. The axoneme thus appears to be equipped with two (or more) types of motors with different intrinsic speeds.  相似文献   

2.
《The Journal of cell biology》1994,127(6):1683-1692
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wild-type level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild- type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke- deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 microM cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP- mediated mechanism.  相似文献   

3.
Experiments were carried out to see if isolated inner arm dyneins could functionally combine with axonemes lacking them. High-salt extract from the axoneme of Chlamydomonas oda1 mutant lacking outer-arm dynein was added to the demembranated cell models of ida1oda1 lacking inner arm dynein f (dynein I1) and outer arm dynein. After incubation, the originally paralyzed ida1oda1 axonemes recovered the ability to beat in the presence of ATP. A similar good motility recovery after incubation with crude oda1 extract was observed in ida9oda2 lacking outer arm and inner arm dynein c, and partial recovery in ida4oda1 lacking outer arm and inner arm species a, c, and d. These observations indicate that dynein f and dynein c can functionally bind with mutant axonemes lacking them. A method for combining isolated inner arm dyneins with axonemes in a functionally active manner should provide a powerful experimental tool with which to study the mechanism of beating.  相似文献   

4.
Members of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum. Levels of LC7b are reduced approximately 20% in axonemes isolated from strains lacking inner arm I1 and are approximately 80% lower in the absence of the outer arms. When both dyneins are missing, LC7b levels are diminished to <10%. In oda9 axonemal extracts that completely lack outer arms, LC7b copurifies with inner arm I1, whereas in ida1 extracts that are devoid of I1 inner arms it associates with outer arm dynein. We also have observed that some LC7a is present in both isolated axonemes and purified 18S dynein from oda1, suggesting that it is also a component of both the outer arm and inner arm I1. Intriguingly, in axonemal extracts from the LC7a null mutant, oda15, which assembles approximately 30% of its outer arms, LC7b fails to copurify with either dynein, suggesting that it interacts with LC7a. Furthermore, both the outer arm gamma heavy chain and DC2 from the outer arm docking complex completely dissociate after salt extraction from oda15 axonemes. EDC cross-linking of purified dynein revealed that LC7b interacts with LC3, an outer dynein arm thioredoxin; DC2, an outer arm docking complex component; and also with the phosphoprotein IC138 from inner arm I1. These data suggest that LC7a stabilizes both the outer arms and inner arm I1 and that both LC7a and LC7b are involved in multiple intradynein interactions within both dyneins.  相似文献   

5.
The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S dyneins to the axonemes of the outer armless mutants oda1- oda6. A third factor that sediments at integral 7S is required for efficient reconstitution of the outer arms on the axonemes of oda1 and oda3. However, this factor is not necessary for reconstitution on the axonemes of oda2, oda4, oda5, and oda6. SDS-PAGE analysis indicates that the axonemes of the former two mutants lack a integral of 70-kD polypeptide that is present in those of the other mutants as well as in the 7S fraction from the wild-type extract. Furthermore, electron micrographs of axonemal cross sections revealed that the latter four mutants, but not oda1 or oda3, have small pointed structures on the outer doublets, at a position in cross section where outer arms normally occur. We suggest that the 7S factor constitutes the pointed structure on the outer doublets and facilitates attachment of the outer arm. The discovery of this structure raises a new question as to how the attachment site for the outer arm dynein is determined within the axoneme.  相似文献   

6.
The ATPase activities in Chlamydomonas axonemes were compared between wild type and a mutant (oda) that lacks entire outer dynein arms, at various ionic strengths and pH values, and in the presence of different concentrations of high-molecular-mass dextran. Over a 0-0.2 M KCl concentration range, the ATPase activity of oda axonemes was found to be 5-12 times lower than that of the wild-type axonemes. The low activity in oda is surprising since outer arm-depleted axonemes of sea urchin sperm have been reported to retain about 50% of the normal activity. In both wild type and oda, the ATPase activity of dynein was higher when contained within the axoneme than when released from it with 0.6 M KCl. The ATPase activation within the wild-type axoneme was inhibited by high ionic strengths or by the presence of dextran. The activation in oda axonemes, on the other hand, was not inhibited by these factors. These significantly different ATPase properties suggest that the inner and outer dynein arms perform somewhat different functions in this organism.  相似文献   

7.
A new allele of the Chlamydomonas oda4 flagellar mutant (oda4-s7) possessing abnormal outer dynein arms was isolated. Unlike the previously described oda4 axoneme lacking all three (alpha, beta, and gamma) outer-arm dynein heavy chains, the oda4-s7 axoneme contains the alpha and gamma heavy chains and a novel peptide with a molecular mass of approximately 160 kD. The peptide reacts with a mAb (18 beta B) that recognizes an epitope on the NH2-terminal part of the beta heavy chain. These observations indicate that this mutant has a truncated beta heavy chain, and that the NH2-terminal part of the beta heavy chain is important for the stable assembly of the outer arms. In averaged electron microscopic images of outer arms from cross sections of axonemes, the mutant outer arm lacks its mid-portion, producing a forked appearance. Together with our previous finding that the mutant oda11 lacks the alpha heavy chain and the outermost portion of the arm (Sakakibara, H., D. R. Mitchell, and R. Kamiya. 1991. J. Cell Biol. 113:615-622), this result defines the approximate locations of the three outer arm heavy chains in the axonemal cross section. The swimming velocity of oda4-s7 is 65 +/- 8 microns/s, close to that of oda4 which lacks the entire outer arm (62 +/- 8 microns/s) but significantly lower than the velocities of wild type (194 +/- 23 microns/s) and oda11 (119 +/- 17 microns/s). Thus, the lack of the beta heavy chain impairs outer-arm function more seriously than does the lack of the alpha heavy chain, suggesting that the alpha and beta chains play different roles in outer arm function.  相似文献   

8.
The outer dynein arms of Chlamydomonas flagella are attached to a precise site on the outer doublet microtubules and repeat at a regular interval of 24 nm. This binding is mediated by the outer dynein arm docking complex (ODA-DC), which is composed of three protein subunits. In this study, antibodies against the 83- and 62-kD subunits (DC83 and DC62) of the ODA-DC were used to analyze its state of association with outer arm components within the cytoplasm, and its localization in the axonemes of oda mutants. Immunoprecipitation indicates that DC83 and DC62 are preassembled within the cytoplasm, but that they are not associated with outer arm dynein. Both proteins are lost or greatly diminished in oda1 and oda3, mutants in the structural genes of DC62 and DC83, respectively, demonstrating that their association is necessary for their stable presence in the cytoplasm. Immunoelectron microscopy indicates that DC83 repeats at 24-nm intervals along the length of the doublet microtubules of oda6, which lacks outer arms; thus, outer arm periodicity may be determined by the ODA-DC. Flagellar regeneration and temporary dikaryon experiments indicate that the ODA-DC can be rapidly transported into the flagellum and assembled on the doublet microtubules independently of the outer arms and independently of flagellar growth. Unexpectedly, the intensity of ODA-DC labeling decreased toward the distal ends of axonemes of oda6 but not wild-type cells, suggesting that the outer arms reciprocally contribute to the assembly/stability of the ODA-DC.  相似文献   

9.
《The Journal of cell biology》1988,107(6):2253-2258
35 strains of Chlamydomonas mutant missing the entire outer dynein arm were isolated by screening slow-swimming phenotypes. They comprised 10 independent genetic loci (odal-10) including those of previously isolated mutants oda38 and pf28. The 10 loci were distinct from pf13 and pf22, loci for nonmotile mutants missing the outer arm. These results indicate that at least 12 genes are responsible for the assembly of the outer dynein arms. There were no mutants lacking partial structures of the outer arm, suggesting that lack of a single component results in failure of assembly of entire outer arms. Temporary dikaryons derived from mating of two different oda strains often, but not always, recovered the wild-type motility within 2 h of mating. Hence, outer arms can be transported and attached to the outer doublets independently of flagellar growth.  相似文献   

10.
In order to clarify the role of the inner arms of the axoneme in sperm flagellar movement, we prepared an ATPase fraction (12S) from the outer arm-depleted axonemes of sea urchin sperm flagella. When both arm-depleted axonemes were incubated with the 12S ATPase, they exhibited the sliding disintegration of outer doublet microtubules. Electron microscopy revealed that the ATPase rebound to the original inner arm sites of the axoneme. Therefore, it is quite likely that the 12S ATPase is one of the components of the inner arms. We referred to it as "inner arm dynein".  相似文献   

11.
Of the uncloned ODA genes required for outer dynein arm assembly in Chlamydomonas, ODA5 and ODA10 are of particular interest because they do not encode known subunits of the outer arm or the outer dynein arm-docking complex (ODA-DC), and because genetic studies suggest their products interact. Beginning with a tagged oda5 allele, we isolated genomic and cDNA clones of the wild-type gene. ODA5 predicts a novel, 66-kDa coiled-coil protein. Immunoblotting indicates Oda5p is an axonemal component that assembles onto the axoneme independently of the outer arm and ODA-DC and is uniquely missing in oda5 and oda10 axonemes. Oda5p is released from the axoneme by extraction with 0.6 M KCl, but the soluble Oda5p does not cosediment with the outer dynein arm/ODA-DC in sucrose gradients. Quantitative mass spectrometry by using isotope coded affinity tagging revealed that a previously unidentified adenylate kinase is reduced 35-50% in oda5 flagella. Direct enzymatic assays demonstrated a comparable reduction in adenylate kinase activity in oda5 flagella, and also in oda10 flagella, but not in flagella of other oda mutants. We propose that Oda5p is part of a novel axonemal complex that is required for outer arm assembly and anchors adenylate kinase in proximity to the arm.  相似文献   

12.
The outer dynein arm of Chlamydomonas flagella contains three heavy chains (alpha, beta, and gamma), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose gamma heavy chain is truncated at about 30% of the sequence. While the previously isolated gamma chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain alpha and beta heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the gamma heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the alpha heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the beta heavy chain). Thus, the outer-arm dynein lacking the gamma heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein.  相似文献   

13.
We have used computer averaging of electron micrographs from longitudinal and cross-sections of wild-type and mutant axonemes to determine the arrangement of the inner dynein arms in Chlamydomonas reinhardtii. Based on biochemical and morphological data, the inner arms have previously been described as consisting of three distinct subspecies, I1, I2, and I3. Our longitudinal averages revealed 10 distinguishable lobes of density per 96-nm repeating unit in the inner row of dynein arms. These lobes occurred predominantly but not exclusively in two parallel rows. We have analyzed mutant strains that are missing I1 and I2 subspecies. Cross-sectional averages of pf9 axonemes, which are missing the I1 subspecies, showed a loss of density in both the inner and outer portions of the inner arm. Averages from longitudinal images showed that three distinct lobes were missing from a single region; two of the lobes were near the outer arms but one was more inward. Serial 24-nm cross-sections of pf9 axonemes showed a complete gap at the proximal end of the repeating unit, confirming that the I1 subunit spans both inner and outer portions of the inner arm region. Examination of pf23 axonemes, which are missing both I1 and I2 subspecies, showed an additional loss almost exclusively in the inner portion of the inner arm. In longitudinal view, this additional loss occurred in three separate locations and consisted of three inwardly placed lobes, one adjacent to each of the two radial spokes and the third at the distal end of the repeating unit. These same lobes were absent ida4 axonemes, which lack only the I2 subspecies. The I2 subspecies thus does not consist of a single dynein arm subunit in the middle of the repeating unit. The radial spoke suppressor mutation, pf2, is missing four polypeptides of previously unknown location. Averages of these axonemes were missing a portion of the structures remaining in pf23 axonemes. This result suggests that polypeptides of the radial spoke control system are close to the inner dynein arms.  相似文献   

14.
Flagella of Chlamydomonas mutants lacking the central pair of microtubules or radial spokes do not beat; however, axonemes isolated from these mutants were found to display vigorous bending movements in the presence of ATP and various salts, sugars, alcohols, and other organic compounds. For example, about 15% of the total axonemes isolated from pf18, a mutant lacking the central pair, displayed beating in the presence of 10 mM MgSO(4) and 0.2 mM ATP at about 22 Hz, while none beat with the same concentration of ATP and < or = 5 mM or > or = 25 mM MgSO(4). The beat frequency and waveform of beating pf18 axonemes were similar to those of wild type axonemes beating under the same conditions. Similarly, 10-50% of the axonemes beat in the presence of 0.5 M sucrose, 2.0 M glycerol, or 1.7 M[10% (v/v)] ethanol. The appearance of motility did not correlate with the change in axonemal ATPase; however, these substances at those concentrations commonly increased the amplitude of nanometer-scale oscillation (hyper-oscillation) in pf18 axonemes, as well as the extent of ATP-induced sliding disintegration of protease-treated axonemes. Axonemes of double mutants lacking both the central pair and various subspecies of inner-arm dynein also beat at increased MgSO(4) concentrations, but axonemes lacking outer-arm dynein in addition to the central pair did not beat. These and other observations suggest that small molecules perturb the regulation of microtubule sliding through some change in water activity or osmotic stress. Axonemes must have an intrinsic ability to beat without the central pair/radial spokes under a variety of non-physiological solution conditions, as long as the outer dynein arms are present. Apparently, the major function of the central pair/radial spoke structures is to restore this activity under physiological conditions.  相似文献   

15.
Inner dynein arms, but not outer dynein arms, require the activity of KHP1(FLA10) to reach the distal part of axonemes before binding to outer doublet microtubules. We have analyzed the rescue of inner or outer dynein arms in quadriflagellate dikaryons by immunofluorescence microscopy of p28(IDA4), an inner dynein arm light chain, or IC69(ODA6), an outer dynein arm intermediate chain. In dikaryons two strains with different genetic backgrounds share the cytoplasm. As a consequence, wild-type axonemal precursors are transported to and assembled in mutant axonemes to complement the defects. The rescue of inner dynein arms containing p28 in ida4-wild-type dikaryons progressively occurred from the distal part of the axonemes and with time was extended towards the proximal part. In contrast, the rescue of outer dynein arms in oda2-wild-type dikaryons progressively occurred along the entire length of the axoneme. Rescue of inner dynein arms containing p28 in ida4fla10-fla10 dikaryons was similar to the rescue observed in ida4-wild-type dikaryons at 21 degrees C, whereas it was inhibited at 32 degrees C, a nonpermissive temperature for KHP1(FLA10). In contrast, rescue of outer dynein arms in oda2fla10-fla10 dikaryons was similar to the rescue observed in oda2-wild-type dikaryons at both 21 degrees and 32 degrees C and was not inhibited at 32 degrees C. Positioning of substructures in the internal part of the axonemal shaft requires the activity of kinesin homologue protein 1.  相似文献   

16.
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes missing some or all dyneins. Densitometry of Coomassie blue-stained polyacrylamide gels revealed that for each inner dynein arm subform, binding to axonemes was saturable and stoichiometric. Using structural markers of position and polarity, electron microscopy confirmed that subforms bound to the correct inner arm position. Inner arms did not bind to outer arm or inappropriate inner arm positions despite the availability of sites. These and previous observations implicate specialized tubulin isoforms or nontubulin proteins in designation of specific inner dynein arm binding sites. Further, microtubule sliding velocities were restored to dynein-depleted axonemes upon rebinding of the missing inner arm subtypes as evaluated by an ATP-induced microtubule sliding disintegration assay. Therefore, not only were the inner arm dynein subforms able to identify and bind to the correct location on doublet microtubules but they bound in a functionally active conformation.  相似文献   

17.
Dynein motors of cilia and flagella function in the context of the axoneme, a very large network of microtubules and associated proteins. To understand how dyneins assemble and attach to this network, we characterized two Chlamydomonas outer arm dynein assembly (oda) mutants at a new locus, ODA16. Both oda16 mutants display a reduced beat frequency and altered swimming behavior, similar to previously characterized oda mutants, but only a partial loss of axonemal dyneins as shown by both electron microscopy and immunoblots. Motility studies suggest that the remaining outer arm dyneins on oda16 axonemes are functional. The ODA16 locus encodes a 49-kDa WD-repeat domain protein. Homologues were found in mammalian and fly databases, but not in yeast or nematode databases, implying that this protein is only needed in organisms with motile cilia or flagella. The Chlamydomonas ODA16 protein shares 62% identity with its human homologue. Western blot analysis localizes more than 90% of ODA16p to the flagellar matrix. Because wild-type axonemes retain little ODA16p but can be reactivated to a normal beat in vitro, we hypothesize that ODA16p is not an essential dynein subunit, but a protein necessary for dynein transport into the flagellar compartment or assembly onto the axoneme.  相似文献   

18.
The radial spokes are required for Ca(2+)-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca(2+)-independent manner, whereas IQ2 and IQ3 show Ca(2+)-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca(2+). This Ca(2+)-responsive enzyme, which accounts for approximately 45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca(2+)-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes.  相似文献   

19.
20.
The highly conserved LC8/DYNLL family proteins were originally identified in axonemal dyneins and subsequently found to function in multiple enzyme systems. Genomic analysis uncovered a third member (LC10) of this protein class in Chlamydomonas. The LC10 protein is extracted from flagellar axonemes with 0.6 M NaCl and cofractionates with the outer dynein arm in sucrose density gradients. Furthermore, LC10 is specifically missing only from axonemes of those strains that fail to assemble outer dynein arms. Previously, the oda12-1 insertional allele was shown to lack the Tctex2-related dynein light chain LC2. The LC10 gene is located approximately 2 kb from that of LC2 and is also completely missing from this mutant but not from oda12-2, which lacks only the 3' end of the LC2 gene. Although oda12-1 cells assemble outer arms that lack only LC2 and LC10, this strain exhibits a flagellar beat frequency that is consistently less than that observed for strains that fail to assemble the entire outer arm and docking complex (e.g., oda1). These results support a key regulatory role for the intermediate chain/light chain complex that is an integral and highly conserved feature of all oligomeric dynein motors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号