首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
From an epidemiological point of view, Chagas disease and its reservoirs and vectors can present the following characteristics: (i) enzooty, maintained by wild animals and vectors, with broad occurrence from southern United States of America (USA) to southern Argentina and Chile (42ºN 49ºS), (ii) anthropozoonosis, when man invades the wild ecotope and becomes infected with Trypanosoma cruzi from wild animals or vectors or when the vectors and wild animals, especially marsupials, invade the human domicile and infect man, (iii) zoonosis-amphixenosis and exchanged infection between animals and humans by domestic vectors in endemic areas and (iv) zooanthroponosis, infection that is transmitted from man to animals, by means of domestic vectors, which is the rarest situation in areas endemic for Chagas disease. The characteristics of Chagas disease as an enzooty of wild animals and as an anthropozoonosis are seen most frequently in the Brazilian Amazon and in the Pan-Amazon region as a whole, where there are 33 species of six genera of wild animals: Marsupialia, Chiroptera, Rodentia, Edentata (Xenarthra), Carnivora and Primata and 27 species of triatomines, most of which infected with T. cruzi . These conditions place the resident populations of this area or its visitors - tourists, hunters, fishermen and especially the people whose livelihood involves plant extraction - at risk of being affected by Chagas disease. On the other hand, there has been an exponential increase in the acute cases of Chagas disease in that region through oral transmission of T. cruzi , causing outbreaks of the disease. In four seroepidemiological surveys that were carried out in areas of the microregion of the Negro River, state of Amazonas, in 1991, 1993, 1997 and 2010, we found large numbers of people who were serologically positive for T. cruzi infection. The majority of them and/or their relatives worked in piassava extraction and had come into contact with and were stung by wild triatomines in that area. Finally, a characteristic that is greatly in evidence currently is the migration of people with Chagas disease from endemic areas of Latin America to non-endemic countries. This has created a new dilemma for these countries: the risk of transmission through blood transfusion and the onus of controlling donors and treating migrants with the disease. As an enzooty of wild animals and vectors, and as an anthropozoonosis, Chagas disease cannot be eradicated, but it must be controlled by transmission elimination to man.  相似文献   

2.

Background

Molecular epidemiology at the community level has an important guiding role in zoonotic disease control programmes where genetic markers are suitably variable to unravel the dynamics of local transmission. We evaluated the molecular diversity of Trypanosoma cruzi, the etiological agent of Chagas disease, in southern Ecuador (Loja Province). This kinetoplastid parasite has traditionally been a paradigm for clonal population structure in pathogenic organisms. However, the presence of naturally occurring hybrids, mitochondrial introgression, and evidence of genetic exchange in the laboratory question this dogma.

Methodology/Principal Findings

Eighty-one parasite isolates from domiciliary, peridomiciliary, and sylvatic triatomines and mammals were genotyped across 10 variable microsatellite loci. Two discrete parasite populations were defined: one predominantly composed of isolates from domestic and peridomestic foci, and another predominantly composed of isolates from sylvatic foci. Spatial genetic variation was absent from the former, suggesting rapid parasite dispersal across our study area. Furthermore, linkage equilibrium between loci, Hardy-Weinberg allele frequencies at individual loci, and a lack of repeated genotypes are indicative of frequent genetic exchange among individuals in the domestic/peridomestic population.

Conclusions/Significance

These data represent novel population-level evidence of an extant capacity for sex among natural cycles of T. cruzi transmission. As such they have dramatic implications for our understanding of the fundamental genetics of this parasite. Our data also elucidate local disease transmission, whereby passive anthropogenic domestic mammal and triatomine dispersal across our study area is likely to account for the rapid domestic/peridomestic spread of the parasite. Finally we discuss how this, and the observed subdivision between sympatric sylvatic and domestic/peridomestic foci, can inform efforts at Chagas disease control in Ecuador.  相似文献   

3.

Background

The new epidemiological scenario of orally transmitted Chagas disease that has emerged in Brazil, and mainly in the Amazon region, needs to be addressed with a new and systematic focus. Belém, the capital of Pará state, reports the highest number of acute Chagas disease (ACD) cases associated with the consumption of açaí juice.

Methodology/Principal Findings

The wild and domestic enzootic transmission cycles of Trypanosoma cruzi were evaluated in the two locations (Jurunas and Val-de Cães) that report the majority of the autochthonous cases of ACD in Belém city. Moreover, we evaluated the enzootic cycle on the three islands that provide most of the açaí fruit that is consumed in these localities. We employed parasitological and serological tests throughout to evaluate infectivity competence and exposure to T. cruzi. In Val-de-Cães, no wild mammal presented positive parasitological tests, and 56% seroprevalence was observed, with low serological titers. Three of 14 triatomines were found to be infected (TcI). This unexpected epidemiological picture does not explain the high number of autochthonous ACD cases. In Jurunas, the cases of ACD could not be autochthonous because of the absence of any enzootic cycle of T. cruzi. In contrast, in the 3 island areas from which the açaí fruit originates, 66.7% of wild mammals and two dogs displayed positive hemocultures, and 15.6% of triatomines were found to be infected by T. cruzi. Genotyping by mini-exon gene and PCR-RFLP (1f8/Akw21I) targeting revealed that the mammals and triatomines from the islands harbored TcI and Trypanosoma rangeli in single and mixed infections.

Conclusion/Significance

These findings show that cases of Chagas disease in the urban area of Belém may be derived from infected triatomines coming together with the açaí fruits from distant islands. We term this new epidemiological feature of Chagas disease as “Distantiae transmission”.  相似文献   

4.
Chagas disease, caused by Trypanosoma cruzi infection, is a zoonosis of humans, wild and domestic mammals, including dogs. In Panama, the main T. cruzi vector is hodnius pallescens, a triatomine bug whose main natural habitat is the royal palm, Attalea butyracea. In this paper, we present results from three T. cruzi serological tests (immunochromatographic dipstick, indirect immunofluorescence and ELISA) performed in 51 dogs from 24 houses in Trinidad de Las Minas, western Panama. We found that nine dogs were seropositive (17.6% prevalence). Dogs were 1.6 times more likely to become T. cruzi seropositive with each year of age and 11.6 times if royal palms where present in the peridomiciliary area of the dog''s household or its two nearest neighbours. Mouse-baited-adhesive traps were employed to evaluate 12 peridomestic royal palms. All palms were found infested with R. pallescens with an average of 25.50 triatomines captured per palm. Of 35 adult bugs analysed, 88.6% showed protozoa flagellates in their intestinal contents. In addition, dogs were five times more likely to be infected by the presence of an additional domestic animal species in the dog''s peridomiciliary environment. Our results suggest that interventions focused on royal palms might reduce the exposure to T. cruzi infection.  相似文献   

5.
Chagas disease, in the Amazon Region as elsewhere, can be considered an enzootic disease of wild animals or an anthropozoonosis, an accidental disease of humans that is acquired when humans penetrate a wild ecosystem or when wild triatomines invade human dwellings attracted by light or searching for human blood. The risk of endemic Chagas disease in the Amazon Region is associated with the following phenomena: (i) extensive deforestation associated with the displacement of wild mammals, which are the normal sources of blood for triatomines, (ii) adaptation of wild triatomines to human dwellings due to the need for a new source of blood for feeding and (iii) uncontrolled migration of human populations and domestic animals that are already infected with Trypanosoma cruzi from areas endemic for Chagas disease to the Amazon Region. Several outbreaks of severe acute cases of Chagas disease, as well as chronic cases, have been described in the Amazon Region. Control measures targeted to avoiding endemic Chagas disease in the Amazon Region should be the following: improving health education in communities, training public health officials and communities for vector and Chagas disease surveillance and training local physicians to recognise and treat acute and chronic cases of Chagas diseases as soon as possible.  相似文献   

6.
Traditional methods for Chagas disease prevention are targeted at domestic vector reduction, as well as control of transfusion and maternal-fetal transmission. Population connectivity of Trypanosoma cruzi-infected vectors and hosts, among sylvatic, ecotone and domestic habitats could jeopardize targeted efforts to reduce human exposure. This connectivity was evaluated in a Mexican community with reports of high vector infestation, human infection, and Chagas disease, surrounded by agricultural and natural areas. We surveyed bats, rodents, and triatomines in dry and rainy seasons in three adjacent habitats (domestic, ecotone, sylvatic), and measured T. cruzi prevalence, and host feeding sources of triatomines. Of 12 bat and 7 rodent species, no bat tested positive for T. cruzi, but all rodent species tested positive in at least one season or habitat. Highest T. cruzi infection prevalence was found in the rodents, Baiomys musculus and Neotoma mexicana. In general, parasite prevalence was not related to habitat or season, although the sylvatic habitat had higher infection prevalence than by chance, during the dry season. Wild and domestic mammals were identified as bloodmeals of T. pallidipennis, with 9% of individuals having mixed human (4.8% single human) and other mammal species in bloodmeals, especially in the dry season; these vectors tested >50% positive for T. cruzi. Overall, ecological connectivity is broad across this matrix, based on high rodent community similarity, vector and T. cruzi presence. Cost-effective T. cruzi, vector control strategies and Chagas disease transmission prevention will need to consider continuous potential for parasite movement over the entire landscape. This study provides clear evidence that these strategies will need to include reservoir/host species in at least ecotones, in addition to domestic habitats.  相似文献   

7.
Genetic diversity of Trypanosoma cruzi populations and parasite transmission dynamics have been well documented throughout the Americas, but few studies have been conducted in the Gran Chaco ecoregion, one of the most highly endemic areas for Chagas disease, caused by T. cruzi. In this study, we assessed the distribution of T. cruzi lineages (identified by PCR strategies) in Triatoma infestans, domestic dogs, cats, humans and sylvatic mammals from two neighbouring rural areas with different histories of transmission and vector control in northern Argentina. Lineage II predominated amongst the 99 isolates characterised and lineage I amongst the six isolates obtained from sylvatic mammals. T. cruzi lineage IIe predominated in domestic habitats; it was found in 87% of 54 isolates from Tr. infestans, in 82% of 33 isolates from dogs, and in the four cats found infected. Domestic and sylvatic cycles overlapped in the study area in the late 1980s, when intense domestic transmission occurred, and still overlap marginally. The introduction of T. cruzi from sylvatic into domestic habitats is likely to occur very rarely in the current epidemiological context. The household distribution of T. cruzi lineages showed that Tr. infestans, dogs and cats from a given house compound shared the same parasite lineage in most cases. Based on molecular evidence, this result lends further support to the importance of dogs and cats as domestic reservoir hosts of T. cruzi. We believe that in Argentina, this is the first time that lineage IIc has been isolated from naturally infected domestic dogs and Tr. infestans.  相似文献   

8.

Background

Chagas disease is a zoonotic parasitic disease well-documented throughout the Americas and transmitted primarily by triatomine ‘kissing bug’ vectors. In acknowledgment of the successful history of vector control programs based on community participation across Latin America, we used a citizen science approach to gain novel insight into the geographic distribution, seasonal activity, and Trypanosoma cruzi infection prevalence of kissing bugs in Texas while empowering the public with information about Chagas disease.

Methodology/Principal Findings

We accepted submissions of kissing bugs encountered by the public in Texas and other states from 2013–2014 while providing educational literature about Chagas disease. In the laboratory, kissing bugs were identified to species, dissected, and tested for T. cruzi infection. A total of 1,980 triatomines were submitted to the program comprised of at least seven species, of which T. gerstaeckeri and T. sanguisuga were the most abundant (85.7% of submissions). Triatomines were most commonly collected from dog kennels and outdoor patios; Overall, 10.5% of triatomines were collected from inside the home. Triatomines were submitted from across Texas, including many counties which were not previously known to harbor kissing bugs. Kissing bugs were captured primarily throughout April-October, and peak activity occurred in June-July. Emails to our dedicated account regarding kissing bugs were more frequent in the summer months (June-August) than the rest of the year. We detected T. cruzi in 63.3% of tested bugs.

Conclusions/Significance

Citizen science is an efficient approach for generating data on the distribution, phenology, and infection prevalence of kissing bugs—vectors of the Chagas disease parasite—while educating the public and medical community.  相似文献   

9.
A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11–89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease.  相似文献   

10.
Chagas disease or American trypanosomiasis is, together with geohelminths, the neglected disease that causes more loss of years of healthy life due to disability in Latin America. Chagas disease, as determined by the factors and determinants, shows that different contexts require different actions, preventing new cases or reducing the burden of disease. Control strategies must combine two general courses of action including prevention of transmission to prevent the occurrence of new cases (these measures are cost effective), as well as opportune diagnosis and treatment of infected individuals in order to prevent the clinical evolution of the disease and to allow them to recuperate their health. All actions should be implemented as fully as possible and with an integrated way, to maximise the impact. Chagas disease cannot be eradicated due because of the demonstrated existence of infected wild triatomines in permanent contact with domestic cycles and it contributes to the occurrence of at least few new cases. However, it is possible to interrupt the transmission of Trypanosoma cruzi in a large territory and to eliminate Chagas disease as a public health problem with a dramatic reduction of burden of the disease.  相似文献   

11.

Background

The demographic transition of populations from rural areas to large urban centers often results in a disordered occupation of forest remnants and increased economic pressure to develop high-income buildings in these areas. Ecological and socioeconomic factors associated with these urban transitions create conditions for the potential transmission of infectious diseases, which was demonstrated for Chagas disease.

Methodology/Principal Findings

We analyzed 930 triatomines, mainly Triatoma tibiamaculata, collected in artificial and sylvatic environments (forests near houses) of a suburban area of the city of Salvador, Bahia State, Brazil between 2007 and 2011. Most triatomines were captured at peridomiciles. Adult bugs predominated in all studied environments, and nymphs were scarce inside houses. Molecular analyses of a randomly selected sub-sample (n=212) of triatomines showed Trypanosoma cruzi infection rates of 65%, 50% and 56% in intradomestic, peridomestic and sylvatic environments, respectively. We detected the T. cruzi lineages I and II and mixed infections. We also showed that T. tibiamaculata fed on blood from birds (50%), marsupials (38%), ruminants (7%) and rodents (5%). The probability of T. cruzi infection was higher in triatomines that fed on marsupial blood (odds ratio (OR) = 1.95, 95% confidence interval (CI) = 1.22-3.11). Moreover, we observed a protective effect against infection in bugs that fed on bird blood (OR = 0.43, 95% CI = 0.30-0.73).

Conclusions/Significance

The frequent invasion of houses by infected triatomines indicates a potential risk of T. cruzi transmission to inhabitants in this area. Our results reinforce that continuous epidemiological surveillance should be performed in areas where domestic transmission is controlled but enzootic transmission persists.  相似文献   

12.
Triatomines are the vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease, the main endemic disease affecting five to seven million people in Latin America. Besides Triatoma infestans, the most important T. cruzi vector in the Gran Chaco region, other triatomine species associated with sylvatic birds and mammals are responsible for the maintenance of the wild cycle of T. cruzi. The present study aimed at evaluating the house invasion by sylvatic triatomine species in rural communities of the Los Llanos region (La Rioja, Argentina) and its association with environmental variables. House invasion by flying adult triatomines was recorded by trained collectors that surveyed over 377 houses distributed over 73 localities in a 56,600 km2 study region, between October, 2014 and February, 2015. The result of the study showed the frequent house invasion by adult triatomines: 26.3% houses were infested in 53% of the localities. Seven sylvatic triatomine species were collected, with T. guasayana and T. garciabesi among the most abundant. House invasion by triatomine species showed no spatial aggregation and was not associated with temperature, precipitation, or vegetation cover at the spatial scale considered in the present study. House invasion by the epidemiologically important T. infestans is a concern of rural communities. Besides constituting a latent, although low, risk, the presence of these species negatively interferes with the vigilance activities of the provincial Chagas disease program.  相似文献   

13.

Background

Globally, more than 10 million people are infected with Trypanosoma cruzi, which causes about 20 000 annual deaths. Although Chagas disease is endemic to certain regions of Latin America, migratory flows have enabled its expansion into areas where it was previously unknown. Economic, social and cultural factors play a significant role in its presence and perpetuation. This systematic review aims to provide a comprehensive overview of qualitative research on Chagas disease, both in endemic and non-endemic countries.

Methodology/Principal Findings

Searches were carried out in ten databases, and the bibliographies of retrieved studies were examined. Data from thirty-three identified studies were extracted, and findings were analyzed and synthesized along key themes. Themes identified for endemic countries included: socio-structural determinants of Chagas disease; health practices; biomedical conceptions of Chagas disease; patient''s experience; and institutional strategies adopted. Concerning non-endemic countries, identified issues related to access to health services and health seeking.

Conclusions

The emergence and perpetuation of Chagas disease depends largely on socio-cultural aspects influencing health. As most interventions do not address the clinical, environmental, social and cultural aspects jointly, an explicitly multidimensional approach, incorporating the experiences of those affected is a potential tool for the development of long-term successful programs. Further research is needed to evaluate this approach.  相似文献   

14.

Background

Chagas disease is a serious public health problem in Latin America where about ten million individuals show Trypanosoma cruzi infection. Despite significant success in controlling domiciliated triatomines, sylvatic populations frequently infest houses after insecticide treatment which hampers long term control prospects in vast geographical areas where vectorial transmission is endemic. As a key issue, the spatio-temporal dynamics of sylvatic populations is likely influenced by landscape yet evidence showing this effect is rare. The aim of this work is to examine the role of land cover changes in sylvatic triatomine ecology, based on an exhaustive field survey of pathogens, vectors, hosts, and microhabitat characteristics'' dynamics.

Methodology and Principal Findings

The study was performed in agricultural landscapes of coastal Ecuador as a study model. Over one year, a spatially-randomized sampling design (490 collection points) allowed quantifying triatomine densities in natural, cultivated and domestic habitats. We also assessed infection of the bugs with trypanosomes, documented their microhabitats and potential hosts, and recorded changes in landscape characteristics. In total we collected 886 individuals, mainly represented by nymphal stages of one triatomine species Rhodnius ecuadoriensis. As main results, we found that 1) sylvatic triatomines had very high T. cruzi infection rates (71%) and 2) densities of T. cruzi-infected sylvatic triatomines varied predictably over time due to changes in land cover and occurrence of associated rodent hosts.

Conclusion

We propose a framework for identifying the factors affecting the yearly distribution of sylvatic T. cruzi vectors. Beyond providing key basic information for the control of human habitat colonization by sylvatic vector populations, our framework highlights the importance of both environmental and sociological factors in shaping the spatio-temporal population dynamics of triatomines. A better understanding of the dynamics of such socio-ecological systems is a crucial, yet poorly considered, issue for the long-term control of Chagas disease.  相似文献   

15.
We refer to Oswaldo Cruz''s reports dating from 1913 about the necessities of a healthcare system for the Brazilian Amazon Region and about the journey of Carlos Chagas to 27 locations in this region and the measures that would need to be adopted. We discuss the risks of endemicity of Chagas disease in the Amazon Region. We recommend that epidemiological surveillance of Chagas disease in the Brazilian Amazon Region and Pan-Amazon region should be implemented through continuous monitoring of the human population that lives in the area, their housing, the environment and the presence of triatomines. The monitoring should be performed with periodic seroepidemiological surveys, semi-annual visits to homes by health agents and the training of malaria microscopists and healthcare technicians to identify Trypanosoma cruzi from patients'' samples and T. cruzi infection rates among the triatomines caught. We recommend health promotion and control of Chagas disease through public health policies, especially through sanitary education regarding the risk factors for Chagas disease. Finally, we propose a healthcare system through base hospitals, intermediate-level units in the areas of the Brazilian Amazon Region and air transportation, considering the distances to be covered for medical care.  相似文献   

16.
The parasite Trypanosoma cruzi, known for causing Chagas’ disease, is spread via insect vectors from the triatomine family. T. cruzi is maintained in sylvatic vector-host transmission cycles in certain parts of the Americas. Communication between the cycles occurs mainly through movement (migration) of the insect vectors. In this study, we develop a cellular automaton (CA) model in order to study invasion of a hypothetical strain of T. cruzi through the region defined by the primary sylvatic cycles in northern Mexico and parts of the southeastern United States. The model given is a deterministic CA, which can be described as a large metapopulation model in the format of a dynamical system with 9,376 equations. The migration rates in the model, used as coupling parameters between cells in the CA, are estimated by summing up the proportion of vectors crossing patch boundaries (i.e., crossing from one cell to another). Specifically, we develop methods for estimating speed and direction of invasion as a function of vector migration rates, including preference for a particular direction of migration. We develop two methods for estimating invasion speed: via orthogonal local velocity components and by direct computation of magnitude and direction of an overall velocity vector given a front created by cells identified as being invaded by the epidemic. Results indicate that invasion speed is greatly affected by both the physical and the epidemiological landscapes through which the infection wave passes. A power-law fit suggests that invasion speed increases at slightly less than the square root of increases in migration rate.  相似文献   

17.
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach.  相似文献   

18.

Background/Aims

The epidemiology of Chagas disease, until recently confined to areas of continental Latin America, has undergone considerable changes in recent decades due to migration to other parts of the world, including Spain. We studied the prevalence of Chagas disease in Latin American patients treated at a health center in Barcelona and evaluated its clinical phase. We make some recommendations for screening for the disease.

Methodology/Principal Findings

We performed an observational, cross-sectional prevalence study by means of an immunochromatographic test screening of all continental Latin American patients over the age of 14 years visiting the health centre from October 2007 to October 2009. The diagnosis was confirmed by serological methods: conventional in-house ELISA (cELISA), a commercial kit (rELISA) and ELISA using T cruzi lysate (Ortho-Clinical Diagnostics) (oELISA). Of 766 patients studied, 22 were diagnosed with T. cruzi infection, showing a prevalence of 2.87% (95% CI, 1.6–4.12%). Of the infected patients, 45.45% men and 54.55% women, 21 were from Bolivia, showing a prevalence in the Bolivian subgroup (n = 127) of 16.53% (95% CI, 9.6–23.39%).All the infected patients were in a chronic phase of Chagas disease: 81% with the indeterminate form, 9.5% with the cardiac form and 9.5% with the cardiodigestive form. All patients infected with T. cruzi had heard of Chagas disease in their country of origin, 82% knew someone affected, and 77% had a significant history of living in adobe houses in rural areas.

Conclusions

We found a high prevalence of T. cruzi infection in immigrants from Bolivia. Detection of T. cruzi–infected persons by screening programs in non-endemic countries would control non-vectorial transmission and would benefit the persons affected, public health and national health systems.  相似文献   

19.

Background

Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera.

Methodology/Principal Findings

Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE) and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster.

Conclusions/Significance

The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low complexity whose structure differs according to the vector genus.  相似文献   

20.

Background

Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States.

Methods

We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology.

Results

Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8+ T cell proliferation and IFN-γ production, and suppression of phagocytes’ activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations.

Conclusions

Overall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号