共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrew M. Lehmkuhl Emily R. Dirr Sheila M. Fleming 《Journal of visualized experiments : JoVE》2014,(90)
In many neurodegenerative diseases and particularly in Parkinson’s disease, deficits in olfaction are reported to occur early in the disease process and may be a useful behavioral marker for early detection. Earlier detection in neurodegenerative disease is a major goal in the field because this is when neuroprotective therapies have the best potential to be effective. Therefore, in preclinical studies testing novel neuroprotective strategies in rodent models of neurodegenerative disease, olfactory assessment could be highly useful in determining therapeutic potential of compounds and translation to the clinic. In the present study we describe a battery of olfactory assays that are useful in measuring olfactory function in mice. The tests presented in this study were chosen because they measure olfaction abilities in mice related to food odors, social odors, and non-social odors. These tests have proven useful in characterizing novel genetic mouse models of Parkinson’s disease as well as in testing potential disease-modifying therapies. 相似文献
2.
Lazo ND Grant MA Condron MC Rigby AC Teplow DB 《Protein science : a publication of the Protein Society》2005,14(6):1581-1596
Neurotoxic assemblies of the amyloid beta-protein (Abeta) have been linked strongly to the pathogenesis of Alzheimer's disease (AD). Here, we sought to monitor the earliest step in Abeta assembly, the creation of a folding nucleus, from which oligomeric and fibrillar assemblies emanate. To do so, limited proteolysis/mass spectrometry was used to identify protease-resistant segments within monomeric Abeta(1-40) and Abeta(1-42). The results revealed a 10-residue, protease-resistant segment, Ala21-Ala30, in both peptides. Remarkably, the homologous decapeptide, Abeta(21-30), displayed identical protease resistance, making it amenable to detailed structural study using solution-state NMR. Structure calculations revealed a turn formed by residues Val24-Lys28. Three factors contribute to the stability of the turn, the intrinsic propensities of the Val-Gly-Ser-Asn and Gly-Ser-Asn-Lys sequences to form a beta-turn, long-range Coulombic interactions between Lys28 and either Glu22 or Asp23, and hydrophobic interaction between the isopropyl and butyl side chains of Val24 and Lys28, respectively. We postulate that turn formation within the Val24-Lys28 region of Abeta nucleates the intramolecular folding of Abeta monomer, and from this step, subsequent assembly proceeds. This model provides a mechanistic basis for the pathologic effects of amino acid substitutions at Glu22 and Asp23 that are linked to familial forms of AD or cerebral amyloid angiopathy. Our studies also revealed that common C-terminal peptide segments within Abeta(1-40) and Abeta(1-42) have distinct structures, an observation of relevance for understanding the strong disease association of increased Abeta(1-42) production. Our results suggest that therapeutic approaches targeting the Val24-Lys28 turn or the Abeta(1-42)-specific C-terminal fold may hold promise. 相似文献
3.
The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson''s
disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms
underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia
circuitry and pharmacology observed in parkinsonian patients1-4. However, the
precise cellular and molecular changes occurring at cortico-striatal synapses of the
output pathways within the striatum, which is the major input region of the basal ganglia
remain elusive, and this is believed to be site where pathological abnormalities
underlying parkinsonian symptoms arise3,5.In PD, understanding the mechanisms underlying changes in basal ganglia circuitry
following degeneration of the nigro-striatal pathway has been greatly advanced by the
development of bacterial artificial chromosome (BAC) mice over-expressing green
fluorescent proteins driven by promoters specific for the two striatal output pathways
(direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)8, allowing
them to be studied in isolation. For example, recent studies have suggested that there are
pathological changes in synaptic plasticity in parkinsonian mice9,10. However,
these studies utilised juvenile mice and acute models of parkinsonism. It is unclear
whether the changes described in adult rats with stable 6-OHDA lesions also occur in these
models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA
adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the
mortality rate in this study was extremely high, with only 14% surviving the surgery for
21 days or longer11. More recent studies have generated intra-nigral lesions
with both a low mortality rate >80% loss of dopaminergic neurons, however expression of
L-DOPA induced dyskinesia11,12,13,14 was variable in these studies. Another
well established mouse model of PD is the MPTP-lesioned mouse15. Whilst this
model has proven useful in the assessment of potential neuroprotective
agents16, it is less suitable for understanding mechanisms underlying symptoms
of PD, as this model often fails to induce motor deficits, and shows a wide variability
in the extent of lesion17, 18.Here we have developed a stable unilateral 6-OHDA-lesioned mouse model of PD by direct
administration of 6-OHDA into the MFB, which consistently causes >95% loss of striatal
dopamine (as measured by HPLC), as well as producing the behavioural imbalances observed
in the well characterised unilateral 6-OHDA-lesioned rat model of PD. This newly developed
mouse model of PD will prove a valuable tool in understanding the mechanisms underlying
generation of parkinsonian symptoms. 相似文献
4.
Vaccinations against amyloid β protein (AβP) reduce amyloid deposition and reverse learning and memory deficits in mouse models of Alzheimer’s disease. This has raised the question of whether circulating antibodies, normally restricted by the blood–brain barrier (BBB), can enter the brain [Nat. Med. 7 (2001) 369–372]. Here, we show that antibody directed against AβP does cross the BBB at a very low rate. Entry is by way of the extracellular pathways with about 0.11% of an intravenous (i.v.) dose entering the brain by 1 h. Clearance of antibody from brain increasingly dominates over time, but antibody is still detectable in brain 72 h after i.v. injection. Uptake and clearance is not altered in mice overexpressing AβP. This ability to enter and exit the brain even in the presence of increased brain ligand supports the use of antibody in the treatment of Alzheimer’s and other diseases of the brain. 相似文献
5.
The pathogenesis of Alzheimer's disease involves the progressive accumulation of amyloid β-protein (Aβ). Recent studies using synthetic Aβ peptides, a cell culture model, Aβ precursor protein transgenic mice models suggest that pre-fibrillar forms of Aβ are more deleterious than extracellular fibril forms. Recent findings obtained using synthetic Aβ peptides and human samples indicated that low-n oligomers (from dimers to octamers) may be proximate toxins for neuron and synapse. Here, we review the recent studies on the soluble oligomers, especially low-n oligomers in Alzheimer's disease. 相似文献
6.
Johanna Wanngren Jenny Fr?nberg Annelie I. Svensson Hanna Laudon Fredrik Olsson Bengt Winblad Frank Liu Jan N?slund Johan Lundkvist Helena Karlstr?m 《The Journal of biological chemistry》2010,285(12):8527-8536
γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD. 相似文献
7.
Natalia Bobkova Irina Guzhova Boris Margulis Inna Nesterova Natalia Medvedinskaya Alexander Samokhin Irina Alexandrova David Garbuz Evgeny Nudler Michael Evgen’ev 《Cell stress & chaperones》2013,18(1):109-118
Numerous epidemiological studies have established acute brain injury as one of the major risk factors for the Alzheimer''s disease (AD). However, the lack of animal models of AD-like degeneration triggered by a defined injury hampered the development of adequate therapies. Here we report that the surgical damage of the olfactory bulbs triggers the development of several pathologies, including amyloid-β accumulation and strong decrease of neuron density in the cortex and hippocampus as well as significant disturbance of spatial memory. Characteristically, these harmful consequences of the olfactory bulbectomy (OBX) have a peculiar dynamics in time with maximal manifestation in periods of 1–1.5 months and 8 months after the surgery and, hence, exhibit biphasic pattern with almost complete recovery period taking place at 5–6 months after the operation. The quantitative determination of endogenous inducible form of Hsp70 in different brain areas of OBX mice demonstrated characteristic fluctuations of Hsp70 levels depending on the time after the operation and age of mice. Interestingly, maximal induction of Hsp70 synthesis in the hippocampus exhibits clear-cut coincidence with the recovery period in OBX animals. The observed correlation enables to suggest curing effect of Hsp70 synthesis at an earlier period of pathology development and establishes it as a possible therapeutic agent for secondary grave consequences of brain injury, such as AD-like degeneration, for which neuroprotective therapy is urgently needed. 相似文献
8.
Zhou L Chávez-Gutiérrez L Bockstael K Sannerud R Annaert W May PC Karran E De Strooper B 《The Journal of biological chemistry》2011,286(10):8677-8687
β-Secretase (BACE1) is an attractive drug target for Alzheimer disease. However, the design of clinical useful inhibitors targeting its active site has been extremely challenging. To identify alternative drug targeting sites we have generated a panel of BACE1 monoclonal antibodies (mAbs) that interfere with BACE1 activity in various assays and determined their binding epitopes. mAb 1A11 inhibited BACE1 in vitro using a large APP sequence based substrate (IC(50) ~0.76 nm), in primary neurons (EC(50) ~1.8 nm), and in mouse brain after stereotactic injection. Paradoxically, mAb 1A11 increased BACE1 activity in vitro when a short synthetic peptide was used as substrate, indicating that mAb 1A11 does not occupy the active-site. Epitope mapping revealed that mAb 1A11 binds to adjacent loops D and F, which together with nearby helix A, distinguishes BACE1 from other aspartyl proteases. Interestingly, mutagenesis of loop F and helix A decreased or increased BACE1 activity, identifying them as enzymatic regulatory elements and as potential alternative sites for inhibitor design. In contrast, mAb 5G7 was a potent BACE1 inhibitor in cell-free enzymatic assays (IC(50) ~0.47 nm) but displayed no inhibitory effect in primary neurons. Its epitope, a surface helix 299-312, is inaccessible in membrane-anchored BACE1. Remarkably, mutagenesis of helix 299-312 strongly reduced BACE1 ectodomain shedding, suggesting that this helix plays a role in BACE1 cellular biology. In conclusion, this study generated highly selective and potent BACE1 inhibitory mAbs, which recognize unique structural and functional elements in BACE1, and uncovered interesting alternative sites on BACE1 that could become targets for drug development. 相似文献
9.
Vendramini AA de Lábio RW Rasmussen LT Dos Reis NM Minett T Bertolucci PH de Souza Pinhel MA Souza DR Mazzotti DR de Arruda Cardoso Smith M Payão SL 《Genetics and molecular biology》2011,34(1):1-5
An inflammatory process has been involved in numerous neurodegenerative disorders such as Parkinson's disease, stroke and Alzheimer's disease (AD). In AD, the inflammatory response is mainly located in the vicinity of amyloid plaques. Cytokines, such as interleukin-8 (IL-8) and interleukin-1α (IL-1α), have been clearly involved in this inflammatory process. Polymorphisms of several interleukin genes have been correlated to the risk of developing AD. The present study investigated the association of AD with polymorphisms IL-8 -251T > A (rs4073) and IL-1α-889C > T (rs1800587) and the interactive effect of both, adjusted by the Apolipoprotein E genotype. 199 blood samples from patients with AD, 146 healthy elderly controls and 95 healthy young controls were obtained. DNA samples were isolated from blood cells, and the PCR-RFLP method was used for genotyping. The genotype distributions of polymorphisms IL-8, IL-1α and APOE were as expected under Hardy-Weinberg equilibrium. The allele frequencies did not differ significantly among the three groups tested. As expected, the APOE4 allele was strongly associated with AD (p < 0.001). No association of AD with either the IL-1α or the IL-8 polymorphism was observed, nor was any interactive effect between both polymorphisms. These results confirm previous studies in other populations, in which polymorphisms IL-8 -251T > A and IL-1α-889C > T were not found to be risk factors for AD. 相似文献
10.
Endocytic pathway abnormalities were previously observed in brains affected with Alzheimer’s disease (AD). To clarify the pathological relevance of these abnormalities to assembly of amyloid β-protein (Aβ), we treated PC12 cells with chloroquine, which potently perturbs membrane trafficking from endosomes to lysosomes. Chloroquine treatment induced accumulation of GM1 ganglioside (GM1) in Rab5-positive enlarged early endosomes and on the cell surface. Notably, an increase in GM1 level on the cell surface was sufficient to induce Aβ assembly. Our results suggest that endocytic pathway abnormalities in AD brain induce GM1 accumulation on the cell surface, leading to amyloid fibril formation in brain. 相似文献
11.
Increased lipid peroxidation is shown to be an early event of Alzheimer's disease (AD). However, it is not clear whether and how increased lipid peroxidation might lead to amyloidogenesis, a hallmark of AD. Glutathione peroxidase 4 (Gpx4) is an essential antioxidant defense enzyme that protects an organism against lipid peroxidation. Gpx4+/- mice show increased lipid peroxidation in brain, as evidenced by their elevated levels of 4-hydroxy-2-nonenal. To understand the role of lipid peroxidation in amyloidogenesis, we studied secretase activities in Gpx4+/- mice as a function of age. Both young (6 months) and middle-aged (17-20 months) Gpx4+/- mice had higher levels of beta-secretase activity than their age-matched wildtype controls, and the increased beta-secretase activity in Gpx4+/- mice was a result of up-regulation of beta-site amyloid precursor protein cleavage enzyme 1 (BACE1) expression at the protein level. The high level of BACE1 protein led to increased endogenous beta-amyloid (Abeta)(1-40) in middle-aged Gpx4+/- mice. We further studied amyloidogenesis in APPGpx4+/- mice. Our data indicate that APPGpx4+/- mice had significantly increased amyloid plaque burdens and increased Abeta(1-40) and Abeta(1-42) levels compared with APPGpx4+/+ mice. Therefore, our results indicate that increased lipid peroxidation leads to increased amyloidogenesis through up-regulation of BACE1 expression in vivo, a mechanism that may be important in pathogenesis of AD at early stages. 相似文献
12.
Haass C 《The EMBO journal》2004,23(3):483-488
In 1959, Dave Brubeck and Paul Desmond revolutionized modern jazz music by composing their unforgettable Take Five in 5/4, one of the most defiant time signatures in all music. Of similar revolutionary importance for biomedical and basic biochemical research is the identification of the minimal set of genes required to obtain a deadly time bomb ticking in all of us: Alzheimer's disease. It now appears that one needs to Take Five genes to produce a deadly peptide by a proteolytic mechanism, which paradoxically is otherwise of pivotal importance for development and cell fate decisions. 相似文献
13.
Francis C. Dehle Heath Ecroyd Ian F. Musgrave John A. Carver 《Cell stress & chaperones》2010,15(6):1013-1026
Amyloid fibril formation is associated with diseases such as Alzheimer’s, Parkinson’s, and prion diseases. Inhibition of amyloid fibril formation by molecular chaperone proteins, such as the small heat-shock protein αB-crystallin, may play a protective role in preventing the toxicity associated with this form of protein misfolding. Reduced and carboxymethylated κ-casein (RCMκ-CN), a protein derived from milk, readily and reproducibly forms fibrils at physiological temperature and pH. We investigated the toxicity of fibril formation by RCMκ-CN using neuronal model PC12 cells and determined whether the inhibition of fibril formation altered its cell toxicity. To resolve ambiguities in the literature, we also investigated whether fibril formation by amyloid-β1–40 (Aβ1–40), the peptide associated with Alzheimer’s disease, was inhibited by αB-crystallin and if this affected the toxicity of Aβ. To this end, either RCMκ-CN or Aβ1–40 was incubated at neutral pH to induce fibril formation before treating PC12 cells and assessing cell viability. Incubated (fibrillar) RCMκ-CN was more toxic to PC12 cells than native RCMκ-CN with the highest level of toxicity being associated with mature fibrils and protofibrils. Furthermore, the toxicity of RCMκ-CN was attenuated when its fibril formation was inhibited, either through the chaperone action of αB-crystallin or when it interacted with its natural binding partners in milk, αS- and β-casein. Likewise, incubating Aβ1–40 with αB-crystallin inhibited both Aβ1–40 fibril formation and the associated cell toxicity. Importantly, by inhibiting fibril formation, αB-crystallin prevents the cell toxicity associated with protein misfolding. 相似文献
14.
Parkinson’s disease is a neurodegenerative disorder that results from the degeneration of dopaminergic neurons in the central nervous system, primarily in the substantia nigra. The disease causes motor deficiencies, which present as rigidity, tremors and dementia in humans. Rotenone is an insecticide that causes oxidative damage by inhibiting the function of the electron transport chain in mitochondria. It is also used to model Parkinson’s disease in the Drosophila. Flies have an inherent negative geotactic response, which compels them to climb upwards upon being startled. It has been established that rotenone causes early mortality and locomotion defects that disrupt the flies’ ability to climb after they have been tapped downwards. However, the effect of rotenone on spontaneous movement is not well documented. This study outlines two sensitive, reproducible, and high throughput assays to characterize rotenone-induced deficiencies in short-term startle-induced locomotion and long-term spontaneous locomotion in Drosophila. These assays can be conveniently adapted to characterize other Drosophila models of locomotion defects and efficacy of therapeutic agents. 相似文献
15.
Huey-Jen Tsay Yung-Cheng Huang Fong-Lee Huang Chia-Ping Chen Yu-Chun Tsai Ying-Hsiu Wang Mine-Fong Wu Feng-Yi Chiang Young-Ji Shiao 《Journal of biomedical science》2013,20(1):78
Background
The specific role of microglia on Aβ-mediated neurotoxicity is difficult to assign in vivo due to their complicated environment in the brain. Therefore, most of the current microglia-related studies employed the isolated microglia. However, the previous in vitro studies have suggested either beneficial or destructive function in microglia. Therefore, to investigate the phenotypes of the isolated microglia which exert activity of neuroprotective or destructive is required.Results
The present study investigates the phenotypes of isolated microglia on protecting neuron against Aβ-mediated neurotoxicity. Primary microglia were isolated from the mixed glia culture, and were further cultured to distinct phenotypes, designated as proliferating amoeboid microglia (PAM) and differentiated process-bearing microglia (DPM). Their inflammatory phenotypes, response to amyloid β (Aβ), and the beneficial or destructive effects on neurons were investigated. DPM may induce both direct neurotoxicity without exogenous stimulation and indirect neurotoxicity after Aβ activation. On the other hand, PAM attenuates Aβ-mediated neurotoxicity through Aβ phagocytosis and/or Aβ degradation.Conclusions
Our results suggest that the proliferating microglia, but not the differentiated microglia, protect neurons against Aβ-mediated neurotoxicity. This discovery may be helpful on the therapeutic investigation of Alzheimer’s disease. 相似文献16.
The formation of cerebral senile plaques composed of amyloid β peptide (Aβ) is a fundamental feature of Alzheimer''s disease (AD). Glial cells and more specifically microglia become reactive in the presence of Aβ. In a triple transgenic model of AD (3 × Tg-AD), we found a significant increase in activated microglia at 12 (by 111%) and 18 (by 88%) months of age when compared with non-transgenic (non-Tg) controls. This microglial activation correlated with Aβ plaque formation, and the activation in microglia was closely associated with Aβ plaques and smaller Aβ deposits. We also found a significant increase in the area density of resting microglia in 3 × Tg-AD animals both at plaque-free stage (at 9 months by 105%) and after the development of A plaques (at 12 months by 54% and at 18 months by 131%). Our results show for the first time that the increase in the density of resting microglia precedes both plaque formation and activation of microglia by extracellular Aβ accumulation. We suggest that AD pathology triggers a complex microglial reaction: at the initial stages of the disease the number of resting microglia increases, as if in preparation for the ensuing activation in an attempt to fight the extracellular Aβ load that is characteristic of the terminal stages of the disease. 相似文献
17.
Chengan Du Corinne Ramaley Hugh McLean Susan C Leonard Jeff Miller 《Journal of biomolecular techniques》2005,16(4):356-363
Recent studies show that quantitative and qualitative differences in amyloid beta (Abeta ) peptides may be implicated in the development of Alzheimer's disease. New evidence seems to support the existence of a dynamic equilibrium between Abeta peptide in the brain and peripheral blood circulation. The quantitation of Abeta in the blood may allow the development of the potential value of Abeta peptides as a biomarker in the development of Alzheimer's disease. In this communication, quantitation of Abeta peptides using high-performance liquid chromatography coupled with tandem mass spectrometry in a linear ion trap mode is presented. RP-HPLC was performed using a Waters Xterra MS C8 column (3.0 mm x 150 mm). Abeta(1-40) peptide was eluted using a gradient elution program. Eluate from the RP-HPLC column was split to both the UV detector and electrospray ionization MS source. The product ion scan was performed in a linear ion trap mode utilizing the transition of a multiply charged molecular ion of Abeta(1-40) to a singly charged product ion. The detection limit of 31.25 ng in column load using a 3.0-mm-diameter conventional C8 column was achieved. The Abeta(1-40) standard calibration curves show excellent linearity from 34 ng to 2500 ng Abeta(1-40) of column sample load. The product ion scan enhances sensitivity 10 times compared with the best previously achieved by a single-quadrupole instrument in the selective ion monitoring mode. Moreover, the product ion scan of Abeta(1-40) provides superior selectivity and specificity, which is very important in the quantitation of Abeta(1-40) in a complex biological matrix. 相似文献
18.
Receptor for advanced glycation endproducts (RAGE) is a transmembrane protein that belongs to the immunoglobulin superfamily.
RAGE is expressed ubiquitously-high in lung and moderate to low in a wide range of cells-in a tightly regulated manner at
various stages of development. RAGE is a pattern recognition receptor that binds to multiple ligands, including amphoterin,
members of the S100/calgranulin family, the integrin Mac-1, and amyloid β-peptide (Aβ). RAGE-ligand engagement effects the
activation of diverse cascades that initiate and stimulate chronic stress pathways and repair, depending on the ligand, environment,
and developmental stage. Further, RAGE-ligand interaction and the consequent upregulation of RAGE through a positive feedback
loop are often associated with various diseases, including vascular disease, diabetes, cancer, and neurodegenerative disease.
It is unknown how RAGE mediates these events, but such phenomena appear to be linked to the inflammatory response. In this
review, we summarize the findings on RAGE from published reports and ongoing studies. Also, the implication of RAGE in Alzheimer
disease, the most common neurodegenerative disease in the elderly population, will be discussed, with a focus on Aβ-RAGE interactions
with regard to signaling pathways and their impact on cellular activity. 相似文献
19.
Kevin J. O’Donovan Catherine O’Keeffe Jian Zhong 《Journal of visualized experiments : JoVE》2014,(94)
The visualization of full-length neuronal projections in embryos is essential to gain an understanding of how mammalian neuronal networks develop. Here we describe a method to label in situ a subset of dorsal root ganglion (DRG) axon projections to assess their phenotypic characteristics using several genetically manipulated mouse lines. The TrkA-positive neurons are nociceptor neurons, dedicated to the transmission of pain signals. We utilize a TrkAtaulacZ mouse line to label the trajectories of all TrkA-positive peripheral axons in the intact mouse embryo. We further breed the TrkAtaulacZ line onto a Bax null background, which essentially abolishes neuronal apoptosis, in order to assess growth-related questions independently of possible effects of genetic manipulations on neuronal survival. Subsequently, genetically modified mice of interest are bred with the TrkAtaulacZ/Bax null line and are then ready for study using the techniques described herein. This presentation includes detailed information on mouse breeding plans, genotyping at the time of dissection, tissue preparation, staining and clearing to allow for visualization of full-length axonal trajectories in whole-mount preparation. 相似文献
20.
Nag S Sarkar B Bandyopadhyay A Sahoo B Sreenivasan VK Kombrabail M Muralidharan C Maiti S 《The Journal of biological chemistry》2011,286(16):13827-13833
The monomer to oligomer transition initiates the aggregation and pathogenic transformation of Alzheimer amyloid-β (Aβ) peptide. However, the monomeric state of this aggregation-prone peptide has remained beyond the reach of most experimental techniques, and a quantitative understanding of this transition is yet to emerge. Here, we employ single-molecule level fluorescence tools to characterize the monomeric state and the monomer-oligomer transition at physiological concentrations in buffers mimicking the cerebrospinal fluid (CSF). Our measurements show that the monomer has a hydrodynamic radius of 0.9 ± 0.1 nm, which confirms the prediction made by some of the in silico studies. Surprisingly, at equilibrium, both Aβ(40) and Aβ(42) remain predominantly monomeric up to 3 μm, above which it forms large aggregates. This concentration is much higher than the estimated concentrations in the CSF of either normal or diseased brains. If Aβ oligomers are present in the CSF and are the key agents in Alzheimer pathology, as is generally believed, then these must be released in the CSF as preformed entities. Although the oligomers are thermodynamically unstable, we find that a large kinetic barrier, which is mostly entropic in origin, strongly impedes their dissociation. Thermodynamic principles therefore allow the development of a pharmacological agent that can catalytically convert metastable oligomers into nontoxic monomers. 相似文献