首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Purpose

Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations.

Methods

We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error.

Results

Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman''s rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation.

Conclusions

In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.  相似文献   

2.

Background

The segmentation of the cortical interface between grey and white matter in magnetic resonance images (MRI) is highly challenging during the first post-natal year. First, the heterogeneous brain maturation creates important intensity fluctuations across regions. Second, the cortical ribbon is highly folded creating complex shapes. Finally, the low tissue contrast and partial volume effects hamper cortex edge detection in parts of the brain.

Methods and Findings

We present an atlas-free method for segmenting the grey-white matter interface of infant brains in T2-weighted (T2w) images. We used a broad characterization of tissue using features based not only on local contrast but also on geometric properties. Furthermore, inaccuracies in localization were reduced by the convergence of two evolving surfaces located on each side of the inner cortical surface. Our method has been applied to eleven brains of one- to four-month-old infants. Both quantitative validations against manual segmentations and sulcal landmarks demonstrated good performance for infants younger than two months old. Inaccuracies in surface reconstruction increased with age in specific brain regions where the tissue contrast decreased with maturation, such as in the central region.

Conclusions

We presented a new segmentation method which achieved good to very good performance at the grey-white matter interface depending on the infant age. This method should reduce manual intervention and could be applied to pathological brains since it does not require any brain atlas.  相似文献   

3.

Introduction

The reproducibility of tractography is important to determine its sensitivity to pathological abnormalities. The reproducibility of tract morphology has not yet been systematically studied and the recently developed tractography contrast Tract Density Imaging (TDI) has not yet been assessed at the tract specific level.

Materials and Methods

Diffusion tensor imaging (DTI) and probabilistic constrained spherical deconvolution (CSD) tractography are performed twice in 9 healthy subjects. Tractography is based on common space seed and target regions and performed for several major white matter tracts. Tractograms are converted to tract segmentations and inter-session reproducibility of tract morphology is assessed using Dice similarity coefficient (DSC). The coefficient of variation (COV) and intraclass correlation coefficient (ICC) are calculated of the following tract metrics: fractional anisotropy (FA), apparent diffusion coefficient (ADC), volume, and TDI. Analyses are performed both for proximal (deep white matter) and extended (including subcortical white matter) tract segmentations.

Results

Proximal DSC values were 0.70–0.92. DSC values were 5–10% lower in extended compared to proximal segmentations. COV/ICC values of FA, ADC, volume and TDI were 1–4%/0.65–0.94, 2–4%/0.62–0.94, 3–22%/0.53–0.96 and 8–31%/0.48–0.70, respectively, with the lower COV and higher ICC values found in the proximal segmentations.

Conclusion

For all investigated metrics, reproducibility depended on the segmented tract. FA and ADC had relatively low COV and relatively high ICC, indicating clinical potential. Volume had higher COV but its moderate to high ICC values in most tracts still suggest subject-differentiating power. Tract TDI had high COV and relatively low ICC, which reflects unfavorable reproducibility.  相似文献   

4.

Objective

To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord.

Materials and Methods

A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects’ images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map.

Results

Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction.

Conclusion

A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template.  相似文献   

5.

Purpose

Semi-automated diffusion tensor imaging (DTI) analysis of white matter (WM) microstructure offers a clinically feasible technique to assess neonatal brain development and provide early prognosis, but is limited by variable methods and insufficient evidence regarding optimal parameters. The purpose of this research was to investigate the influence of threshold values on semi-automated, atlas-based brain segmentation in very-low-birth-weight (VLBW) preterm infants at near-term age.

Materials and Methods

DTI scans were analyzed from 45 VLBW preterm neonates at near-term-age with no brain abnormalities evident on MRI. Brain regions were selected with a neonatal brain atlas and threshold values: trace <0.006 mm2/s, fractional anisotropy (FA)>0.15, FA>0.20, and FA>0.25. Relative regional volumes, FA, axial diffusivity (AD), and radial diffusivity (RD) were compared for twelve WM regions.

Results

Near-term brain regions demonstrated differential effects from segmentation with the three FA thresholds. Regional DTI values and volumes selected in the PLIC, CereP, and RLC varied the least with the application of different FA thresholds. Overall, application of higher FA thresholds significantly reduced brain region volume selected, increased variability, and resulted in higher FA and lower RD values. The lower threshold FA>0.15 selected 78±21% of original volumes segmented by the atlas, compared to 38±12% using threshold FA>0.25.

Conclusion

Results indicate substantial and differential effects of atlas-based DTI threshold parameters on regional volume and diffusion scalars. A lower, more inclusive FA threshold than typically applied for adults is suggested for consistent analysis of WM regions in neonates.  相似文献   

6.

Introduction

Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies.

Methods

High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA), 2/using the maximum probability atlas (MP), and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF). Evaluation was performed on the five remaining rats which additionally underwent [18F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index) and functional performance (evaluated by comparing extracted PET measures).

Results

Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA). PET regional measures were more accurate with multi-atlas methods than with SA method.

Conclusions

Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure’s extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses.  相似文献   

7.

Background

Higher levels of fitness or physical function are positively associated with cognitive outcomes but the potential underlying mechanisms via brain structure are still to be elucidated in detail. We examined associations between brain structure and physical function (contemporaneous and change over the previous three years) in community-dwelling older adults.

Methodology/Principal Findings

Participants from the Lothian Birth Cohort 1936 (N=694) underwent brain MRI at age 73 years to assess intracranial volume, and the volumes of total brain tissue, ventricles, grey matter, normal-appearing white matter, and white matter lesions. At ages 70 and 73, physical function was assessed by 6-meter walk, grip strength, and forced expiratory volume. A summary ‘physical function factor’ was derived from the individual measures using principal components analysis. Performance on each individual physical function measure declined across the three year interval (p<0.001). Higher level of physical function at ages 70 and 73 was associated with larger total brain tissue and white matter volumes, and smaller ventricular and white matter lesion volumes (standardized β ranged in magnitude from 0.07 to 0.17, p<0.001 to 0.034). Decline in physical function from age 70 to 73 was associated with smaller white matter volume (0.08, p<0.01, though not after correction for multiple testing), but not with any other brain volumetric measurements.

Conclusions/Significance

Physical function was related to brain volumes in community-dwelling older adults: declining physical function was associated with less white matter tissue. Further study is required to explore the detailed mechanisms through which physical function might influence brain structure, and vice versa.  相似文献   

8.

Rationale

Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are unknown. We hypothesized that antenatal glucocorticoids would modulate inflammation in the brain and prevent hippocampal and white matter injury after intra-amniotic lipopolysaccharide (LPS) exposure.

Methods

Time-mated ewes received saline (control), an intra-amniotic injection of 10 mg LPS at 106d GA or 113d GA, maternal intra-muscular betamethasone (0.5 mg/kg maternal weight) alone at 113d GA, betamethasone at 106d GA before LPS or betamethasone at 113d GA after LPS. Animals were delivered at 120d GA (term=150d). Brain structure volumes were measured on T2-weighted MRI images. The subcortical white matter (SCWM), periventricular white matter (PVWM) and hippocampus were analyzed for microglia, astrocytes, apoptosis, proliferation, myelin and pre-synaptic vesicles.

Results

LPS and/or betamethasone exposure at different time-points during gestation did not alter brain structure volumes on MRI. Betamethasone alone did not alter any of the measurements. Intra-amniotic LPS at 106d or 113d GA induced inflammation as indicated by increased microglial and astrocyte recruitment which was paralleled by increased apoptosis and hypomyelination in the SCWM and decreased synaptophysin density in the hippocampus. Betamethasone before the LPS exposure at 113d GA prevented microglial activation and the decrease in synaptophysin. Betamethasone after LPS exposure increased microglial infiltration and apoptosis.

Conclusion

Intra-uterine LPS exposure for 7d or 14d before delivery induced inflammation and injury in the fetal white matter and hippocampus. Antenatal glucocorticoids aggravated the inflammatory changes in the brain caused by pre-existing intra-amniotic inflammation. Antenatal glucocorticoids prior to LPS reduced the effects of intra-uterine inflammation on the brain. The timing of glucocorticoid administration in the setting of chorioamnionitis can alter outcomes for the fetal brain.  相似文献   

9.

Purpose

To overcome the severe intensity inhomogeneity and blurry boundaries in HIFU (High Intensity Focused Ultrasound) ultrasound images, an accurate and efficient multi-scale and shape constrained localized region-based active contour model (MSLCV), was developed to accurately and efficiently segment the target region in HIFU ultrasound images of uterine fibroids.

Methods

We incorporated a new shape constraint into the localized region-based active contour, which constrained the active contour to obtain the desired, accurate segmentation, avoiding boundary leakage and excessive contraction. Localized region-based active contour modeling is suitable for ultrasound images, but it still cannot acquire satisfactory segmentation for HIFU ultrasound images of uterine fibroids. We improved the localized region-based active contour model by incorporating a shape constraint into region-based level set framework to increase segmentation accuracy. Some improvement measures were proposed to overcome the sensitivity of initialization, and a multi-scale segmentation method was proposed to improve segmentation efficiency. We also designed an adaptive localizing radius size selection function to acquire better segmentation results.

Results

Experimental results demonstrated that the MSLCV model was significantly more accurate and efficient than conventional methods. The MSLCV model has been quantitatively validated via experiments, obtaining an average of 0.94 for the DSC (Dice similarity coefficient) and 25.16 for the MSSD (mean sum of square distance). Moreover, by using the multi-scale segmentation method, the MSLCV model’s average segmentation time was decreased to approximately 1/8 that of the localized region-based active contour model (the LCV model).

Conclusions

An accurate and efficient multi-scale and shape constrained localized region-based active contour model was designed for the semi-automatic segmentation of uterine fibroid ultrasound (UFUS) images in HIFU therapy. Compared with other methods, it provided more accurate and more efficient segmentation results that are very close to those obtained from manual segmentation by a specialist.  相似文献   

10.

Purpose

This study was aimed to experimentally and numerically investigate the feasibility of measuring cerebral white matter perfusion using pseudocontinuous arterial spin labeling (PCASL) 3T magnetic resonance imaging (MRI) at a relatively fine resolution to mitigate partial volume effect from gray matter.

Materials and Methods

The Institutional Research Ethics Committee approved this study. On a clinical 3T MR system, ten healthy volunteers (5 females, 5 males, age = 28±3 years) were scanned after providing written informed consent. PCASL imaging was performed with varied combinations of labeling duration (τ = 1000, 1500, 2000, and 2500 ms) and post-labeling delay (PLD = 1000, 1400, 1800, and 2200 ms), at a spatial resolution (1.56x1.56x5 mm3) finer than commonly used (3.5x3.5 mm2, 5-8 mm in thickness). Computer simulations were performed to calculate the achievable perfusion-weighted signal-to-noise ratio at varied τ, PLD, and transit delay.

Results

Based on experimental and numerical data, the optimal τ and PLD were found to be 2000 ms and 1500-1800 ms, respectively, yielding adequate SNR (~2) to support perfusion measurement in the majority (~60%) of white matter. The measurement variability was about 9% in a one-week interval. The measured white matter perfusion and perfusion ratio of gray matter to white matter were 15.8-27.5 ml/100ml/min and 1.8-4.0, respectively, depending on spatial resolution as well as the amount of deep white matter included.

Conclusion

PCASL 3T MRI is able to measure perfusion in the majority of cerebral white matter at an adequate signal-to-noise ratio by using appropriate tagging duration and post-labeling delay. Although pixel-wise comparison may not be possible, region-of-interest based flow quantification is feasible.  相似文献   

11.

Background

The precise assessment of cerebral saturation changes during an inflammatory injury in the developing brain, such as seen in periventricular leukomalacia, is not well defined. This study investigated the impact of inflammation on locoregional cerebral oxygen saturation in a newborn rodent model using photoacoustic imaging.

Methods

1 mg/kg of lipopolysaccharide(LPS) diluted in saline or saline alone was injected under ultrasound guidance directly in the corpus callosum of P3 rat pups. Coronal photoacoustic images were carried out 24 h after LPS exposure. Locoregional oxygen saturation (SO2) and resting state connectivity were assessed in the cortex and the corpus callosum. Microvasculature was then evaluated on cryosection slices by lectin histochemistry.

Results

Significant reduction of SO2 was found in the corpus callosum; reduced SO2 was also found in the cortex ipsilateral to the injection site. Seed-based functional connectivity analysis showed that bilateral connectivity was not affected by LPS exposure. Changes in locoregional oxygen saturation were accompanied by a significant reduction in the average length of microvessels in the left cortex but no differences were observed in the corpus callosum.

Conclusion

Inflammation in the developing brain induces marked reduction of locoregional oxygen saturation, predominantly in the white matter not explained by microvascular degeneration. The ability to examine regional saturation offers a new way to monitor injury and understand physiological disturbance non-invasively.  相似文献   

12.

Objectives

Postoperative cognitive dysfunction (POCD) is recognized as a complication in the elderly after cardiac surgery. Imaging of the brain provides evidence of neurodegeneration in elderly patients; however, abnormalities in brain structure and their relation to POCD are uncertain. This pilot study investigated whether loss of gray matter in the bilateral medial temporal lobe (MTL), seen in preoperative MRI, was associated with POCD.

Methods

Data were collected prospectively on 28 elderly patients scheduled for elective cardiac surgery. MRI of the brains of all patients were assessed for prior cerebral infarctions, and carotid and intracranial arterial stenosis. Patients also completed six neuropsychological tests of memory, attention and executive function before and after surgery. POCD was defined as an individual decrease in more than two tests of at least 1 standard deviation from the group baseline mean for that test. The degree of gray matter loss in the MTL of each patient was calculated using voxel-based morphometry with three-dimensional, T1-weighted MRI. This represented the degree of gray matter change as a Z score.

Results

Postoperative cognitive dysfunction was identified in 8 of the 28 patients (29%). Patients with POCD had significantly more white matter lesions on MRI, and greater loss of gray matter in the bilateral MTL (average Z score 2.0±0.9) than patients without POCD. An analysis by stepwise logistic regression identified gray matter loss in the MTL and cerebral infarctions on MRI as independent predictors of POCD.

Conclusions

These preliminary findings suggested that reduced gray matter in the bilateral MTL and white matter lesions existed in brains of elderly cardiac surgery patients who experienced POCD. Additional studies with larger sample sizes are needed to confirm these findings.  相似文献   

13.

Background & Objectives

It is well known that cognitive impairment in patients with chronic kidney disease (CKD) is characterized by executive dysfunction, rather than memory dysfunction, although the precise mechanism of this remains to be elucidated. The purpose of the present study is to examine the correlation between gray matter volume (GMV) and executive function in CKD patients.

Design, Setting, Participants, Measurements

This cross-sectional study recruited 95 patients with non-dialysis-dependent CKD (NDD-CKD) with no history of cerebrovascular disease, who underwent brain magnetic resonance imaging (MRI) and Trail Making Test (TMT) in the VCOHP Study. The subjects underwent brain MRI and TMT part A (TMT-A) and part B (TMT-B). The segmentation algorithm from Statistical Parametric Mapping 8 software was applied to every T1-weighted MRI scan to extract tissue maps corresponding to gray matter, white matter, and cerebrospinal fluid. GMV was normalized by dividing by the total intracranial volume, calculated by adding GMV, white matter volume, and cerebrospinal fluid space volume. Then, normalized whole-brain GMV was divided into four categories of brain lobes; frontal, parietal, temporal, and occipital. We assessed the correlation between normalized GMV and TMT using multivariable regression analysis.

Results

Normalized whole-brain GMV was significantly inversely correlated to the scores of TMT-A, TMT-B, and ΔTMT (TMT-B minus TMT-A). These correlations remained significant even after adjusting for relevant confounding factors. Normalized frontal and temporal GMV, but not parietal and occipital GMV, were significantly inversely correlated with TMT-A, TMT-B, and ΔTMT using multivariable regression analysis.

Conclusions

The present study demonstrates the correlation between normalized GMV, especially in the frontal and temporal lobes, and executive function, suggesting that fronto-temporal gray matter atrophy might contribute to executive dysfunction in NDD-CKD.  相似文献   

14.

Objective

To evaluate immediate perineal and neonatal morbidity associated with instrumental rotations performed with Thierry’s spatulas for the management of persistent posterior occiput (OP) positions.

Methods

Retrospective study including all persistent occiput posterior positions with vaginal OP delivery, from August 2006 to September 2007. Occiput anterior deliveries following successful instrumental rotation were included as well. We compared maternal and neonatal immediate outcomes between spontaneous deliveries, rotational and non rotational assisted deliveries, using χ2 and Anova tests.

Results

157 patients were enrolled, comprising 46 OP spontaneous deliveries, 58 assisted OP deliveries and 53 deliveries after rotational procedure. Instrumental rotation failed in 9 cases. Mean age and parity were significantly higher in the spontaneous delivery group, while labor duration was shorter. There were no significant differences in the rate of severe perineal tears and neonatal adverse outcomes between the 3 groups.

Conclusion

Instrumental rotation using Thierry’s spatulas was not associated with a reduced risk of maternal and neonatal morbidity for persistent OP deliveries. Further studies are required to define the true interest of such procedure in modern obstetrics.  相似文献   

15.

Background

Increasing life expectancy necessitates the better understanding of the neurophysiological underpinnings of age-related cognitive changes. The majority of research examining structural-cognitive relationships in aging focuses on the role of age-related changes to grey matter integrity. In the current study, we examined the relationship between age-related changes in white matter and language production. More specifically, we concentrated on word-finding failures, which increase with age.

Methodology/Principal Findings

We used Diffusion tensor MRI (a technique used to image, in vivo, the diffusion of water molecules in brain tissue) to relate white matter integrity to measures of successful and unsuccessful picture naming. Diffusion tensor images were used to calculate Fractional Anisotropy (FA) images. FA is considered to be a measure of white matter organization/integrity. FA images were related to measures of successful picture naming and to word finding failures using voxel-based linear regression analyses. Successful naming rates correlated positively with white matter integrity across a broad range of regions implicated in language production. However, word finding failure rates correlated negatively with a more restricted region in the posterior aspect of superior longitudinal fasciculus.

Conclusions/Significance

The use of DTI-MRI provides evidence for the relationship between age-related white matter changes in specific language regions and word finding failures in old age.  相似文献   

16.

Objective

To identify maternal and antenatal factors associated with stillbirths and neonatal deaths in rural Bangladesh.

Study Design

A prospective cohort study is being conducted to evaluate a maternal and child nutrition program in rural Bangladesh. Cases were all stillbirths and neonatal deaths that occurred in the cohort between March 7, 2011 and December 30, 2011. Verbal autopsies were used to determine cause of death. For each case, four controls were randomly selected from cohort members alive at age 3-months. Multivariable logistic regression was used to identify factors associated with these deaths.

Results

Overall, 112 adverse pregnancy outcomes (44 stillbirths, 19/1,000 births; 68 neonatal deaths, 29/1,000 live births) were reported. Of the stillbirths 25 (56.8%) were fresh. The main causes of neonatal death were birth asphyxia (35%), sepsis (28%) and preterm birth (19%). History of bleeding during pregnancy was the strongest risk factor for stillbirths (adjusted odds ratio 22.4 [95% confidence interval 2.5, 197.5]) and neonatal deaths (adjusted odds ratio 19.6 [95% confidence interval 2.1, 178.8]). Adequate maternal nutrition was associated with decreased risk of neonatal death (adjusted odds ratio 0.4 [95% confidence interval 0.2, 0.8]).

Conclusions

Identifying high-risk pregnancies during gestation and ensuring adequate antenatal and obstetric care needs to be a priority for any community-based maternal and child health program in similar settings.  相似文献   

17.

Background

The Drosophila pupal eye has become a popular paradigm for understanding morphogenesis and tissue patterning. Correct rearrangement of cells between ommatidia is required to organize the ommatidial array across the eye field. This requires cell movement, cell death, changes to cell-cell adhesion, signaling and fate specification.

Methodology

We describe a method to quantitatively assess mis-patterning of the Drosophila pupal eye and objectively calculate a ‘mis-patterning score’ characteristic of a specific genotype. This entails step-by-step scoring of specific traits observed in pupal eyes dissected 40–42 hours after puparium formation and subsequent statistical analysis of this data.

Significance

This method provides an unbiased quantitative score of mis-patterning severity that can be used to compare the impact of different genetic mutations on tissue patterning.  相似文献   

18.

Background and Purpose

Although the spectrum of perinatal white matter injury (WMI) in preterm infants is shifting from cystic encephalomalacia to milder forms of WMI, the factors that contribute to this changing spectrum are unclear. We hypothesized that the variability in WMI quantified by immunohistochemical markers of inflammation could be correlated with the severity of impaired blood oxygen, glucose and lactate.

Methods

We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI. Since there is small but measurable residual brain blood flow during occlusion, we sought to determine if the metabolic state of the residual arterial blood was associated with severity of WMI. Near the conclusion of hypoxia-ischemia, we recorded cephalic arterial blood pressure, blood oxygen, glucose and lactate levels. To define the spectrum of WMI, an ordinal WMI rating scale was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microgliosis derived from the entire white matter.

Results

A spectrum of WMI was observed that ranged from diffuse non-necrotic lesions to more severe injury that comprised discrete foci of microscopic or macroscopic necrosis. Residual arterial pressure, oxygen content and blood glucose displayed a significant inverse association with WMI and lactate concentrations were directly related. Elevated glucose levels were the most significantly associated with less severe WMI.

Conclusions

Our results suggest that under conditions of hypoxemia and severe cephalic hypotension, WMI severity measured using unbiased immunohistochemical measurements correlated with several physiologic parameters, including glucose, which may be a useful marker of fetal response to hypoxia or provide protection against energy failure and more severe WMI.  相似文献   

19.

Background

Neonatal intermittent hyperoxia-hypoxia (IHH) is involved in the pathogenesis of retinopathy of prematurity. Whether similar oxygen fluctuations will create pathological changes in the grey and white matter of the brain is unknown.

Methods

From birth until postnatal day 14 (P14), two litters (total n = 22) were reared in IHH: hyperoxia (50% O2) interrupted by three consecutive two-minute episodes of hypoxia (12% O2) every sixth hour. Controls (n = 8) were reared in room-air (20.9% O2). Longitudinal MRI (Diffusion Tensor Imaging and T2-mapping) was performed on P14 and P28 and retinal and brain tissue were examined for histopathological changes. Long-term neurodevelopment was assessed on P20 and P27.

Results

Mean, radial and axial diffusivity were higher in white matter of IHH versus controls at P14 (p < 0.04), while fractional anisotropy (FA) was lower in the hippocampal fimbria and tended to be lower in corpus callosum (p = 0.08) and external capsule (p = 0.05). White matter diffusivity in IHH was similar to controls at P28. Higher cortical vessel density (p = 0.005) was observed at P14. Cortical and thalamic T2-relaxation time and mean diffusivity were higher in the IHH group at P14 (p ≤ 0.03), and albumin leakage was present at P28. Rats in the IHH group ran for a longer time on a Rotarod than the control group (p ≤ 0.005). Pups with lower bodyweight had more severe MRI alterations and albumin leakage.

Conclusion

IHH led to subtle reversible changes in brain white matter diffusivity, grey matter water content and vascular density. However, alterations in blood-brain barrier permeability may point to long-term effects. The changes seen after IHH exposure were more severe in animals with lower bodyweight and future studies should aim at exploring possible interactions between IHH and growth restriction.  相似文献   

20.

Objective

To investigate whether specific domains of musical perception (temporal and melodic domains) predict the word-level reading skills of eight- to ten-year-old children (n = 235) with reading difficulties, normal quotient of intelligence, and no previous exposure to music education classes.

Method

A general-specific solution of the Montreal Battery of Evaluation of Amusia (MBEA), which underlies a musical perception construct and is constituted by three latent factors (the general, temporal, and the melodic domain), was regressed on word-level reading skills (rate of correct isolated words/non-words read per minute).

Results

General and melodic latent domains predicted word-level reading skills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号