首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Transglutaminase (EC 2.3.2.13) was purified from rat liver. 2. The enzyme was stable at 25 degrees C in the pH range of 6.0-9.0, with the optimum at pH 9.0. 3. The enzyme was inactivated after incubation for 20, 4 and 1 min at 44 degrees C, 52 degrees C, and 60 degrees C, respectively. 4. Activation energies were 30.4 kcal/mol for denaturation and 19.9 kcal/mol for substrate conversion to products. 5. The enzyme was inactivated by sulfhydryl modification with hydroxymercuribenzoate (99.1%) and N-ethylmalemide (78.5%). 6. Calcium, required for the activity, was replaced to a lesser extent, by Mg2+, Sr2+, Zn2+ and Mn2+ (31.8, 27.0, 24.6 and 3.5%). 7. Steady-state kinetics showed: Vmax = 10 microM-min-1, Km = 0.05 mM (N-dimethylated casein), kcat = 31.9 min-1 kcat/Km = 560 min-1 mM-1.  相似文献   

2.
D Herschlag  T R Cech 《Biochemistry》1990,29(44):10159-10171
A ribozyme derived from the intervening sequence (IVS) of the Tetrahymena preribosomal RNA catalyzes a site-specific endonuclease reaction: G2CCCUCUA5 + G in equilibrium with G2CCCUCU + GA5 (G = guanosine). This reaction is analogous to the first step in self-splicing of the pre-rRNA, with the product G2CCCUCU analogous to the 5'-exon. The following mechanistic conclusions have been derived from pre-steady-state and steady-state kinetic measurements at 50 degrees C and neutral pH in the presence of 10 mM Mg2+. The value of kcat/Km = 9 x 10(7) M-1 min-1 for the oligonucleotide substrate with saturating G represents rate-limiting binding. This rate constant for binding is of the order expected for formation of a RNA.RNA duplex between oligonucleotides. (Phylogenetic and mutational analyses have shown that this substrate is recognized by base pairing to a complementary sequence within the IVS). The value of kcat = 0.1 min-1 represents rate-limiting dissociation of the 5'-exon analogue, G2CCCUCU. The product GA5 dissociates first from the ribozyme because of this slow off-rate for G2CCCUCU. The similar binding of the product, G2CCCUCU, and the substrate, G2CCCUCUA5, to the 5'-exon binding site of the ribozyme, with Kd = 1-2 nM, shows that the pA5 portion of the substrate makes no net contribution to binding. Both the substrate and product bind approximately 10(4)-fold (6 kcal/mol) stronger than expected from base pairing with the 5'-exon binding site. Thus, tertiary interactions are involved in binding. Binding of G2CCCUCU and binding of G are independent. These and other data suggest that binding of the oligonucleotide substrate, G2CCCUCUA5, and binding of G are essentially random and independent. The rate constant for reaction of the ternary complex is calculated to be kc approximately equal to 350 min-1, a rate constant that is not reflected in the steady-state rate parameters with saturating G. The simplest interpretation is adopted, in which kc represents the rate of the chemical step. A site-specific endonuclease reaction catalyzed by the Tetrahymena ribozyme in the absence of G was observed; the rate of the chemical step with solvent replacing guanosine, kc(-G) = 0.7 min-1, is approximately 500-fold slower than that with saturating guanosine. The value of kcat/Km = 6 x 10(7) M-1 min-1 for this hydrolysis reaction is only slightly smaller than that with saturating guanosine, because the binding of the oligonucleotide substrate is predominantly rate-limiting in both cases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
For bovine erythrocyte acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7), the Michaelis parameters Vmax., and Km for the natural substrate acetylcholine were estimated as a function of pH and sodium chloride concentration by the pH-stat method. A single dissociation constant for Na+ binding (K = 7 X 10(-3) M) suffices to explain the salt dependence of Vmax./Km and of Km as well as the pH dependence of Vmax./Km and Vmax., Km being pH independent. This finding provides evidence for a specific effect of Na+, presumably by binding at the anionic subsite of the active centre. Na+ binding causes a 50-fold decrease in kcat./Km as well as a decrease of one unit in the pKa of both kcat./Km and kcat.. The intrinsic pKa in the absence of salt at 25 degrees C is about 7.5. Comparison of the degree of fit of the data to the Debeye-Huckel equation, in accordance with an alternative general salt effect, as well as published data for sodium and potassium chlorides also favour a specific salt effect.  相似文献   

4.
On the basis of the X-ray crystal structure of scytalone dehydratase complexed with an active center inhibitor [Lundqvist, T., Rice, J., Hodge, C. N., Basarab, G. S., Pierce, J. and Lindqvist, Y. (1994) Structure (London) 2, 937-944], eight active-site residues were mutated to examine their roles in the catalytic mechanism. All but one residue (Lys73, a potential base in an anti elimination mechanism) were found to be important to catalysis or substrate binding. Steady-state kinetic parameters for the mutants support the native roles for the residues (Asn131, Asp31, His85, His110, Ser129, Tyr30, and Tyr50) within a syn elimination mechanism. Relative substrate specificities for the two physiological substrates, scytalone and veremelone, versus a Ser129 mutant help assign the orientation of the substrates within the active site. His85Asn was the most damaging mutation to catalysis consistent with its native roles as a general base and a general acid in a syn elimination. The additive effect of Tyr30Phe and Tyr50Phe mutations in the double mutant is consistent with their roles in protonating the substrate's carbonyl through a water molecule. Studies on a synthetic substrate, which has an anomeric carbon atom which can better stabilize a carbocation than the physiological substrate (vermelone), suggest that His110Asn prefers this substrate over vermelone in order to balance the mutation-imposed weakness in promoting the elimination of hydroxide from substrates. All mutant enzymes bound a potent active-site inhibitor in near 1:1 stoichiometry, thereby supporting their active-site integrity. An X-ray crystal structure of the Tyr50Phe mutant indicated that both active-site waters were retained, likely accounting for its residual catalytic activity. Steady-state kinetic parameters with deuterated scytalone gave kinetic isotope effects of 2.7 on kcat and 4.2 on kcat/Km, suggesting that steps after dehydration partially limit kcat. Pre-steady-state measurements of a single-enzyme turnover with scytalone gave a rate that was 6-fold larger than kcat. kcat/Km with scytalone has a pKa of 7.9 similar to the pKa value for the ionization of the substrate's C6 phenolic hydroxyl, whereas kcat was unaffected by pH, indicating that the anionic form of scytalone does not bind well to enzyme. With an alternate substrate having a pKa above 11, kcat/Km had a pKa of 9.3 likely due to the ionization of Tyr50. The non-enzyme-catalyzed rate of dehydration of scytalone was nearly a billion-fold slower than the enzyme-catalyzed rate at pH 7.0 and 25 degrees C. The non-enzyme-catalyzed rate of dehydration of scytalone had a deuterium kinetic isotope effect of 1.2 at pH 7.0 and 25 degrees C, and scytalone incorporated deuterium from D2O in the C2 position about 70-fold more rapidly than the dehydration rate. Thus, scytalone dehydrates through an E1cb mechanism off the enzyme.  相似文献   

5.
The three genes encoding the 4-chlorobenzene dehalogenase polypeptides were excised from a Pseudomonas sp. CBS-3 DNA fragment and separately cloned and expressed in Escherichia coli. The three enzymes were purified from the respective subclones by using an ammonium sulfate precipitation step followed by one or two column chromatographic steps. The 4-chlorobenzoate:coenzyme A ligase was found to be a homodimer (57-kDa subunit size), to require Mg2+ (Co2+ and Mn2+ are also activators) for activity, and to turn over MgATP (Km = 100 microM), coenzyme A (Km = 80 microM), and 4-chlorobenzoate (Km = 9 microM) at a rate of 30 s-1 at pH 7.5 and 25 degrees C. Benzoate, 4-bromobenzoate, 4-iodobenzoate, and 4-methylbenzoate were shown to be alternate substrates while 4-hydroxybenzoate, 4-aminobenzoate, 2-aminobenzoate, 2,3-dihydroxybenzoate, 4-coumarate, palmate, laurate, caproate, butyrate, and phenylacetate were not substrate active. The 4-chlorobenzoate-coenzyme A dehalogenase was found to be a homotetramer (30 kDa subunit size) to have a Km = 15 microM and kcat = 0.3 s-1 at pH 7.5 and 25 degrees C and to be catalytically inactive toward hydration of crotonyl-CoA, alpha-methylcrotonyl-CoA, and beta-methylcrotonyl-CoA. The 4-hydroxybenzoate-coenzyme A thioesterase was shown to be a homotetramer (16 kDa subunit size), to have a Km = 5 microM and kcat = 7 s-1 at pH 7.5 and 25 degrees C, and to also catalyze the hydrolyses of benzoyl-coenzyme A and 4-chlorobenzoate-coenzyme A. Acetyl-coenzyme A, hexanoyl-coenzyme A, and palmitoyl-coenzyme A were not hydrolyzed by the thioesterase.  相似文献   

6.
Three synthetic substrates H-Arg-NH-Mec, Bz-Arg-NH-Mec and H-Cit-NH-Mec (Bz, Benzoyl; NH-Mec, 4-methylcoumaryl-7-amide; Cit, citrulline) were used to characterize specificity requirements for the P1-S1 interaction of cathepsin H from rat liver. From rapid equilibrium kinetic studies it was shown that Km, kcat and the specificity constants kcat/Km are quite similar for substrates with a free alpha-amino group. In contrast, a 25-fold decrease of kcat/Km was observed for the N-terminal-blocked substrate Bz-Arg-NH-Mec. The activation energies for H-Arg-NH-Mec and Bz-Arg-NH-Mec were determined to be 37 kJ/mol and 55 kJ/mol, respectively, and the incremental binding energy delta delta Gb of the charged alpha-amino group was estimated to -8.1 kJ/mol at pH 6.8. The shown preference of cathepsin H for the unblocked substrates H-Arg-NH-Mec and H-Cit-NH-Mec was further investigated by inspection of the pH dependence of kcat/Km. The curves of the two substrates with a charged alpha-amino group showed identical bell-shaped profiles which both exhibit pKa1 and pKa2 values of 5.5 and 7.4, respectively, at 30 degrees C. The residue with a pKa1 of 5.5 in the acid limb of the activity profile of H-Arg-NH-Mec was identified by its ionization enthalpy delta Hion = 21 kJ/mol as a beta-carboxylate or gamma-carboxylate of the enzyme, whereas the residue with a pKa2 of 7.4 was assigned to the free alpha-amino group of the substrate with a delta Hion of 59 kJ/mol. Bz-Arg-NH-Mec showed a different pH-activity profile with a pKa1 of 5.4 and a pKa2 of 6.6 at 30 degrees C. Cathepsin H exhibits no preference for a basic P1 side chain as has been shown by the similar kinetics of H-Arg-NH-Mec and the uncharged, isosteric substrate H-Cit-NH-Mec. In summary, specific interactions of an anionic cathepsin H active site residue with the charged alpha-amino group of substrates caused transition state stabilization which proves the enzyme to act preferentially as an aminopeptidase.  相似文献   

7.
It has been proposed that protein-DNA recognition is mediated via specific hydrogen bond, hydrophobic, and/or electrostatic interactions between the protein and DNA surfaces. We have attempted to map and quantitate the energies of these interactions for the TaqI endonuclease by constructing substrates substituted with base or phosphate analogues that either remove or sterically obstruct particular functional groups in the canonical TCGA sequence. The DNA backbone was also modified using a chemical approach (phosphate ethylation) which identified several phosphates in the recognition sequence essential for cleavage. The base analogues, N6-methyl-A, N7-deaza-A, N7-deaza-G, inosine, N4-methyl-C, 5-methyl-C, uracil, 5-bromo-U, and the phosphate analogues, alpha-thio-A, alpha-thio-G, alpha-thio-T, alpha-thio-A, were substituted for their corresponding unmodified counterpart in one strand of the TCGA duplex. The effects of these analogues were monitored by measuring the steady state (Km, kcat) and single-turnover (kst) kinetic constants. Only the N6-methyl-A-substituted DNA, which mimics in vivo methylation, was unreactive while the remaining analogue substitutions exhibited Michaelis-Menten kinetics. In general, the Km was either unchanged or lowered by the analogue substitutions. In contrast, many of the analogues severely reduced kcat, suggesting the modified functional groups served mainly to destabilize the transition state. Single-turnover measurements paralleled the kcat results, pointing to the N7 and N6 of A, the N7 of G, and one of the nonbridging oxygens 3' to T as putative contacts made in achieving the transition state. Substrates with double substitutions displayed simple additivity of delta delta G" implying that these changes behaved independently. The unmodified strand in 10 out of 12 hemisubstituted substrates had a normal kst value suggesting that a particular cleavage center is controlled predominantly by recognition of determinants on the same strand as the scissile bond. These results are discussed in relation to base analogue work from the EcoRI, RsrI, and EcoRV restriction endonucleases.  相似文献   

8.
A M Davis  A C Regan  A Williams 《Biochemistry》1988,27(25):9042-9047
The title esters are demonstrated to be specific substrates of bovine pancreatic ribonuclease A (EC 3.1.27.5). The Br?nsted dependence of kcat/Km at pH 7.50 for the enzyme-catalyzed cyclization versus the pKa of the leaving phenol exhibits two regression lines of almost identical slope for respectively 2-chlorophenols and 2,6-unsubstituted phenols: log kcat/Km = -0.20 pKa ArOH + 5.47 (n = 5, r = 0.957); log kcat/Km = -0.17 pKa ArOH + 5.79 (n = 4, r = 0.965). Comparison of the Br?nsted beta 1g's with that for the standard reaction where imidazole catalyzes the cyclization (beta 1g = -0.59) indicates considerably less development of negative charge on the leaving oxygen in the enzyme case, providing experimental evidence for the hypothesis that electrophilic assistance is involved in catalysis. The existence of two essentially parallel Br?nsted correlations is not reflected in the standard reaction of substrate with imidazole. Modeling studies indicate that the phenyl ring of the substrate can take up a range of positions away from the active site; the presence of ortho chloro substituents considerably restricts the motion of the phenyl leaving group.  相似文献   

9.
Characterization of proline endopeptidase from rat brain   总被引:1,自引:0,他引:1  
P C Andrews  C M Hines  J E Dixon 《Biochemistry》1980,19(24):5494-5500
A homogeneous proline endopeptidase from rat brain is characterized with respect to its substrate specificity and the residues essential for catalysis. The two fluorogenic substrate analogues tested, pyroglutamylhistidylprolyl-beta-naphthylamide and pyroglutamy(N-benzylimidazolyl)-histidylprolyl-beta-naphthylamide, have higher Vmax values (19.5 and 26.9 mumol . min-1 . mg-1, respectively) and considerably lower Km values (0.034 and 0.020 mM, respectively) than pyroglutamylhistidylprolylamide (Vmax = 2.9 mumol . min-1 . mg-1 and Km = 4.1 mM). Both fluorogenic substrates give rise to pH optima and pH-rate profiles similar to those of the amide. Values of Km and kcat are determined as a function of pH. Km is pH independent, with the titration curve for kcatKm-1 implicating an active-site residue(s) with a pKa of 6.2. Proline endopeptidase can be completely inactivated by low concentrations of diisopropyl fluorophosphate with an observed second-order rate constant of 2.5 x 10(4) min-1 . M-1. The stoichiometry of the alkylphosphorylation is 0.83 mol/mol of enzyme. The pH dependence of the inactivation by diisopropylfluorophosphate implicates a residue(s) involved in covalent bond formation having a pKa of 6.0. These data suggest that proline endopeptidase is a serine proteinase.  相似文献   

10.
Z Y Zhang  R L Van Etten 《Biochemistry》1991,30(37):8954-8959
The kcat and Km values for the bovine heart low molecular weight phosphotyrosyl protein phosphatase catalyzed hydrolysis of 16 aryl phosphate monoesters and of five alkyl phosphate monoesters having the structure Ar(CH2)nOPO3H2 (n = 1-5) were measured at pH 5.0 and 37 degrees C. With the exception of alpha-naphthyl phosphate and 2-chlorophenyl phosphate, which are subject to steric effects, the values of kcat are effectively constant for the aryl phosphate monoesters. This is consistent with the catalysis being nucleophilic in nature, with the existence of a common covalent phosphoenzyme intermediate, and with the breakdown of this intermediate being rate-limiting. In contrast, kcat for the alkyl phosphate monoesters is much smaller and the rate-limiting step for these substrates is interpreted to be the phosphorylation of the enzyme. A single linear correlation is observed for a plot of log (kcat/Km) vs leaving group pKa for both classes of substrates at pH 5.0: log (kcat/Km) = -0.28pKa + 6.88 (n = 19, r = 0.89), indicating a uniform catalytic mechanism for the phosphorylation event. The small change in effective charge (-0.28) on the departing oxygen of the substrate is similar to that observed in the specific acid catalyzed hydrolysis of monophosphate monoanions (-0.27) and is consistent with a strong electrophilic interaction of the enzyme with this oxygen atom in the transition state. The D2O solvent isotope effect and proton inventory experiments indicate that only one proton is "in flight" in the transition state of the phosphorylation process and that this proton transfer is responsible for the reduction of effective charge on the leaving oxygen.  相似文献   

11.
Similar rates have been observed for dimer repair with Escherichia coli photolyase and the heterogeneous mixtures generated by UV irradiation of oligothymidylates [UV-oligo(dT)n, n greater than or equal to 4] or DNA. Comparable stability was observed for ES complexes formed with UV-oligo(dT)n, (n greater than or equal to 9) or dimer-containing DNA. In this paper, binding studies with E. coli photolyase and a series of homogeneous oligonucleotide substrates (TpT, TpTp, pTpT, TpTpT, TpTpT, TpTpTpT, TpTpTpT, TpTpTpT, TpTpTpT) show that about 80% of the binding energy observed with DNA as substrate (delta G approximately 10 kcal/mol) can be attributed to the interaction of the enzyme with a dimer-containing region that spans only four nucleotides in length. This major binding determinant (TpTpTpT) coincides with the major conformational impact region of the dimer and reflects contributions from the dimer itself (TpT, delta G = 4.6 kcal/mol), adjacent phosphates (5'p, 0.8 kcal/mol; 3'p, 1.1 kcal/mol), and adjacent thymine residues (5'T, 0.8 kcal/mol; 3'T, 1.3 kcal/mol). Similar turnover rates (average kcat = 6.7 min-1) are observed with short-chain oligonucleotide substrates and UV-oligo(dT)18, despite a 25,000-fold variation in binding constants (Kd). In contrast, the ratio Km/Kd decreases as binding affinity decreases and appears to plateau at a value near 1. Turnover with oligonucleotide substrates occurs at a rate similar to that estimated for the photochemical step (5.1 min-1), suggesting that this step is rate determining. Under these conditions, Km will approach Kd when the rate of ES complex dissociation exceeds kcat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is completely inactivated by the 2',3'-dialdehyde derivative of ATP (oATP) in the presence of Mn2+. The dependence of the pseudo-first-order rate constant on reagent concentration indicates the formation of a reversible complex with the enzyme (Kd = 60 +/- 17 microM) prior to covalent modification. The maximum inactivation rate constant at pH 7.5 and 30 degrees C is 0.200 +/- 0.045 min-1. ATP or ADP plus phosphoenolpyruvate effectively protect the enzyme against inactivation. oATP is a competitive inhibitor toward ADP, suggesting that oATP interacts with the enzyme at the substrate binding site. The partially inactivated enzyme shows an unaltered Km but a decreased V as compared with native phosphoenolpyruvate carboxykinase. Analysis of the inactivation rate at different H+ concentrations allowed estimation of a pKa of 8.1 for the reactive amino acid residue in the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of about one mole of [8-14C]oATP per mole of enzyme subunit. The results indicate that oATP can be used as an affinity label for yeast phosphoenolpyruvate carboxykinase.  相似文献   

13.
A site- and strand-specific nick, introduced in the F plasmid origin of transfer, initiates conjugal DNA transfer during bacterial conjugation. Recently, molecular genetic studies have suggested that DNA helicase I, which is known to be encoded on the F plasmid, may be involved in this nicking reaction (Traxler, B. A., and Minkley, E. G., Jr. (1988) J. Mol. Biol. 204, 205-209). We have demonstrated this site- and strand-specific nicking event using purified helicase I in an in vitro reaction. The nicking reaction requires a superhelical DNA substrate containing the F plasmid origin of transfer, Mg2+ and helicase I. The reaction is protein concentration-dependent but, under the conditions used, only 50-70% of the input DNA substrate is converted to the nicked species. Genetic data (Everett, R., and Willetts, N. (1980) J. Mol. Biol. 136, 129-150) have also suggested the involvement of a second F-encoded protein, the TraY protein, in the oriT nicking reaction. Unexpectedly, the in vitro nicking reaction does not require the product of the F plasmid traY gene. The implications of this result are discussed. The phosphodiester bond interrupted by helicase I has been shown to correspond exactly to the site nicked in vivo suggesting that helicase I is the site- and strand-specific nicking enzyme that initiates conjugal DNA transfer. Thus, helicase I is a bifunctional protein which catalyzes site- and strand-strand specific nicking of the F plasmid in addition to the previously characterized duplex DNA unwinding (helicase) reaction.  相似文献   

14.
Kinetic analysis of human serine/threonine protein phosphatase 2Calpha.   总被引:1,自引:0,他引:1  
The PPM family of Ser/Thr protein phosphatases have recently been shown to down-regulate the stress response pathways in eukaryotes. Within the stress pathway, key signaling kinases, which are activated by protein phosphorylation, have been proposed as the in vivo substrates of PP2C, the prototypical member of the PPM family. Although it is known that these phosphatases require metal cations for activity, the molecular details of these important reactions have not been established. Therefore, here we report a detailed biochemical study to elucidate the kinetic and chemical mechanism of PP2Calpha. Steady-state kinetic and product inhibition studies revealed that PP2Calpha employs an ordered sequential mechanism, where the metal cations bind before phosphorylated substrate, and phosphate is the last product to be released. The metal-dependent activity of PP2C (as reflected in kcat and kcat/Km), indicated that Fe2+ was 1000-fold better than Mg2+. The pH rate profiles revealed two ionizations critical for catalytic activity. An enzyme ionization with a pKa value of 7 must be unprotonated for catalysis, and an enzyme ionization with a pKa of 9 must be protonated for substrate binding. Br?nsted analysis of substrate leaving group pKa indicated that phosphomonoester hydrolysis is rate-limiting at pH 7. 0, but not at pH 8.5 where a common step independent of the nature of the substrate and alcohol product limits turnover (kcat). Rapid reaction kinetics between phosphomonoester and PP2C yielded exponential "bursts" of product formation, consistent with phosphate release being the slow catalytic step at pH 8.5. Dephosphorylation of synthetic phosphopeptides corresponding to several protein kinases revealed that PP2C displays a strong preference for diphosphorylated peptides in which the phosphorylated residues are in close proximity.  相似文献   

15.
Imipenem as substrate and inhibitor of beta-lactamases.   总被引:1,自引:0,他引:1       下载免费PDF全文
The interaction between imipenem, a carbapenem antibiotic, and two representative beta-lactamases has been studied. The first enzyme was beta-lactamase I, a class-A beta-lactamase from Bacillus cereus; imipenem behaved as a slow substrate (kcat. 6.7 min-1, Km 0.4 mM at 30 degrees C and at pH 7) that reacted by a branched pathway. There was transient formation of an altered species formed in a reversible reaction; this species was probably an acyl-enzyme in a slightly altered, but considerably more labile, conformation. The kinetics of the reaction were investigated by measuring both the concentration of the substrate and the activity of the enzyme, which fell and then rose again more slowly. The second enzyme was the chromosomal class-C beta-lactamase from Pseudomonas aeruginosa; imipenem was a substrate with a low kcat. (0.8 min-1) and a low Km (0.7 microM). Possible implications for the clinical use of imipenem are considered.  相似文献   

16.
W Cao 《Biochemistry》1999,38(25):8080-8087
Restriction endonucleases achieve sequence-specific recognition and strand cleavage through the interplay of base, phosphate backbone, and metal cofactor interactions. In this study, we investigate the binding kinetics of TaqI endonuclease using the wild-type enzyme and a binding proficient, catalysis deficient mutant TaqI-D137A both in the absence of a metal cofactor and in the presence of Mg2+ or Ca2+. As demonstrated by gel mobility shift analyses, TaqI endonuclease requires a metal cofactor for achieving high-affinity specific binding to its cognate sequence, TCGA. In the absence of a metal cofactor, the enzyme binds all DNA sequences (TaqI cognate site, star site, and nonspecific site) with essentially equal affinity, thereby exhibiting little discrimination. The dissociation constant of the cognate sequence in the presence of Mg2+ at 60 degrees C is 0. 26 nM, a value comparable to our previously reported Km of 0.5 nM measured under steady-state conditions. The TaqI-TCGA-Mg2+ complex is stable, with a half-life of 21 min at 60 degrees C. The boundary of the protein-DNA interface is approximated to be about 18 bp as determined by DNase I footprinting. Data from this study support the notion that a metal cofactor plays a critical role for achieving sequence-specific discrimination in a subset of nucleases, including TaqI, EcoRV, and others.  相似文献   

17.
A detailed study of the kinetics of the trypsin (EC 3.4.21.4)-catalysed hydrolysis of N-alpha-benzyloxycarbonyl-L-lysine p-nitrophenyl ester in cryosolvents at 0 degrees C and below was undertaken. The pH-dependences of kcat, Km, k+2, k+3 and Ks were determined under cryoenzymological conditions and are compared with previous results [Antonini & Ascenzi (1981) J. Biol. Chem. 256, 12449-12455] obtained in fully aqueous media at ambient temperatures. Below pH 5.0 the kinetics, and presumably the mechanism of catalysis, are not significantly perturbed under cryoenzymological conditions. However, it is shown that below pH 5.0 both Km and Ks are decreased under these conditions but that both are increased at pH 6.7 relative to the results obtained in fully aqueous media at ambient temperatures. The effects of the cryoenzymological conditions on the individual catalytic parameters are discussed. The acylation rate constant, k+2, is essentially constant at pH 4.2 and 5.0 but decreases at lower pH values with an apparent pKa of approx. 4.0. In view of the low enthalpy of ionization associated with this pKa it is suggested that this group is the carboxy group of aspartic acid-189, which binds the positively charged lysine side chain of the substrate. The mechanistic implications of the results for the acylation step are discussed. It is also shown that only at low pH values can significant amounts of acylated trypsin be accumulated.  相似文献   

18.
Amyes TL  Richard JP 《Biochemistry》2007,46(19):5841-5854
More than 80% of the rate acceleration for enzymatic catalysis of the aldose-ketose isomerization of (R)-glyceraldehyde 3-phosphate (GAP) by triosephosphate isomerase (TIM) can be attributed to the phosphodianion group of GAP [Amyes, T. L., O'Donoghue, A. C., and Richard, J. P. (2001) J. Am. Chem. Soc. 123, 11325-11326]. We examine here the necessity of the covalent connection between the phosphodianion and triose sugar portions of the substrate by "carving up" GAP into the minimal neutral two-carbon sugar glycolaldehyde and phosphite dianion pieces. This "two-part substrate" preserves both the alpha-hydroxycarbonyl and oxydianion portions of GAP. TIM catalyzes proton transfer from glycolaldehyde in D2O, resulting in deuterium incorporation that can be monitored by 1H NMR spectroscopy, with kcat/Km = 0.26 M-1 s-1. Exogenous phosphite dianion results in a very large increase in the observed second-order rate constant (kcat/Km)obsd for turnover of glycolaldehyde, and the dependence of (kcat/Km)obsd on [HPO32-] exhibits saturation. The data give kcat/Km = 185 M-1 s-1 for turnover of glycolaldehyde by TIM that is saturated with phosphite dianion so that the separate binding of phosphite dianion to TIM results in a 700-fold acceleration of proton transfer from carbon. The binding of phosphite dianion to the free enzyme (Kd = 38 mM) is 700-fold weaker than its binding to the fleeting complex of TIM with the altered substrate in the transition state (Kd = 53 muM); the total intrinsic binding energy of phosphite dianion in the transition state is 5.8 kcal/mol. We propose a physical model for catalysis by TIM in which the intrinsic binding energy of the substrate phosphodianion group is utilized to drive closing of the "mobile loop" and a protein conformational change that leads to formation of an active site environment that is optimally organized for stabilization of the transition state for proton transfer from alpha-carbonyl carbon.  相似文献   

19.
Values of kinetic parameters for the hydrolysis of esters and p-nitroanilides of L-lysine and L-arginine catalyzed by the Lys77 form of human plasmin (EC 3.4.21.7) have been determined between pH 5.5 and 8 (I = 0.1 M) at 21 +/- 0.5 degrees C. Over the whole pH range explored, Lys77-plasmin catalysis conforms to simple Michaelis-Menten kinetics, and steady-state and pre-steady-state data may be consistently fitted to the minimum three-step mechanism: E + S in equilibrium (k+1/k-1)E X S----(k+2)E X P + P1----(k+3)E + P2 In spite of the higher specificity of lysyl derivatives for Lys77-plasmin rather than the arginyl ones, kinetic parameters also depend on the nature of the N-alpha substituent and/or of the alcoholic or p-nitroanilidic moiety of the substrate. Among the esters and anilides considered, ZLysONp shows the most favourable kinetic parameters and may be the substrate of choice of Lys77-plasmin, in that it allows the determination of the enzyme concentration as low as 2 X 10(-9) M (about 1 X 10(-3) CU/ml), at the optimum pH value (approx. 8). Between pH 5.5 and 8, the pH profiles of kcat and kcat/Km for the Lys77-plasmin-catalyzed hydrolysis of ZLysONp and ZArgONp reflect the ionization of a single group (probably His-602 involved in the active site) with pKa values ranging between 6.4 and 6.6; at variance, values of Km are pH-independent.  相似文献   

20.
A D Hall  A Williams 《Biochemistry》1986,25(17):4784-4790
Values of kcat and Km have been measured for the Escherichia coli alkaline phosphatase catalyzed hydrolysis of 18 aryl and 12 alkyl monophosphate esters at pH 8.00 and 25 degrees C. A Br?nsted plot of log (kcat/Km) (M-1 s-1) vs. the pK of the leaving hydroxyl group exhibits two regression lines: log (kcat/Km) = -0.19 (+/- 0.02) pKArOH + 8.14 (+/- 0.15) log (kcat/Km) = -0.19 (+/- 0.01) pKROH + 5.89 (+/- 0.17) Alkyl phosphates with aryl or large lipophilic side chains are not correlated by the above equations and occupy positions intermediate between the two lines. The observed change in effective charge on the leaving oxygen of the ester (-0.2) is very small, consistent with substantial electrophilic participation of the enzyme with this atom. Cyclohexylammonium ion is a noncompetitive inhibitor against 4-nitrophenyl phosphate substrate at pH 8.00, and neutral phenol is a competitive inhibitor (Ki = 82.6 mM); these data and the 100-fold larger reactivity of aryl over alkyl esters are consistent with the existence of a lipophilic binding site for the leaving group of the substrate. The absence of a major steric effect in kcat/Km for substituted aryl esters confirms that the leaving group in the enzyme--substrate complex points away from the surface of the enzyme. Arguments are advanced to exclude a dissociative mechanism (involving a metaphosphate ion) for the enzyme-catalyzed substitution at phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号