首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic and phenotypic characterization of a new Arabidopsis mutant, de-etiolated -3, ( det 3), involved in light-regulated seedling development is described. A recessive mutation in the DET 3 gene uncouples light signals from a subset of light-dependent processes. The det 3 mutation causes dark-grown Arabidopsis thaliana seedlings to have short hypocotyls, expanded cotyledons, and differentiated leaves, traits characteristic of light-grown seedlings. Despite these morphological changes, however, the det 3 mutant does not develop chloroplasts or show elevated expression of nuclear- and chloroplast-encoded light-regulated mRNAs. The det 3 mutation thus uncovers a downstream branch of the light transduction pathways that separates leaf development from chloroplast differentiation and light-regulated gene expression. In addition, light-grown det 3 plants have reduced stature and apical dominance, suggesting that DET3 functions during growth in normal light conditions as well. The genetic interactions between mutations in det 1, det 2, and det 3 are described. The phenotypes of doubly mutant strains suggest that there are at least two parallel pathways controlling light-mediated development in Arabidopsis .  相似文献   

2.
When grown in the absence of light, Arabidopsis thaliana deetiolated (det) mutants develop many of the characteristics of light-grown plants, including the development of leaves and chloroplasts, the inhibition of hypocotyl growth elongation, and elevated expression levels of light-regulated genes. We show here that dark-grown wild-type seedlings exhibit similar phenotypic traits if any one of a variety of cytokinins are present in the growth medium. We further show that the striking phenotype of det mutants is unlikely to be caused by different levels of cytokinins in these mutants. The three major Arabidopsis cytokinins, zeatin, zeatin riboside, and isopentenyladenosine, accumulate to similar levels in wild-type seedlings grown in either the light or the dark. There is no consistently different pattern for the levels of these cytokinins in wild-type versus det1 or det2 mutants. However, det1 and det2 have an altered response to cytokinin in a detached leaf senescence assay and in tissue culture experiments. A model is proposed in which light and cytokinins act independently or sequentially through common signal transduction intermediates such as DET1 and DET2 to control the downstream light-regulated responses.  相似文献   

3.
《Cell》1994,78(1):109-116
The mechanisms by which plants integrate light signals to modify endogenous developmental programs are largely unknown. One candidate for a signal transduction component that may integrate light with developmental pathways is the Arabidopsis DET1 gene product. Here we report the positional cloning of the DET1 locus and show that DET1 is a unique nuclear-localized protein. An analysis of a number of det1 mutants indicates that mutants with partial DET1 activity develop as light-grown plants in the dark. det1 null mutants share this phenotype, but also display severe defects in temporal and spatial regulation of gene expression. These results suggest that DET1 acts in the nucleus to control the cell type-specific expression of light-regulated promoters.  相似文献   

4.
5.
6.
R Mayer  D Raventos    N H Chua 《The Plant cell》1996,8(11):1951-1959
Genetic studies using Arabidopsis offer a promising approach to investigate the mechanisms of light signal transduction during seedling development. Several mutants, called det/cop, have been isolated based on their deetiolated/constitutive photomorphogenic phenotypes in the dark. This study examines the specificity of the det/cop mutations with respect to their effects on genes regulated by other signal transduction pathways. Steady state mRNA levels of a number of differently regulated gene sets were compared between mutants and the wild type. We found that det2, cop2, cop3, and cop4 mutants displayed a gene expression pattern similar to that of the wild type. By contrast, det1, cop1, and cop9 mutations exhibited pleiotropic effects. In addition to light-responsive genes, genes normally inducible by plant pathogens, hypoxia, and developmental programs were inappropriately expressed in these mutants. Our data provide evidence that DET1, COP1, and COP9 most likely act as negative regulators of several sets of genes, not just those involved in light-regulated seedling development.  相似文献   

7.
A. E. Pepper  J. Chory 《Genetics》1997,145(4):1125-1137
Light regulation of seedling morphogenesis is mediated by photoreceptors that perceive red, far-red, blue and UV light. Photomorphogenetic mutants of Arabidopsis have identified several of the primary photoreceptors, as well as a set of negative regulators of seedling photomorphogenesis, including DET1, that appear to act downstream of the photoreceptors. To study the regulatory context in which DET1 acts to repress photomorphogenesis, we used a simple morphological screen to isolate extragenic mutations in six loci, designated ted (for reversal of the det phenotype), that partially or fully suppress the seedling morphological phenotype of det1-1. Genetic analyses indicate that mutations in the ted4 and ted5 loci identify new alleles of the previously described photomorphogenetic loci hy1 and hy5, respectively. Molecular analyses indicate that the ted mutations partially suppress the dark-grown gene expression phenotype of det1-1, and that the mechanism of suppression does not involve direct remediation of the splicing defect caused by the det1-1 mutation. The ted mutations also partially suppress the light-grown morphological phenotype of mature det1-1 plants, and ted1 and ted2 suppress a daylength insensitivity phenotype of det1. TED1, TED2 and TED3 are newly described genes, whose function appears closely associated with that of DET1. In addition, alleles of ted1 are associated with a moderate late-flowering phenotype, suggesting that TED1 plays a role in the pathways that regulate both seedling morphogenesis and the initiation of flowering.  相似文献   

8.
9.
N Wei  X W Deng 《The Plant cell》1992,4(12):1507-1518
We report here the identification and characterization of a new Arabidopsis light-regulatory locus, COP9, mutation that leads to a constitutive photomorphogenic phenotype. Dark-grown cop9 seedlings exhibit many morphological characteristics of light-grown seedlings, including short hypocotyls and open and enlarged cotyledons with cell-type and chloroplast differentiation. Furthermore, the cop9 mutation leads to high-level expression of light-inducible genes in the absence of light, probably by altering the promoter activities of these genes. These properties imply that the mutation in the COP9 locus uncouples the light/dark signals from morphogenesis and light-regulated gene expression. In addition, light-grown cop9 mutants are severely dwarfed and are unable to reach maturation and flowering. This adult-lethal phenotype indicates that the COP9 locus also plays a critical role for normal development of the light-grown plant. Similar to cop1 mutants, but not det1, the cop9 mutants show (1) no effect on the phytochrome control of seed germination and (2) deficiency in the dark-adaptive change of expression of light-regulated genes. Our results suggest that the cop9 and cop1 mutations result in the same range of phenotypes and therefore COP9 and COP1 loci may encode closely related components in the same regulatory pathway.  相似文献   

10.
Microarray gene expression profiling was used to examine the role of pleiotropic COP/DET/FUS loci as well as other partially photomorphogenic loci during Arabidopsis seedling development and genome expression regulation. Four types of lethal, pleiotropic cop/det/fus mutants exhibit qualitatively similar gene expression profiles, yet each has specific differences. Mutations in COP1 and DET1 show the most similar genome expression profiles, while the mutations in the COP9 signalosome (CSN) and COP10 exhibit increasingly diverged genome expression profiles in both darkness and light. The genome expression profiles of the viable mutants of COP1 and DET1 in darkness mimic those of the physiological light-regulated genome expression profiles, whereas the genome expression profiles of representative lethal mutants belong to another clade and significantly diverge from the normal light control of genome expression. Instead, these lethal pleiotropic mutants show genome expression profiles similar to those from seedlings growth under high light intensity stress. Distinct lethal pleiotropic cop/det/fus mutants also result in distinct expression profiles in the small portion of genes examined and exhibit similar relatedness in both light and darkness. The partial cop/det/fus mutants affected expression of both light regulated and non-light regulated genes. Our results suggest that pleiotropic COP/DET/FUS loci control is largely overlapping but also has separable roles in plant development. The partially photomorphogenic loci regulate a subset of photomorphogenic responses as well as other non-light regulated processes.  相似文献   

11.
J Chory  C Peto  R Feinbaum  L Pratt  F Ausubel 《Cell》1989,58(5):991-999
The signal transduction pathways that lead to chloroplast biogenesis in plants are largely unknown. We describe here the identification and initial characterization of a novel genetic locus which fits the criteria of a regulatory gene located in a central pathway controlling light-mediated development. In the absence of light, these Arabidopsis thaliana mutants, designated det1 (de-etiolated 1), constitutively display many characteristics that are light-dependent in wild-type plants, including leaf and chloroplast development, anthocyanin accumulation, and accumulation of mRNAs for several light-regulated nuclear and chloroplast genes. The switch between dark and light growth modes thus appears to be a programmed step in a developmental pathway that is defined by det1. We suggest a model where the primary role of light on gene expression is mediated by the activation of leaf development. Further, the recessive nature of the det1 mutation implies that there is negative growth control on leaf development in dicotyledonous plants in the absence of light.  相似文献   

12.
Eleven recessive mutant loci define the class of cop / det / fus mutants of Arabidopsis. The cop / det / fus mutants mimic the phenotype of light-grown seedlings when grown in the dark. At least four cop / det / fus mutants carry mutations in subunits of the COP9 signalosome, a multiprotein complex paralogous to the 'lid' subcomplex of the 26S proteasome. COP1, another COP/DET/FUS protein, is itself not a subunit of the COP9 signalosome. In the dark, COP1 accumulates in the nucleus where it is required for the degradation of the HY5 protein, a positive regulator of photomorphogenesis. In the light, COP1 is excluded from the nucleus and the constitutively nuclear HY5 protein can accumulate. Nuclear accumulation of COP1 and degradation of HY5 are impaired in the cop / det / fus mutants that carry mutations in subunits of the COP9 signalosome. Although the cellular function of the COP/DET/FUS proteins is not yet well understood, taken together the current findings suggest that the COP/DET/FUS proteins repress photomorphogenesis in the dark by mediating specific protein degradation.  相似文献   

13.
Tomato high pigment (hp) mutants are characterized by their exaggerated photoresponsiveness. Light-grown hp mutants display elevated levels of anthocyanins, are shorter and darker than wild-type plants, and have dark green immature fruits due to the overproduction of chlorophyll pigments. It has been proposed that HP genes encode negative regulators of phytochrome signal transduction. We have cloned the HP-2 gene and found that it encodes the tomato homolog of the nuclear protein DEETIOLATED1 (DET1) from Arabidopsis. Mutations in DET1 are known to result in constitutive deetiolation in darkness. In contrast to det1 mutants, tomato hp-2 mutants do not display any visible phenotypes in the dark but only very weak phenotypes, such as partial chloroplast development. Furthermore, whereas det1 mutations are epistatic to mutations in phytochrome genes, analysis of similar double mutants in tomato showed that manifestation of the phenotype of the hp-2 mutant is strictly dependent upon the presence of active phytochrome. Because only one DET1 gene is likely to be present in each of the two species, our data suggest that the phytochrome signaling pathways in which the corresponding proteins function are regulated differently in Arabidopsis and tomato.  相似文献   

14.
Gibberellins, brassinosteroids and light-regulated development   总被引:10,自引:1,他引:9  
The regulation of plant development by light requires the action of several well-studied plant hormones. However, the mechanism by which light and hormones affect identical developmental responses remains unclear. Recently, studies of mutants altered in light signal perception or transduction have suggested a role for gibberellins and brassinosteroids in light-regulated development. For instance, mutants in the major light-stable phytochrome from several plant species exhibit altered responsiveness to, or metabolism of, gibberellins. In contrast, mutants that develop as light-grown plants in the absence of light have implicated a role for brassinosteroids in the control of cell elongation, the expression of photoregulated genes, and the promotion of apical dominance, leaf senescence and male fertility. Future studies should help elucidate whether light and hormones independently affect these developmental responses or whether hormones are involved in the sequence of events initiated by excitation of photoreceptors.  相似文献   

15.
Al Khateeb WM  Schroeder DF 《Genetics》2007,176(1):231-242
Damaged DNA-binding proteins 1 and 2 (DDB1 and DDB2) are subunits of the damaged DNA-binding protein complex (DDB). DDB1 is also found in the same complex as DE-ETIOLATED 1 (DET1), a negative regulator of light-mediated responses in plants. Arabidopsis has two DDB1 homologs, DDB1A and DDB1B. ddb1a single mutants have no visible phenotype while ddb1b mutants are lethal. We have identified a partial loss-of-function allele of DDB2. To understand the genetic interaction among DDB2, DDB1A, and DET1 during Arabidopsis light signaling, we generated single, double, and triple mutants. det1 ddb2 partially enhances the short hypocotyl and suppresses the high anthocyanin content of dark-grown det1 and suppresses the low chlorophyll content, early flowering time (days), and small rosette diameter of light-grown det1. No significant differences were observed between det1 ddb1a and det1 ddb1a ddb2 in rosette diameter, dark hypocotyl length, and anthocyanin content, suggesting that these are DDB1A-dependent phenotypes. In contrast, det1 ddb1a ddb2 showed higher chlorophyll content and later flowering time than det1 ddb1a, indicating that these are DDB1A-independent phenotypes. We propose that the DDB1A-dependent phenotypes indicate a competition between DDB2- and DET1-containing complexes for available DDB1A, while, for DDB1A-independent phenotypes, DDB1B is able to fulfill this role.  相似文献   

16.
S F Kwok  B Piekos  S Misera    X W Deng 《Plant physiology》1996,110(3):731-742
Two genetic screens, one for mutations resulting in photomorphogenic development in darkness and the other for mutants with fusca phenotype, have thus far identified six pleiotropic Arabidopsis COP/DET/FUS genes. Here, we characterized representative mutants that define four additional pleiotropic photomorphogenic loci and a null mutant allele of the previously defined DET1 locus. Dark-grown seedlings homozygous for these recessive mutations exhibit short hypocotyls and expanded cotyledons and are lethal before reaching reproductive development. Dark-grown mutant seedlings also display characteristic photomorphogenic cellular differentiation and elevated expression of light-inducible genes. In addition, analyses of plastids from dark-grown mutants reveal partial chloroplast differentiation and absence of etioplast development. Root vascular bundle cells of light-grown mutant seedlings develop chloroplasts, suggesting that these FUS gene products are important for suppression of chloroplast differentiation in light-grown roots. Double-mutant analyses indicate that these pleiotropic cop/det/fus mutations are epistatic to mutations in phytochromes, a blue-light photoreceptor, and a downstream regulatory component, HY5. Therefore, there is a complement of at least 10 essential and pleiotropic Arabidopsis genes that are necessary for repression of photomorphogenic development.  相似文献   

17.
Phytochrome and a blue light receptor mediate a developmental switch from etiolated growth to the photosynthetically competent 'de-etiolated' program. The analysis of Arabidopsis mutants deficient in photomorphogenetic responses (e.g. hy, blu) has identified several elements that mediate the red/far-red and blue light responses. Mutants that appear de-etiolated in the absence of light (e.g. det1, det2, cop1) implicate negatively-acting elements that integrate red and blue light signals. Phenocopy of the de-etiolated mutants by cytokinin implicates a role for this hormone in promoting seedling photomorphogenesis. Epistasis analyses support a pathway in which DET1 and DET2 are downstream effectors of phytochrome function.  相似文献   

18.
Wild-type Arabidopsis seedlings are capable of following two developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. Screening of Arabidopsis mutants for constitutive photomorphogenic development in darkness resulted in the identification of three new loci designated COP8, COP10, and COP11. Detailed examination of the temporal morphological and cellular differentiation patterns of wild-type and mutant seedlings revealed that in darkness, seedlings homozygous for recessive mutations in COP8, COP10, and COP11 failed to suppress the photomorphogenic developmental pathway and were unable to initiate skotomorphogenesis. As a consequence, the mutant seedlings grown in the dark had short hypocotyls and open and expanded cotyledons, with characteristic photomorphogenic cellular differentiation patterns and elevated levels of light-inducible gene expression. In addition, plastids of dark-grown mutants were defective in etioplast differentiation. Similar to cop1 and cop9, and in contrast to det1 (deetiolated), these new mutants lacked dark-adaptive change of light-regulated gene expression and retained normal phytochrome control of seed germination. Epistatic analyses with the long hypocotyl hy1, hy2, hy3, hy4, and hy5 mutations suggested that these three loci, similar to COP1 and COP9, act downstream of both phytochromes and a blue light receptor, and probably HY5 as well. Further, cop8-1, cop10-1, and cop11-1 mutants accumulated higher levels of COP1, a feature similar to the cop9-1 mutant. These results suggested that COP8, COP10, and COP11, together with COP1, COP9, and DET1, function to suppress the photomorphogenic developmental program and to promote skotomorphogenesis in darkness. The identical phenotypes resulting from mutations in COP8, COP9, COP10, and COP11 imply that their encoded products function in close proximity, possibly with some of them as a complex, in the same signal transduction pathway.  相似文献   

19.
20.
Uncoupling brassinosteroid levels and de-etiolation in pea   总被引:14,自引:1,他引:13  
The suggestion that brassinosteroids (BRs) have a negative regulatory role in de-etiolation is based largely on correlative evidence, which includes the de-etiolated phenotypes of, and increased expression of light-regulated genes in, dark-grown mutants defective in BR biosynthesis or response. However, we have obtained the first direct evidence which shows that endogenous BR levels in light-grown pea seedlings are increased, not decreased, in comparison with those grown in the dark. Similarly, we found no evidence of a decrease in castasterone (CS) levels in seedlings that were transferred from the dark to the light for 24 h. Furthermore, CS levels in the constitutively de-etiolated lip1 mutant are similar to those in wild-type plants, and are not reduced as is the case in the BR-deficient lkb plants. Unlike lip1 , the pea BR-deficient mutants lk and lkb are not de-etiolated at the morphological or molecular level, as they exhibit neither a de-etiolated phenotype or altered expression of light-regulated genes when grown in the dark. Similarly, dark-grown WT plants treated with the BR biosynthesis inhibitor, Brz, do not exhibit a de-etiolated phenotype. In addition, analysis of the lip1lkb double mutant revealed an additive phenotype indicative of the two genes acting in independent pathways. Together these results strongly suggest that BR levels do not play a negative-regulatory role in de-etiolation in pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号