首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
Five C2'-substituted 6-nitroquipazine (6-NQ) derivatives were prepared and evaluated in terms of their biological abilities (K(i)) to displace [(3)H]citalopram binding to serotonin transporter. The relationship between their structure and biological activities revealed that shorter alkyl groups tend to possess higher binding affinity. Both compounds 12a and 12c were found to have the equally highest binding affinity (K(i)=0.43+/-0.02 nM).  相似文献   

2.
This paper reports the chemical synthesis of two new bile acid analogues, namely, 3 alpha, 6 beta-dihydroxy-6 alpha-methyl-5 beta-cholanoic acid from 3 alpha-hydroxy-6-oxo-5 beta-cholanoic acid and describes their metabolism in the hamster. A Grignard reaction of the oxo acid with methyl magnesium iodide in tetrahydrofuran gave two epimeric dihydroxy-6-methyl-cholanoic acids which were separated as the methyl esters by silica gel column chromatography. The configuration of the 6-methyl groups was assigned by proton nuclear magnetic resonance spectroscopy and was supported by the chromatographic properties of the new compounds. The metabolism of the two new bile acid analogues was studied in the hamster. After intraduodenal administration of the 14C-labeled analogues into bile fistula hamsters, both compounds were absorbed rapidly from the intestine and secreted into bile. Intravenous infusion studies revealed that these compounds were efficiently extracted by the liver; the administered analogues became major biliary bile acids, present as either the glycine or taurine conjugates. These compounds are useful to study the effect of methyl-substituted bile acids on cholesterol and bile acid metabolism and may possibly possess cholelitholytic properties.  相似文献   

3.
J Fisher  R Spencer  C Walsh 《Biochemistry》1976,15(5):1054-1064
The ability of 5-deazaisoalloxazines to substitute for the isoalloxazine (flavin) coenzyme has been examined with several flavoenzymes. Without exception, the deazaflavin is recognized at the active site and undergoes a redox change in the presence of the specific enzyme substrate. Thus, deazariboflavin is reduced catalytically by NADH in the presence of the Beneckea harveyi NAD(P)H:(flavin) oxidoreductase, the reaction proceeding to an equilibrium with an equilibrium constant near unity. This implies an E0 of -0.310 V for the deazariboflavindihydrodeazariboflavin couple, much lower than that for isoalloxazines. With this enzyme, both riboflavin and deazariboflavin show the same stereospecificity with respect to the pyridine nucleotide, and despite a large difference in Vmax for the two, both have the same rate-determining step (hydrogen transfer). Direct transfer of the hydrogen is seen between the nicotinamide and deazariboflavin in both reaction directions. DeazaFMN reconstituted yeast NADPH: (acceptor) oxidoreductase (Old Yellow Enzyme), and deazaFAD reconstituted D-amino acid:O2 oxidoreductase and Aspergillus niger D-glucose O2 oxidoreductase are all reduced by substrate at approximately 10(-5) the rate of holoenzyme; none are reoxidized by oxygen or any of the tested artificial electron acceptors, though deazaFADH-bound to D-amino acid:O2 oxidoreductase is rapidly oxidized by the imino acid product. Direct hydrogen transfer from substrate to deazaflavin has been demonstrated for both deazaFAD-reconstituted oxidases. These data implicate deazaflavins as a unique probe of flavin catalysis, in that any mechanism for the flavin catalysis must account for the deazaflavin reactivity as well.  相似文献   

4.
R Spencer  J Fisher  C Walsh 《Biochemistry》1976,15(5):1043-1053
In order to facilitate interpretation of the deazaisoalloxazine system as a valid mechanistic probe of flavoenzyme catalysis, we have examined some of the fundamental chemical properties of this system. The enzymatic synthesis, on a micromole scale, of the flavin coenzyme analogues 5-deazariboflavin 5'-phosphate (deazaFMN) and 5-deazariboflavin 5'-diphosphate, 5' leads to 5'adenosine ester (deazaFAD) has been achieved. This latter synthesis is accomplished with a partially purified FAD synthetase complex (from Brevibacterium ammoniagenes), containing both phosphorylating and adenylylating activities, allowing direct conversion of the riboflavin analogue to the flavin adenine dinucleotide level. The structure of the reduced deazaflavin resulting from enzymatic and chemical reduction is established as the 1,5-dihydrodeazaflavin by proton magnetic resonance. Similarly, the C-5 position of the deazaflavins is demonstrated to be the locus for hydrogen transfer in deazaflavin redox reactions. Preparation of 1,5-dihydrodeazaflavins by sodium borohydride reduction stabilized them to autoxidation (t 1/2 approximately 40 h, 22 degrees C) although dihydrodeazaflavins are rapidly oxidized by other electron acceptors, including riboflavin, phenazine methosulfate, methylene blue, and dichlorophenolindophenol. Mixtures of oxidized and reduced deazaflavins undergo a rapid two-electron disproportionation (k = 22 M-1 S-1 0 degrees C), and oxidized deazaflavins form transient covalent adducts with nitroalkane anions at pH less than 5. Generalized methods for the synthesis of isotopically labeled flavin and deazaflavin coenzymes and their purification by adsorptive chromatography are given.  相似文献   

5.
5, 6-Dihydropyrimidines can be oxidized photochemically to the original pyrimidines with light of lambda greater than 300 nm in the presence of transition metal salts which act as sensitizers. A hydrogen atom abstraction by hydroxyl radical is suggested as the reaction mechanism.  相似文献   

6.
7.
Pharmacological effects of 6-azauridine (4) analogues were evaluated using hypnotic activity, pentobarbital (PB)-induced sleep prolongation and locomotor activity as indices. Compound 4, N3-benzyl- (10), N3-o-xylyl- (11), N3-m-xylyl- (12), N3-p-xylyl- (13), N3-alpha-phenylethyl-substituted 6-azauridine (14) exhibited hypnotic activity and PB-induced sleep prolongation, whereas N3-alkyl substituted analogues (methyl-, ethyl-, n-propyl-, n-butyl- and allyl-substitution) did not. Compound 4 and xylyl analogues (11-13) significantly decreased locomotor activity of mice by i.c.v. injection and produced motor incoordination. The results indicate that 4 and its benzyl related analogues, but not alkyl analogues have depressant effects on the central nervous system (CNS).  相似文献   

8.
9.
2'-Deoxy-2'-methylene-6-azauridine (5) and 2'-deoxy-2'-methylene-6-azacytidine (8) have been synthesized via a multi-step procedure from 6-azauridine. 2'-Deoxy-2'-methylene-5-azacytidine (14a) and 2'-deoxy-2'-methylene-3-deazaguanosine (19a) and their corresponding alpha-anomers (14b and 19b) have been synthesized by the transglycosylation of 3',5'-O-(1,1,3,3- tetraisopropyldisiloxane-1,3-diyl)-2'-deoxy-2'-methyleneu ridine (12) with silylated 5-azacytosine and silylated N2-palmitoyl-3-deazaguanine, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by separation of the isomers and deprotection of the blocking groups. These compounds were tested for cytotoxicity against B16F10, L1210, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1, HSV-1, and HSV-2.  相似文献   

10.
Syntheses are described of new dermorphin and [D-Ala2]deltorphin I analogues in which the phenylalanine, the tyrosine or the valine residues have been substituted by the corresponding N-alkylglycine residues. Structural investigations by CD measurements in different solvents and preliminary pharmacological experiments were carried out on the resulting peptide-peptoid hybrids. The contribution from aromatic side chain residues is prominent in the CD spectra of dermorphin analogues and the assignment of a prevailing secondary structure could be questionable. In the CD spectra of deltorphin analogues the aromatic contribution is lower and the dichroic curves indicate the predominance of random conformer populations. The disappearance of the aromatic contribution in the [Ntyr1,D-Ala2]-deltorphin spectrum could be explained in terms of high conformational freedom of the N-terminal residue. The kinetics of degradation of the synthetic peptoids digestion by rat and human plasma enzymes were compared with that of [Leu5]-enkephalin. The binding to opioid receptors was tested on crude membrane preparations from CHO cells stably transfected with the mu- and delta-opioid receptors. The biological potency of peptoids was compared with that of dermorphin in GPI preparations and with that of deltorphin I in MVD preparations. All the substitutions produced a dramatic decrease in the affinity of the peptide-peptoid hybrids for both the mu- and delta-opioid receptors. Nval5 and/or Nval6 containing hybrids behaved as mu-opioid receptor agonists and elicit a dose-dependent analgesia (tail-flick test) when injected i.c.v. in rats.  相似文献   

11.
12.
Several 6-substituted-amino-5'-deoxy-5'-amino-clitocine analogues were synthesized in a parallel fashion in solid phase. The desired scaffold was generated by coupling 2,3-O-bis-(t-butyldimethylsilyl)-5-N-(monomethoxytrityl-polystyrene-resin)-1,5-diamino-5-deoxy-beta-D-ribofuranose and 4, 6-dichloro-5-nitropyrimidine. The scaffold was then reacted with a variety of amines to generate a small library of 14 analogues of 5'-deoxy-5'-amino-clitocine following a protocol developed earlier.  相似文献   

13.
Previous studies have shown that (E)-5-styrylisatin and (E)-6-styrylisatin are reversible inhibitors of human monoamine oxidase (MAO) A and B. Both homologues are reported to exhibit selective binding to the MAO-B isoform with (E)-5-styrylisatin being the most potent inhibitor. To further investigate these structure-activity relationships (SAR), in the present study, additional C5- and C6-substituted isatin analogues were synthesized and evaluated as inhibitors of recombinant human MAO-A and MAO-B. With the exception of 5-phenylisatin, all of the analogues examined were selective MAO-B inhibitors. The C5-substituted isatins exhibited higher binding affinities to MAO-B than the corresponding C6-substituted homologues. The most potent MAO-B inhibitor, 5-(4-phenylbutyl)isatin, exhibited an IC50 value of 0.66 nM, approximately 13-fold more potent than (E)-5-styrylisatin and 18,500-fold more potent than isatin. The most potent MAO-A inhibitor was found to be 5-phenylisatin with an IC50 value of 562 nM. The results document that substitution at C5 with a variety of substituents is a general strategy for enhancing the MAO-B inhibition potency of isatin. Possible binding orientations of selected isatin analogues within the active site cavities of MAO-A and MAO-B are proposed.  相似文献   

14.
Inosine (I) when acetylated with acetic anhydride in the presence of acetyl chloride in acetic acid solution (the so called "acid acetylation"), affords an acetylated nucleoside III (75%) along with cleavage products of the nucleoside (hypoxanthine, 19%). The reaction of I with acetyl chloride (7 days) results in the formation of hypoxanthine (95%) and triacetylribofuranosyl chloride (IV) isolated in the form of tetraacetylribofuranose (47%). The acetylated purine nucleoside affords a similar result by reaction with acetyl chloride or acetyl bromide. 2'-Deoxyuridine gives a diacetyl derivative (80%) by reaction with acetyl bromide. On treatment with acetyl bromide, the nucleoside bond of purine nucleosides is quantitatively cleavaged (4 h, 20 degrees C) with the formation of tri-O-acetyl-D-ribofuranosyl bromide (X). The halogenose X affords pure beta-anomers, namely, 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose (75%), the triacetyl derivatives of 5-methyluridine (XVIIa; 75%, referred to guanosine), 6-azauridine (XVIII; 71%), and 5-fluorouridine (XIXa; 75%).  相似文献   

15.
Novel 5'-norcarbocyclic adenosine phosphonic acid analogues with 6'-electropositive moiety such as spirocyclopropane were designed and synthesized from the commercially available diethylmalonate 5. Regioselective Mitsunobu reaction proceeded in the presence of an allylic functional group at a low reaction temperature in polar cosolvent [dimethylformamide (DMF)/1,4-dioxane] to give purine analogue 15. To improve cellular permeability and enhance the anti-human immunodeficiency virus (HIV) activity of this phosphonic acid, a SATE phosphonodiester nucleoside prodrug 23 was prepared. The synthesized adenosine phosphonic acids analogues 18-21 and 23 were subjected to antiviral screening against HIV-1.  相似文献   

16.
6-N-Amino analogues of NB-506 [6-N-formylamino-12,13-dihydro-1,11-dihydroxy-13-(beta-D-glucopyranosyl) -5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione] (3b) were synthesized and tested with respect to topoisomerase inhibition, cytotoxicity and anticancer effects. Among them, a 1,3-dihydroxypropane analogue (J-109,404, 5t) showed more than ten times more potent anticancer activity in MKN-45 human stomach cancer cells implanted in mice than NB-506.  相似文献   

17.
Yang X  Yin D  Wnuk SF  Robins MJ  Borchardt RT 《Biochemistry》2000,39(49):15234-15241
In an effort to design more specific and potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase, we investigated the mechanisms by which 5',5',6', 6'-tetradehydro-6'-deoxy-6'-halohomoadenosines (X = Cl, Br, I) inactivated this enzyme. The 6'-chloro (a) and 6'-bromo (b) acetylenic nucleoside analogues produced partial ( approximately 50%) loss of enzyme activity with a concomitant ( approximately 50%) reduction of E-NAD(+) to E-NADH. In addition, Ade and halide ions were released from the inhibitors in amounts suggestive of a process involving enzyme catalysis. AdoHcy hydrolase, which was inactivated with compound a, was shown to contain 2 mol of the inhibitor covalently bound to Lys318 of two subunits of the homotetramer. These data suggest that the enzyme-mediated water addition at the 5' position of compound a or b produces an alpha-halomethyl ketone intermediate, which is then attacked by a proximal nucleophile (i.e., Lys318) to form the enzyme-inhibitor covalent adduct (lethal event); in a parallel pathway (nonlethal event), addition of water at the 6' position produces an acyl halide, which is released into solution and chemically degrades into Ade, halide ion, and sugar-derived products. In contrast, compound c completely inactivated AdoHcy hydrolase by converting 2 equiv of E-NAD(+) to E-NADH and causing the release of 2 equiv of E-NAD(+) into solution. Four moles of the inhibitor was shown to be tightly bound to the tetrameric enzyme. These data suggest that compound c inactivates AdoHcy hydrolase by a mechanism similar to the acetylenic analogue of Ado described previously by Parry et al. [(1991) Biochemistry 30, 9988-9997].  相似文献   

18.
Chemical synthesis of a series of novel dinucleoside cap analogues, m7GpppN, where N is formycin A, 3'-O-methylguanosine, 9-beta-D-arabinofuranosyladenine, and isoguanosine, has been performed using our new methodology. The key reactions of pyrophosphate bonds formation were achieved in anhydrous dimethylformamide solutions employing the catalytic properties of zinc salts. Structures of the new cap analogues were confirmed by 1H NMR and 31p NMR spectra. The binding affinity of the new cap analogues for murine eIF4E(28-217) were determined spectroscopically showing the highest association constant for the analogue that contains formycin A.  相似文献   

19.
Methyl 2,5-anhydro-3-O-(2-methoxyethyl)-2-thio-beta-D-arabinofuranoside and methyl 2,5-anhydro-3-O-(2-fluorobenzyl)-2-thio-alpha-D-lyxofuranoside were transformed into the corresponding uridine, thymidine, cytidine and adenosine analogues, which exclusively exhibited the alpha-configuration irrespective of the anomeric configuration of the donor. The structure, configuration, and conformation of the products was elucidated by X-ray structure analyses. The nucleoside analogues were tested for antiviral activities.  相似文献   

20.
The C activation fragment C5a is the most potent plasma-derived chemotactic factor known. This humoral factor induces both neutrophil and macrophage activation at low nanomolar concentrations. We have synthesized a series of C-terminal C5a analogues that exhibit all of the characteristic biologic activities of C5a. These peptides apparently contain the effector site for C5a receptor-mediated cellular activation, but express only a fraction of the potency of intact C5a. We have demonstrated the following in vitro activities for these C5a peptides: 1) ileal (guinea pig) contraction; 2) platelet (guinea pig) activation; and 3) neutrophil (human) polarization and chemotaxis. The effect of C5a peptides in vivo was evaluated by measuring enhancement in vascular permeability. Although potencies of the most effective synthetic C5a analogues were on the order of 0.01 to 0.1% that of the natural factor, our biologic data confirm that the C5a peptides are full agonists of the intact factor and may be useful substitutes for intact C5a. Furthermore, our results indicate that elongation of the C5a analogues from 10 to 19 residues in length contributes little toward enhancing or decreasing potency of the synthetic C5a analogues. Replacement of residues in the effector region by D-amino acids or by introduction of a cyclic group to reduce flexibility of the backbone decreased potency of the analogues. Substitution of His 67 by Phe in the decapeptide C5a 65-74 resulted in a significant increase in potency of the C5a analogue. The marked enhancement in potency from replacing His 67 by Phe in analogue C5a peptides identifies an important hydrophobic subsite. We conclude that site-specific amino acid modifications in or near the C-terminal effector site sequence can diminish or optimize potency of the model C5a peptides. However, there apparently are subsites on folded C5a, from regions other than the C-terminal portion of the molecule, that contribute significant receptor interactions. These subsites must be identified and incorporated into C5a model peptide designs before expression of full potency by synthetic analogues of this factor will be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号