首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We found a novel cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. G-825-6. The enzyme was expressed in the culture broth by recombinant Bacillus subtilis KN2 and was purified and characterized. The enzyme named CGTase825-6 showed 95% amino acid sequence identity with a known enzyme β-/γ-CGTase from Bacillus firmus/lentus 290-3. However, the product specificity of CGTase825-6 differed from that of β-/γ-CGTase. CGTase825-6 produced γ-cyclodextrin (CD) as the main product, but degradation of γ-CD was observed with prolonged reaction. The product specificity of the enzyme was positioned between γ-CGTase produced by Bacillus clarkii 7364 and B. firmus/lentus 290-3 β-/γ-CGTase. It showed that the difference of product specificity was dependent on only 28 amino acid residues in 671 residues in CGTase825-6. We compared the amino acid sequence of CGTase825-6 and those of other CGTases and constructed a protein structure model of CGTase825-6. The comparison suggested that the diminished loop (Val138-Asp142) should provide subsite -8 for γ-CD production and that Asp142 might have an important role in product specificity. CGTase825-6 should be a useful tool to produce γ-CD and to study the differences of producing mechanisms between γ-CD and β-CD.  相似文献   

2.
Summary The cyclomaltodextrin glucanotransferase (CGTase, E.C. 2.4.1.19) gene from an alkalophilic Bacillus circulans var. alkalophilus ATCC21783 was cloned into Escherichia coli and B. subtilis. When cloned from E. coli to B. subtilis, the entire insert containing the CGTase gene was, depending on the plasmid construction, either unstable or the recombinant B. subtilis did not secrete the enzyme in significant amounts. To achieve efficient enzyme production in B. subtilis, the gene was placed under the control of the B. amyloliquefaciens -amylase promoter. In one of the constructions, both the promoter and the signal sequence of the gene were replaced with those of B. amyloliquefaciens, whereas in another construction only the promoter area was exchanged. The recombinant B. subtilis clones transformed with these plasmid constructions secreted CGTase into the culture medium 14 times as much as did the parental strain in shake flask cultures. In fermentor cultures in an industrially feasible medium the enzyme production was substantially higher, yielding 1.2 g/l of CGTase, which is about 33 times the amount of the enzyme produced by the parental strain in corresponding fermentations. Both of the plasmid constructions were stable when grown over 50 generations without antibiotic selection.  相似文献   

3.
This study aimed to improve the yield of cyclodextrins (CDs) production in repetitive batches. An innovative ultrafiltration system was used to remove the inhibitory products that accumulated in the medium and to recover the enzyme. The assays were performed with the CGTase from Bacillus firmus strain 37 in purified, semi-purified, and crude extract forms. Maltodextrin (10 % w/v) and corn starch (5 % w/v) were used as substrates. After eight repetitive 24-h batches, the yield of β-CD obtained with the purified enzyme and the corn starch substrate was 0.54 mmol/L/h, which was 36 % greater than that observed with the 10 % maltodextrin substrate. The crude CGTase extract with the corn starch substrate showed a productivity of 0.38 mmol/L/h, which was 29 % lower than using the purified enzyme and the corn starch substrate but 7 % higher than using the purified enzyme and the maltodextrin substrate. The crude extract, assayed with the corn starch substrate in the presence of 10 % ethanol reached 0.43 mmol/L/h productivity, which was 12 % higher compared to the assay without ethanol. The semi-purified enzyme was assayed with the corn starch substrate in the presence of 10 % ethanol for eight batches lasting 12 h and an excellent selectivity for the β-CD was obtained, reaching a mean percentage of 96.0 %. Therefore, this ultrafiltration system enabled several batches of CD production, with efficient removal of products inhibitory to the CGTase and recovery of the enzyme. The possibility of industrial application of this system is promising.  相似文献   

4.
Summary The effect of PEG and other polyols additives on cyclodextrins (CDs) production by Bacillus macerons cyclomaltodextrin-glycosyl-transferase (CGTase) was investigated. Mannitol, glycerol and PEG-200 (20%,v/v) enhanced the enzymatic production yield regardless of substrate concentration. Furthermore, the PEG-200 addition increased the thermostability of the CGTase.  相似文献   

5.
Based on the analysis of amino acid sequence and simulated structure, saturation mutagenesis was performed to explore the role of the site p176 of cyclodextrin glucosytransferase (CGTase) from Bacillus sp. Y112. Compared to the wild-type, mutant P176G showed 10.4 % improvement in conversion from starch to cyclodextrins (CDs), whose β-CD yield increased by 6% and α-CD yield decreased by 8%. Mutants P176L and P176I were increased by 7.9 % and 9.4 % on CDs production, indicating replacement of hydrophobic amino acids significantly improved in cyclization activity. Kinetics studies indicated the substrate affinity of P176G and P176K were increase by 13 % and 14 %, and the catalytic efficiency of P176K was increase by 14 %. In addition, the optimal temperature of mutants transformed from 50℃ to 40℃ and the optimal pH shifted from 10.0 to 8.0. These results indicate that the site P176 plays a critical role in catalytic activity, product specificity and enzymatic properties of CGTase.  相似文献   

6.
Shi X  Feng M  Zhao Y  Guo X  Zhou P 《Biotechnology letters》2008,30(1):181-186
A recombinant Bacillus subtilis strain (KN25) was generated for the large-scale preparation of catalase. The B. subtilis katA gene encoding for catalase was cloned into the shuttle vector PRB374, downstream of the constitutively active vegII promoter, followed by transformation of the B. subtilis strain WB600 with the plasmid. The transformant strain, KN25 secretes high levels (3,500 U/ml) of catalase, which facilitates its purification. Three simple purification steps yielded nearly homogeneous catalase, with ∼70% recovery. The purified recombinant catalase has a specific activity of 34,600 U/mg under optimal conditions, and is more resistant to acidic conditions than bovine liver catalase.  相似文献   

7.
Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. This problem cannot be solved by supplementing biotin to the culture medium, as this will saturate the biotin binding sites in streptavidin. We addressed this dilemma by engineering a B. subtilis strain (WB800BIO) which overproduces intracellular biotin. The strategy involves replacing the natural regulatory region of the B. subtilis chromosomal biotin biosynthetic operon (bioWAFDBIorf2) with an engineered one consisting of the B. subtilis groE promoter and gluconate operator. Biotin production in WB800BIO is induced by gluconate, and the level of biotin produced can be adjusted by varying the gluconate dosage. A level of gluconate was selected to allow enhanced intracellular production of biotin without getting it released into the culture medium. WB800BIO, when used as a host for streptavidin production, grows healthily in a biotin-limited medium and produces large amounts (35 to 50 mg/liter) of streptavidin, with over 80% of its biotin binding sites available for future applications.  相似文献   

8.
Aims: To optimize the transformation conditions and improve the transformation efficiency of Bacillus subtilis WB800 and DB104. Methods and Results: Trehalose, which could decrease the damage of electric shock to the cells, was added to the electroporation medium containing sorbitol and mannitol. The factors affecting the transformation efficiency, such as the growth phase of bacteria, cell concentration, electric field strength and plasmid variety, were examined and improved. The new method increased the transformation efficiency of B. subtilis by nearly 100‐fold compared with the conventional one. Conclusions: With the optimized method, the transformation efficiency came up to 3·64 × 105 transformants μg?1 DNA for WB800, and 2·10 × 105 transformants μg?1 DNA for DB104. Significance and Impact of the Study: This improvement in transformation efficiency will be largely attributed to the research of expression of exogenous genes in B. subtilis, gene library construction for directed evolution and transformation of wild‐type B. subtilis strains.  相似文献   

9.
《Process Biochemistry》2007,42(10):1384-1390
A new CGTase was obtained from Bacillus firmus, strain 7B, isolated from oat soil culture, using a high alkaline pH medium containing 1% Na2CO3. The enzyme was characterized in soluble form, for pH 5–11, temperature from 30 to 85 °C, using a 1% maltodextrin substrate solution and appropriate buffers. It produced mainly β-CD and the cell-free supernatant had a precipitating activity measured by the trichloroethylene method that is a 100-fold greater than that of the enzyme of Bacillus firmus, strain 37, previously studied by our group. The molecular weight of the pure protein was measured as 56,230 Da with SDS-PAGE. The optimum temperature for the enzyme activity was 50 °C and it was most active at pH 6.0. Thermal deactivation was noticeable above 65 °C and the enzyme was highly stable below 60 °C. The influence of substrate or product concentration on the initial rate of CD production was studied and the kinetic parameters were determined. The enzyme showed cyclization activity on different raw and hydrolyzed starches and hydrolyzed cornstarch gave the highest activity.  相似文献   

10.

Background  

The extracellular enzyme cyclodextrin glucanotransferase (CGTase) synthesizes cyclic malto-oligosaccharides called cyclodextrins (CDs) from starch and related α-1,4-glucans. CGTases are produced by a variety of bacteria, mainly Bacillus species, by submerged culture in complex medium. CGTases differ in the amount and types of CDs produced. In addition, CGTase production is highly dependent on the strain, medium composition and culture conditions. Therefore we undertook this study with a newly isolated strain of Bacillus circulans.  相似文献   

11.
As a plant-derived pentacyclic triterpenoid, β-amyrin has been heterogeneously synthesized in Saccharomyces cerevisiae. However, β-amyrin is intracellularly produced in a lower gram scale using recombinant S. cerevisiae, which limits the industrial applications. Although many strategies have been proven to be effective to improve the production of β-amyrin, the intracellularly accumulation is still a challenge in reaching higher titer and simplifying the extraction process. To solve this problem, the amphiphilic β-cyclodextrin (β-CD) has been previously employed to aid the efflux of β-amyrin out of the cells. Nevertheless, the supplemented β-CD in the medium is not consistent with β-amyrin synthesis and has the disadvantage of rather high cost. Therefore, an aided-efflux system based on in situ synthesis of β-CD was developed in this study to enhance the biosynthesis of β-amyrin and its efflux. The in situ synthesis of β-CD was started from starch by the surface displayed cyclodextrin glycosyltransferase (CGTase) on yeast cells. As a result, the synthesized β-CD could capture 16% of the intracellular β-amyrin and improve the total production by 77%. Furthermore, more strategies including inducing system remodeling, precursor supply enhancement, two-phase fermentation and lipid synthesis regulation were employed. Finally, the production of β-amyrin was increased to 73 mg/L in shake flask, 31 folds higher than the original strain, containing 31 mg/L of extracellular β-amyrin. Overall, this work provides novel strategies for the aided-efflux of natural products with high hydrophobicity in engineered S. cerevisiae.  相似文献   

12.
To develop an ideal blood clot imaging and targeting agent, a single-chain antibody (SCA) fragment based on a fibrin-specific monoclonal antibody, MH-1, was constructed and produced via secretion from Bacillus subtilis. Through a systematic study involving a series of B. subtilis strains, insufficient intracellular and extracytoplasmic molecular chaperones and high sensitivity to wall-bound protease (WprA) were believed to be the major factors that lead to poor production of MH-1 SCA. Intracellular and extracytoplasmic molecular chaperones apparently act in a sequential manner. The combination of enhanced coproduction of both molecular chaperones and wprA inactivation leads to the development of an engineered B. subtilis strain, WB800HM[pEPP]. This strain allows secretory production of MH-1 SCA at a level of 10 to 15 mg/liter. In contrast, with WB700N (a seven-extracellular-protease-deficient strain) as the host, no MH-1 SCA could be detected in both secreted and cellular fractions. Secreted MH-1 SCA from WB800HM[pMH1, pEPP] could be affinity purified using a protein L matrix. It retains comparable affinity and specificity as the parental MH-1 monoclonal antibody. This expression system can potentially be applied to produce other single-chain antibody fragments, especially those with folding and protease sensitivity problems.  相似文献   

13.
The reaction conditions for γ-CD production by a purified CGTase from Brevibacterium sp. No. 9605 were investigated. The optimum pH and temperature for γ-CD formation were 7.0 and 50°C, respectively. The addition of calcium ion increased heat stability of the CGTase and the CDs formation was affected by the concentration of calcium ion. In the presence of ethanol, the yield of γ-CD from soluble starch was increased.  相似文献   

14.
Trehalose is a nonreducing disaccharide synthesized by trehalose synthase (TreS), which catalyzes the reversible interconversion of maltose and trehalose. We aimed to enhance the catalytic conversion of maltose to trehalose by saturation mutagenesis, and constructed a self-inducible TreS expression system by generating a robust Bacillus subtilis recombinant. We found that the conversion yield and enzymatic activity of TreS was enhanced by saturation mutations, especially by the combination of V407M and K490L mutations. At the same time, these saturation mutations were contributing to reducing by-products in the reaction. Compared to WT TreS, the conversion yield of maltose to trehalose was increased by 11.9%, and the kcat/Km toward trehalose was 1.33 times higher in the reaction catalyzed by treSV407M-K490L. treSV407M-K490L expression was further observed in the recombinant B. subtilis W800N(ΔσF) under the influence of PsrfA, Pcry3Aa, and PsrfA-cry3Aa promoters without an inducer. It was shown that PsrfA-cry3Aa was evidently a stronger promoter for treSV407M-K490L expression, with the intracellular enzymatic activity of recombinant treSV407M-K490L being over 5,800 U/g at 35 hr in TB medium. These results suggested the combination of two mutations, V407M and K490L, was conducive for the production of trehalose. In addition, the self-inducible TreSV407M/K490L mutant in the B. subtilis host provides a low-cost choice for the industrial production of endotoxin-free trehalose with high yields.  相似文献   

15.
Cyclodextrins (CDs) are used in food, pharmaceutical, and chemical industries, as well as agriculture and environmental engineering. Cyclodextrin glucanotransferase (CGTase) is an important industrial extracellular enzyme which is used to produce CDs and oligosaccharides. We previously developed a novel yeast-surface CGTase expression system which was used for the production of CDs from starch. In the present study, we showed that the presence of CDs may increase the ethanol tolerance of microorganisms. The cell numbers of Saccharomyces cerevisiae and Escherichia coli in the presence of β-cyclodextrin and ethanol were 1,000-fold and 10-fold higher than that without CDs. The yeast strain with the immobilized CGTase produced 13 g CDs/l and 1.8 g ethanol/l when it was incubated in yeast medium supplemented with 4% starch. The effect of CDs on microorganisms suggests a potential application for the co-production of CDs and ethanol.  相似文献   

16.
Xylanase B from Paenibacillus barcinonensis was cloned in shuttle vectors for Escherichia coli and Bacillus subtilis, and expressed in Bacillus hosts. Several recombinant strains were constructed, among which B. subtilis MW15/pRBSPOX20 showed the highest production. This recombinant strain consists of a protease double mutant host containing P. barcinonensis xynB gene under the control of a phage SPO2 strong promoter. Maximum production was found when the strain was cultured in nutrient broth supplemented with xylans. Analysis of xylanase B location in B. subtilis MW15/pRBSPOX20 showed that the enzyme remained cell-associated in young cultures, consistent with its intracellular location in its original host, P. barcinonensis, and the lack of a signal peptide. However, when cultures reached the stationary phase, xylanase B was released to the external medium as a result of cell lysis. The amount of enzyme located in the supernatants of old cultures could account for 50% of total xylanase activity. Analysis by SDS–PAGE showed that xylanase B is an abundant protein found in the culture medium in late stationary phase cultures.  相似文献   

17.
Cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacter sp. was covalently immobilized on glutaraldehyde-activated chitosan spheres and used in a packed bed reactor to investigate the continuous production of β-cyclodextrin (β-CD). The optimum temperatures were 75 °C and 85 °C at pH 6.0, respectively for free and immobilized CGTase, and the optimum pH (5.0) was the same for both at 60 °C. In the reactor, the effects of flow rate and substrate concentration in the β-CD production were evaluated. The optimum substrate concentration was 4% (w/v), maximizing the β-CD production (1.32 g/L) in a flow rate of 3 mL/min. In addition, the biocatalyst had good operational stability at 60 °C, maintaining 61% of its initial activity after 100 cycles of batch and 100% after 100 h of continuous use. These results suggest the possibility of using this immobilized biocatalyst in continuous production of CDs.  相似文献   

18.
Small ubiquitin-related modifier (SUMO) technology has been widely used in Escherichia coli expression systems to produce antimicrobial peptides. However, E. coli is a pathogenic bacterium that produces endotoxins and can secrete proteins into the periplasm, forming inclusion bodies. In our work, cathelicidin-BF (CBF), an antimicrobial peptide purified from Bungarus fasciatus venom, was produced in a Bacillus subtilis expression system using SUMO technology. The chimeric genes his-SUMO-CBF and his-SUMO protease 1 were ligated into vector pHT43 and expressed in B. subtilis WB800N. Approximately 22 mg of recombinant fusion protein SUMO-CBF and 1 mg of SUMO protease 1 were purified per liter of culture supernatant. Purified SUMO protease 1 was highly active and cleaved his-SUMO-CBF with an enzyme-to-substrate ratio of 1:40. Following cleavage, recombinant CBF was further purified by affinity and cation exchange chromatography. Peptide yields of ~3 mg/l endotoxin-free CBF were achieved, and the peptide demonstrated antimicrobial activity. This is the first report of the production of an endotoxin-free antimicrobial peptide, CBF, by recombinant DNA technology, as well as the first time purified SUMO protease 1 with high activity has been produced from B. subtilis. This work has expanded the application of SUMO fusion technology and may represent a safe and efficient way to generate peptides and proteins in B. subtilis.  相似文献   

19.
Twenty-two Bacillus cereus strains were screened for phospholipase C (PLC, EC 3.1.4.3) activity using p-nitrophenyl phosphorylcholine as a substrate. Two strains (B. cereus SBUG 318 and SBUG 516) showed high activity at elevated temperatures (>70°C) at acidic pH (pH 3.5–6) and were selected for cloning and functional expression using Bacillus subtilis. The genes were amplified from B. cereus DNA using primers based on a known PLC sequence and cloned into the expression vector pMSE3 followed by transformation into B. subtilis WB800. On the amino acid level, one protein (PLC318) was identical to a PLC described from B. cereus, whereas PLC516 contained an amino acid substitution (E173D). PLC production using the recombinant strains was performed by an acetoin-controlled expression system. For PLC516, 13.7 U g−1 wet cell weight was determined in the culture supernatant after 30 h cultivation time. Three purification steps resulted in pure PLC516 with a specific activity of 13,190 U mg−1 protein.  相似文献   

20.
【目的】从基因水平探究枯草芽孢杆菌渗透压调节因子L-脯氨酸合成途径中glnA、proB、proA基因的功能,通过分子改造实现对代谢途径的人工扰动。【方法】从枯草芽孢杆菌WB600出发,通过向胞内引入一系列基因敲除或过表达,分别构建了proB和proA基因过表达的重组菌WB601和WB602、glnA基因缺失的重组菌WB603以及在此基础之上过表达proB基因的重组菌WB604。借助菌株胞外和胞内游离脯氨酸积累的表型分析影响途径的关键节点。【结果】在非胁迫条件下,重组菌WB601和WB602胞外脯氨酸含量分别是原始菌的2.21倍和2.82倍,单位细胞胞外脯氨酸得率分别是原始菌的4.09倍和9.80倍,胞内游离脯氨酸含量分别是原始菌的1.91倍和3.34倍;重组菌WB603胞外脯氨酸含量上升至1221.43 mg/L,是原始菌的6.28倍,单位细胞胞外和胞内游离脯氨酸得率分别为原始菌的9.13倍和3.66倍;而重组菌WB604胞外脯氨酸含量最高达1391.65 mg/L,相比菌株WB603,其胞外脯氨酸含量及单位细胞得率分别提高了13.94%和14.10%,且胞内游离脯氨酸含量提高了32.60%。在5%Na Cl胁迫条件下,重组菌WB601和WB602的胞外脯氨酸含量分别是原始菌的1.94倍和1.54倍,单位细胞胞外脯氨酸得率分别是原始菌的2.15倍和2.19倍;重组菌WB603胞外脯氨酸含量及其单位细胞得率分别是原始菌的4.16倍和7.29倍;相同条件下,相比于重组菌WB603,重组菌WB604的胞外脯氨酸含量及其单位细胞得率分别提高了32.61%和5.54%。此外,实验组菌株的胞内游离脯氨酸含量均高于非胁迫时,并达到相对平衡状态。【结论】proB和proA基因的过表达均能显著提升细胞合成脯氨酸的能力,并且能增强细胞的耐盐性;glnA基因的缺失能增强脯氨酸合成途径,提高脯氨酸的积累;两种效应的正向叠加可进一步提升细胞脯氨酸合成能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号