首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Yeast glucan in the cyst wall of Pneumocystis carinii   总被引:9,自引:0,他引:9  
Ultrastructurally, the cyst wall of Pneumocystis carinii consists of an electron-dense outer layer, an electron-lucent middle layer, and an innermost plasmalemma. This is similar in appearance to the cell wall of some yeasts, e.g. Saccharomyces cerevisiae, which consists of an outer dense layer of mannan, a middle lucent layer of beta-1,3-glucan (yeast glucan) and an innermost plasmalemma. The cyst wall of P. carinii, as well as the cell wall of S. cerevisiae, can be labeled by a variety of methods which stain polysaccharides, such as Gomori's methenamine silver (GMS) and by Aniline blue, a dye which selectively stains beta-1,3-glucan. The treatment of P. carinii cysts with Zymolyase, which the key enzyme is beta-1,3-glucan laminaripentaohydrolase, results in lysis of the outer 2 layers of the cyst wall and the loss of positive staining by both GMS and Aniline blue. The lysis of elements of the cyst wall of P. carinii is achieved under the same conditions and concentration at which Zymolyase lyses the outer 2 layers of the cell wall of viable cells of S. cerevisiae. These observations indicate that a major component of the cyst wall of P. carinii is beta-1,3-glucan.  相似文献   

2.
ABSTRACT. It has long been thought that the cyst form of Pneumocystis carinii , which can resist host defenses and antimicrobial drugs, is responsible for relapses of P. carinii pneumonia. The thick wall of the cyst is immunogenic and rich in glucosyl/mannosyl and N-acetyl-D-glucosamine residues. In this study we have demonstrated the presence of a hitherto unreported outer membrane in the cyst wall of P. carinii . This membrane was detected by a combination of techniques, including transmission electron microscopy, freeze-fracture electron microscopy, and membrane labeling with fluorescent lipid analogs following treatment of P. carinii cysts from infected rats for 30 min with Zymolyase, a β-1–3 glucanase. As in gram-negative bacteria and blue-green algae, this 2nd membrane may have an important role in osmoregulation and nutrient utilization; it may also mediate the interaction of P. carinii with its host and serve as a target for drug therapy.  相似文献   

3.
Rats exposed to Pneumocystis carinii mount antibody responses to a broad band migrating on western blot with an apparent molecular weight of 45-55 kDa. One antigen within this band, designated p55, is uniformly recognized by P. carinii exposed rats. Although the gene encoding the p55 antigen had been previously cloned, the location of this antigen within the organism was unknown. Prior attempts to localize the protein were unsuccessful. A monospecific polyclonal antiserum raised against a carboxyl-terminai 15-oligomer peptide yielded specific reactivity with a single 55 kDa band on a western blot of P. carinii. Using this antiserum, little to no reactivity could be detected with P. carinii organisms by immunofluorescence assay (IIFA). However, zymolyase treatment of P. carinii dramatically increased the intensity and proportion of organisms reactive by IFA. Zymolyase, an enzyme with β-1,3 glucanase activity, has previously been shown to remove the electron dense outer layer of the P. carinii cell wall, exposing an electron lucent layer. Immunoelectron microscopy performed on zymolyase treated organisms showed the majority of labeling occurs within the cell wall.  相似文献   

4.
Pneumocystis carinii remains a persistent cause of severe pneumonia in immune compromised patients. Recent studies indicate that P. carinii is a fungal species possessing a glucan-rich cyst wall. Pneumocandin antagonists of beta-1,3-glucan synthesis rapidly suppress infection in animal models of P. carinii pneumonia. We, therefore, sought to define the molecular mechanisms of beta-glucan cell wall assembly by P. carinii. Membrane extracts derived from freshly purified P. carinii incorporate uridine 5'-diphosphoglucose into insoluble carbohydrate, in a manner that was completely inhibited by the pneumocandin L733-560, an antagonist of Gsc-1-type beta-glucan synthetases. Using degenerative polymerase chain reaction and library screening, the P. carinii Gsc-1 catalytic subunit of beta-1,3-glucan synthetase was cloned and characterized. P. carinii gsc1 exhibited homology to phylogenetically related fungal beta-1,3-glucan synthetases, encoding a predicted 214-kDa integral membrane protein with 12 transmembrane domain structure. Immunoprecipitation of P. carinii extracts, with a synthetic peptide anti-Gsc-1 antibody, specifically yielded a protein of 219.4 kDa, which was also capable of incorporating 5'-diphosphoglucose into insoluble glucan carbohydrate. As opposed to other fungi, the expression of gsc-1 mRNA is uniquely regulated over P. carinii's life cycle, having minimal expression in trophic forms, but substantial expression in the thick-walled cystic form of the organism. These results indicate that P. carinii contains a unique catalytic subunit of beta-1,3-glucan synthetase utilized in cyst wall formation. Because synthesis of beta-1,3-glucan is absent in mammalian cells, inhibition of the P. carinii Gsc-1 represents an attractive molecular target for therapeutic exploitation.  相似文献   

5.
It has long been thought that the cyst form of Pneumocystis carinii, which can resist host defenses and antimicrobial drugs, is responsible for relapses of P. carinii pneumonia. The thick wall of the cyst is immunogenic and rich in glucosyl/mannosyl and N-acetyl-D-glucosamine residues. In this study we have demonstrated the presence of a hitherto unreported outer membrane in the cyst wall of P. carinii. This membrane was detected by a combination of techniques, including transmission electron microscopy, freeze-fracture electron microscopy, and membrane labeling with fluorescent lipid analogs following treatment of P. carinii cysts from infected rats for 30 min with Zymolyase, a beta-1-3 glucanase. As in gram-negative bacteria and blue-green algae, this 2nd membrane may have an important role in osmoregulation and nutrient utilization; it may also mediate the interaction of P. carinii with its host and serve as a target for drug therapy.  相似文献   

6.
ABSTRACT. Pneumocystis carinii cysts are capable of resisting host defenses and antimicrobial drugs and are therefore thought to be responsible for relapses of P. carinii pneumonia in AIDS and other immunocompromised patients. The interaction of P. carinii with its host, and other P. carinii , might be mediated by molecules which form the outer surfaces of this organism. Carbohydrates are known to play many roles in cell-cell adhesion, and have been detected on the surface of P. carinii by lectin labeling experiments. In this study P. carinii cyst wall material was obtained from Zymolyase treatment. Alditol acetate derivatives of neutral and amino sugars or trimethylsilyl derivatives of methyl glycosides were prepared from the monosaccharides released from the sample by acid hydrolysis. Analyses were done by a combination of gas chromatography and mass spectrometry. Glucose was found to be the major sugar constituent. Mannose and galactose were present in equal ratios. A lesser amount of N-acetyl-D-glucosamine, and trace amounts of ribose and sialic acid were present in the cyst wall samples analyzed. These sugars may mediate P. carinii -host interaction and play an important protective role by creating a permeability barrier around the cyst.  相似文献   

7.
Analysis of Pneumocystis carinii cyst wall. II. Sugar composition   总被引:2,自引:0,他引:2  
Pneumocystis carinii cysts are capable of resisting host defenses and antimicrobial drugs and are therefore thought to be responsible for relapses of P. carinii pneumonia in AIDS and other immunocompromised patients. The interaction of P. carinii with its host, and other P. carinii, might be mediated by molecules which form the outer surfaces of this organism. Carbohydrates are known to play many roles in cell-cell adhesion, and have been detected on the surface of P. carinii by lectin labeling experiments. In this study P. carinii cyst wall material was obtained from Zymolyase treatment. Alditol acetate derivatives of neutral and amino sugars or trimethylsilyl derivatives of methyl glycosides were prepared from the monosaccharides released from the sample by acid hydrolysis. Analyses were done by a combination of gas chromatography and mass spectrometry. Glucose was found to be the major sugar constituent. Mannose and galactose were present in equal ratios. A lesser amount of N-acetyl-D-glucosamine, and trace amounts of ribose and sialic acid were present in the cyst wall samples analyzed. These sugars may mediate P. carinii-host interaction and play an important protective role by creating a permeability barrier around the cyst.  相似文献   

8.
VanWinkle-Swift  K.P.  Salanga  M.C.  Thompson  E. G.  Bai  M. S.    & Parish  E.W. 《Journal of phycology》2000,36(S3):67-68
The primary zygote wall of C. monoica is transient and is released from mature zygospores. The fluorochromes aniline blue and primulin, used in other systems to detect β-1,3 glucans, stain the primary wall intensely. Two β-1,3 glucan synthases have been identified in higher plants: a calcium-dependent synthase produced in response to wounding and induced by chitosan, and a magnesium-dependent enzyme, associated with pollen development and unresponsive to chitosan. Chitosan has no effect on C. monoica primary wall synthesis or staining properties. We are presently testing for the effect of magnesium and/or calcium depletion on primary wall synthesis. Aniline blue and primulin do not stain purified cellulose fibers, while the fluorochrome Calcofluor does. Calcofluor also stains the primary wall intensely. For all fluorochormes tested, fluorescence is first detected in motile quadriflagellate zygotes. Aniline blue staining maximizes quickly, while Calcofluor staining continues to intensify until primary wall release. Dinitrobenzonitrile, a specific inhibitor of cellulose synthesis in plants, has no effect on primary wall synthesis in C. monoica. Addition of glucanase or cellulase to partially purified primary walls results in wall thinning and loss of staining. Using electron microscopy, we are evaluating the effects of these enzymes on primary wall ultrastructure. Further studies are needed to determine whether all three fluorochromes are recognizing the same polysaccharide component (a β-1,3 glucan or a β-1,3; β-1,4 mixed glucan), or whether Calcofluor staining indicates the presence of a distinct component containing β-1,4 linkages, such as cellulose or a xyloglucan.  相似文献   

9.
Oligosaccharides derived from cell wall of fungal pathogens induce host primary immune responses. To understand fungal strategies circumventing the host plant immune responses, cell wall polysaccharide localization was investigated using fluorescent labels during infectious structure differentiation in the rice blast fungus Magnaporthe grisea . α-1,3-glucan was labelled only on appressoria developing on plastic surfaces, whereas it was detected on both germ tubes and appressoria on plant surfaces. Chitin, chitosan and β-1,3-glucan were detected on germ tubes and appressoria regardless of the substrate. Major polysaccharides labelled at accessible surface of infectious hyphae were α-1,3-glucan and chitosan, but after enzymatic digestion of α-1,3-glucan, β-1,3-glucan and chitin became detectable. Immunoelectron microscopic analysis showed α-1,3-glucan and β-1,3-glucan intermixed in the cell wall of infectious hyphae; however, α-1,3-glucan tended to be distributed farther from the fungal cell membrane. The fungal cell wall became more tolerant to chitinase digestion upon accumulation of α-1,3-glucan. Accumulation of α-1,3-glucan was dependent on the Mps1 MAP kinase pathway, which was activated by a plant wax derivative, 1,16-hexadecanediol. Taken together, α-1,3-glucan spatially and functionally masks β-1,3-glucan and chitin in the cell wall of infectious hyphae. Thus, a dynamic change of composition of cell wall polysaccharides occurs during plant infection in M. grisea .  相似文献   

10.
Protoplasts of Marchantia polymorpha L. (liverwort) regenerated new cell walls in initial culture. However, the survival rate of regenerated cells decreased rapidly after this stage. The decrease in survival rate was suppressed by the β-glucosyl Yariv reagent (βglcY), which binds to arabinogalactan proteins (AGPs), only when it was added to culture medium during the period of incipient cell wall regeneration. The addition of βglcY after the period of incipient cell wall regeneration had no effect on the survival rate. These results suggested the involvement of AGPs in the cell wall regeneration process. After cell wall regeneration, the regenerated cells started to divide actively after being transferred to a medium with 1% activated charcoal (AC). Protoplasts that had been cultured with βglcY during the period of incipient cell wall regeneration and then transferred to the AC medium divided vigorously, and the cell division rate was remarkably increased (>80%). However, without transfer to the AC medium, βglcY at concentrations higher than 20 μg ml−1 inhibited cell division. No effect on cell survival nor cell division was observed with the α-galactosyl Yariv reagent. Staining of β-1,3-glucan (callose) with aniline blue (AB) showed that a large amount of β-1,3-glucan was deposited in the regenerated cell walls of the protoplasts cultured without βglcY, while little or no β-1,3-glucan was stained by AB in protoplasts cultured with βglcY. These results suggest that AGPs and β-1,3-glucan play important roles in the survival and subsequent cell division of regenerated cells of M. polymorpha protoplast cultures.  相似文献   

11.
Pneumocystis pneumonia remains the most common AIDS-defining opportunistic infection in people with HIV. The process by which Pneumocystis carinii constructs its cell wall is not well known, although recent studies reveal that molecules such as beta-1-3-glucan synthetase (GSC1) and environmental pH-responsive genes such as PHR1 are important for cell-wall integrity. In closely related fungi, a specific mitogen-activated protein kinase (MAPK) cascade regulates cell-wall assembly in response to elevated temperature. The upstream mitogen-activated protein kinase kinase kinase (MAPKKK, or MEKK), BCK1, is an essential component in this pathway for maintaining cell-wall integrity and preventing fungal cell lysis. We have identified a P. carinii MEKK gene and have expressed it in Saccharomyces cerevisiae to gain insights into its function. The P. carinii MEKK, PCBCK1, corrects the temperature-sensitive cell lysis defect of bck1Delta yeast. Further, at elevated temperature PCBCK1 restored the signaling defect in bck1Delta yeast to maintain expression of the temperature-inducible beta-1-3-glucan synthetase gene, FKS2. PCBCK1, as a functional kinase, is capable of autophosphorylation and substrate phosphorylation. Since glucan machinery is not present in mammals, a better understanding of this pathway in P. carinii might aid in the development of novel medications which interfere with the integrity of the Pneumocystis cell wall.  相似文献   

12.
Glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in yeast are connected to the beta-1,3-glucan network via a beta-1,6-glucan moiety. Addition of gentiobiose or beta-1,6-glucan oligomers to growing cells affected the construction of a normal layer of GPI-dependent cell wall proteins at the outer rim of the Saccharomyces cerevisiae cell wall. Treated S. cerevisiae cells secreted significant amounts of cell wall protein 2, were much more sensitive to the lytic action of zymolyase 20T and displayed a marked increase in sensitivity to the small amphipathic antimicrobial peptide MB-21. Similar results in terms of sensitization of yeast cells to the antimicrobial peptide were obtained with the notorious food spoilage yeast Zygosaccharomyces bailii. Our results indicate that treating cells with a membrane-perturbing compound together with compounds that lead to an impaired construction of a normal GPI-dependent yeast wall protein layer represents an effective strategy to prevent the growth of major food spoilage yeasts.  相似文献   

13.
Toial RNA from Pneumocystis carinii obtained directly from the rat lung and from short term culture on A549 cells was evaluated for size and purity. An isolation procedure using guanidine isothiocyanate and lithium chloride was preferable to a hot phenol method. Host cells were eliminated by hypotonic lysis and a series of microfiltrations. Pneumocystis carinii were pretreated with Zymolyase for increased susceptibility to chaotropic agents. The major ribosomal species of P. carinii RNA migrated similarly to Saccharomyces cerevisiae rRNA. The 28s-like species migrated well ahead of rat and A549 cell rRNA and weli behind the prokaryotic large rRNA species.  相似文献   

14.
The mstacercarial cyst of Cloacitrema narrabeenensis which is formed in the open is composed of four layers: an outermost layer of acid mucopolysaccharide, a layer of protein which is presumed to be tanned, a layer of neutral mucopolysaccharide and an innermost layer of keratinized protein. The two layers which together form the outer cyst wall can be split off by slight pressure from the two remaining layers which together form the inner cyst wall. In the centre of the ventral side of the inner cyst wall, the keratinized layer is incomplete and this ventral plug region is composed of neutral mucopolysaccharide. The cyst wall is therefore very similar to that of Fasciola hepatica, the main difference being that the order of the two layers of the outer cyst is reversed. General evolutionary and functional relationships of metacercarial cysts are discussed.  相似文献   

15.
Abstract The cell wall of Candida albicans contains mannoproteins that are covalently associated with β-1,6-glucan. When spheroplasts were allowed to regenerate a new cell wall, initially non-glucosylated cell wall proteins accumulated in the medium. While the spheroplasts became osmotically stable, β-1,6-glucosylated proteins could be identified in their cell wall by SDS-extraction or β-1,3-glucanase digestion. At later stages of regeneration, β-1,3-glucosylated proteins were also found. Hence, incorporation of proteins into the cell wall is accompanied by extracellular coupling to β-1,6-/β-l,3-glucan. The SDS-extractable glucosylated proteins probably represent degradation products of wall proteins rather than their precursors. Tunicamycin delayed, but did not prevent the formation of β-1,6-glucosylated proteins, demonstrating that β-1,6-glucan is not attached to N -glycosidic side-chains of wall proteins.  相似文献   

16.
A method for isolation of RNA from Pneumocystis carinii   总被引:1,自引:0,他引:1  
Total RNA from Pneumocystis carinii obtained directly from the rat lung and from short term culture on A549 cells was evaluated for size and purity. An isolation procedure using guanidine isothiocyanate and lithium chloride was preferable to a hot phenol method. Host cells were eliminated by hypotonic lysis and a series of microfiltrations. Pneumocystis carinii were pretreated with Zymolyase for increased susceptibility to chaotropic agents. The major ribosomal species of P. carinii RNA migrated similarly to Saccharomyces cerevisiae rRNA. The 28s-like species migrated well ahead of rat and A549 cell rRNA and well behind the prokaryotic large rRNA species.  相似文献   

17.
The polysaccharidic effect of a purified 1,3- β -glucanase, a purified β -glucosidase, and of partially purified endo-1,3- β -glucanase from autolysed Penicillium oxalicum cultures on cell wall isolate fractions from the same fungus were studied.
Fractionation of 5-day-old cell wall gave rise to a series of fractions that were identified using infrared spectrophotometry. The fractions used were: F1, an α -glucan; F3, a β -glucan; F4, a chitin-glucan; and F4b, a β -glucan. The fractions were incubated with each of the enzymes and with a mixture of equal parts of the three enzymes and the products of the enzymatic hydrolysis were analyzed after 96 h incubation.
The enzymes were found to degrade fraction F4b ( β -glucan); the greatest degree of hydrolysis was reached when the three enzymes were used together, suggesting the need for synergic action by these enzymes in the cell wall degradation process.  相似文献   

18.
Abstract The effect of l -sorbose on growth, morphology, cell wall composition and β-glucosidase location has been examined with Trichoderma pseudokoningii . Sorbose-grown cultures exhibited a longer lag phase, a tendency to more frequent hyphal branching and showed a decreased cell wall content of β-1,3-glucan. In sorbose-containing cultures, a significant higher portion of total β-glucosidase was present in the culture fluid, whereas in sorbose-lacking control cultures the major part of activity was associated with the cell walls. The results support the previous hypothesis (Kubicek, C.P. (1982) Arch. Microbiol. 132, 349–354) that β-1.3-glucan is involved in cell wall binding of β-glucosidase in Trichoderma pseudokoningii .  相似文献   

19.
The fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a systemic granulomatous mycosis prevalent in Latin America. In an effort to elucidate the molecular mechanisms involved in fungus cell wall assembly and morphogenesis, β-1,3-glucanosyltransferase 3 ( Pb Gel3p) is presented here. Pb Gel3p presented functional similarity to the glucan-elongating/glycophospholipid-anchored surface/pH-regulated /essential for pseudohyphal development protein families, which are involved in fungal cell wall biosynthesis and morphogenesis. The full-length cDNA and gene were obtained. Southern blot and in silico analysis suggested that there is one copy of the gene in P. brasiliensis . The recombinant Pb Gel3p was overexpressed in Escherichia coli , and a polyclonal antibody was obtained. The PbGEL3 mRNA, as well as the protein, was detected at the highest level in the mycelium phase. The protein was immunolocalized at the surface in both the mycelium and the yeast phases. We addressed the potential role of Pb Gel3p in cell wall biosynthesis and morphogenesis by assessing its ability to rescue the phenotype of the Saccharomyces cerevisiae gas1 Δ mutant. The results indicated that Pb Gel3p is a cell wall-associated protein that probably works as a β-1,3-glucan elongase capable of mediating fungal cell wall integrity.  相似文献   

20.
Pneumocystis carinii remains an important opportunistic fungal pathogen causing life-threatening pneumonia in patients with AIDS and malignancy. Currently, little is known about how the organism adapts to environmental stresses and maintains its cellular integrity. We recently discovered an open reading frame approximately 600 bp downstream of the region coding GSC-1, a gene mediating β-glucan cell wall synthesis in P. carinii. The predicted amino acid sequence of this new gene, termed P. carinii PHR1, exhibited 38% homology to Saccharomyces cerevisiae GAS1, a glycosylphosphatidylinositol-anchored protein essential to maintaining cell wall integrity, and 37% homology to Candida albicans PHR1/PHR2, pH-responsive genes encoding proteins recently implicated in cross-linking β-1,3- and β-1,6-glucans. In view of its homology to these related fungal genes, the pH-dependent expression of P. carinii PHR1 was examined. As in C. albicans, P. carinii PHR1 expression was repressed under acidic conditions but induced at neutral and more alkaline pH. PHR1-related proteins have been implicated in glucan cell wall stability under various environmental conditions. Although difficulties with P. carinii culture and transformation have traditionally limited assessment of gene function in the organism itself, we have successfully used heterologous expression of P. carinii genes in related fungi to address functional correlates of P. carinii-encoded proteins. Therefore, the potential role of P. carinii PHR1 in cell wall integrity was examined by assessing its ability to rescue an S. cerevisiae gas1 mutant with absent endogenous Phr1p-like activity. Interestingly, P. carinii PHR1 DNA successfully restored proliferation of S. cerevisiae gas1 mutants under lethal conditions of cell wall stress. These results indicate that P. carinii PHR1 encodes a protein responsive to environmental pH and capable of mediating fungal cell wall integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号