首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
实验性2型糖尿病心肌病大鼠模型的建立与评价   总被引:3,自引:1,他引:2  
目的建立和评价2型糖尿病心肌病(DC)大鼠模型,探究高糖脂饮食在模型建立中的作用。方法将雄性Wistar大鼠随机分成正常对照组、高糖脂饮食组和高糖脂负荷小剂量STZ组。高糖高脂膳食诱导11周负荷小剂量链脲佐菌素(STZ)(30 mg/kg)腹腔注射建立DC模型,并观察糖代谢、脂代谢和心功能的变化。结果①大鼠经高糖高脂饲料诱导4周后,与正常对照组相比,胆固醇(TCH)和甘油三酯(TG)均显著增高(P〈0.05),血糖值没有明显变化(P〉0.05)。②大鼠注射30 mg/kg STZ后72 h,血糖水平开始升高,继续以高糖高脂饲料喂养6周后,与正常对照组比较,高糖脂饮食组和高糖脂负荷小剂量STZ组大鼠TG、TCH维持高水平,差异有显著性(P〈0.05);高糖脂负荷小剂量STZ组大鼠血糖值持续高水平,与正常对照组差异有显著性(P〈0.001)。③心功能测量结果显示,高糖脂饮食组大鼠出现温和的心脏功能异常(左心室收缩压降低,左心室舒张末压升高);高糖脂负荷小剂量STZ组大鼠左心室收缩和舒张功能均出现异常(LVSP、每搏输出量、心排量降低,LVEDP、左心室最大舒张速率升高),但以舒张功能异常为主。结论大鼠高糖脂饮食诱导负荷小剂量STZ可建立类似临床症状的2型DC模型,高糖脂饮食在糖脂代谢紊乱和心脏功能损伤过程中有重要作用,结合糖、脂代谢指标和心脏功能指标可以有效简便评价糖尿病心肌病模型。  相似文献   

2.
3.
Epidemiological studies indicate that obesity, insulin resistance, and diabetes are important comorbidities of patients with ischemic heart disease and increase mortality and development of congestive heart failure after myocardial infarction. Although ob/ob and db/db mice are commonly used to study obesity with insulin resistance or diabetes, mutations in the leptin gene or its receptor are rarely the cause of obesity in humans, which is, instead, primarily a consequence of dietary and lifestyle factors. Therefore, we used a murine model of diet-induced obesity to examine the physiological effects of obesity and the inflammatory and healing response of diet-induced obese (DIO) mice after myocardial ischemia-reperfusion injury. DIO mice developed hyperinsulinemia and insulin resistance and hepatic steatosis, with significant ectopic lipid deposition in the heart and cardiac hypertrophy in the absence of significant changes in blood pressure. The mRNA levels of chemokines at 24 h and cytokines at 24 and 72 h of reperfusion were higher in DIO than in lean mice. In granulation tissue at 72 h of reperfusion, macrophage density was significantly increased, whereas neutrophil density was reduced, in DIO mice compared with lean mice. At 7 days of reperfusion, collagen deposition in the scar was significantly reduced and left ventricular (LV) dilation and cardiac hypertrophy were increased, indicative of adverse LV remodeling, in infarcted DIO mice. Characterization of a murine diet-induced model of obesity and insulin resistance that satisfies many aspects commonly observed in human obesity allows detailed examination of the adverse cardiovascular effects of diet-induced obesity at the molecular level.  相似文献   

4.
Mitochondrial dysfunction plays an important role in obesity‐induced cardiac impairment. SIRT3 is a mitochondrial protein associated with increased human life span and metabolism. This study investigated the functional role of SIRT3 in obesity‐induced cardiac dysfunction. Wild‐type (WT) and SIRT3 knockout (KO) mice were fed a normal diet (ND) or high‐fat diet (HFD) for 16 weeks. Body weight, fasting glucose levels, reactive oxygen species (ROS) levels, myocardial capillary density, cardiac function and expression of hypoxia‐inducible factor (HIF)‐1α/‐2α were assessed. HFD resulted in a significant reduction in SIRT3 expression in the heart. Both HFD and SIRT3 KO mice showed increased ROS formation, impaired HIF signalling and reduced capillary density in the heart. HFD induced cardiac hypertrophy and impaired cardiac function. SIRT3 KO mice fed HFD showed greater ROS production and a further reduction in cardiac function compared to SIRT3 KO mice on ND. Thus, the adverse effects of HFD on cardiac function were not attributable to SIRT3 loss alone. However, HFD did not further reduce capillary density in SIRT3 KO hearts, implicating SIRT3 loss in HFD‐induced capillary rarefaction. Our study demonstrates the importance of SIRT3 in preserving heart function and capillary density in the setting of obesity. Thus, SIRT3 may be a potential therapeutic target for obesity‐induced heart failure.  相似文献   

5.
High-fat diets (HFDs) are used frequently to study the development of cardiac dysfunction in animal models of obesity and diabetes. However, impairment in systolic function, often reported as declining ejection fraction, may not consistently occur in a given time frame which could be contributable to a variety of factors within the experimental design. One major factor may be the amounts of saturated and unsaturated fatty acids (FAs) that are present in the diet. To determine whether the FA content and composition were critical determinants in the development of cardiac dysfunction in response to high-fat feeding, we fed adult, male mice Western diet (45% fat, 60% saturated), Surwit diet (60% fat, 90% saturated), milk-fat-based diet (60% fat, 60% saturated) or high-fat Western diet (HFWD, 60% fat, 32% saturated) for 12 weeks. We report that neither the amount of total fat nor the ratio of saturated to unsaturated FAs in the diets differentially affects body weight and adiposity in mice. In addition, no evidence of systolic dysfunction is present after 12 weeks. Interestingly, the HFWD, with equal parts saturated, monounsaturated and polyunsaturated FAs, induces mild cardiac hypertrophy and diastolic dysfunction after 12 weeks, which coincides with elevated serum levels of arachidonic acid. Our results suggest that the dietary FA content and composition may be a primary determinant of diastolic, but not systolic, dysfunction in animal models of diet-induced obesity.  相似文献   

6.
Genetic predisposition and environmental challenges interact to determine individual vulnerability to obesity and type 2 diabetes. We previously established a mouse model of chronic subordination stress-induced hyperphagia, obesity, metabolic like-syndrome and insulin resistance in the presence of a high-fat diet. However, it remains to be established if social stress could also aggravate glucose intolerance in subjects genetically predisposed to develop obesity and type 2 diabetes. To answer this question, we subjected genetically obese mice due to deficiency of the leptin receptor (db/db strain) to chronic subordination stress. Over five weeks, subordination stress in db/db mice led to persistent hyperphagia, hyperglycemia and exacerbated glucose intolerance altogether suggestive of an aggravated disorder when compared to controls. On the contrary, body weight and fat mass were similarly affected in stressed and control mice likely due to the hyperactivity shown by subordinate mice. Stressed db/db mice also showed increased plasma inflammatory markers. Altogether our results suggest that chronic stress can aggravate glucose intolerance but not obesity in genetically predisposed subjects on the basis of a disrupted leptin circuitry.  相似文献   

7.
Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.  相似文献   

8.
《Endocrine practice》2008,14(7):924-932
ObjectiveTo investigate the reasons for the increased risk of cardiovascular events and mortality in individuals with type 2 diabetes mellitus.MethodsFrom January 1990 to March 2008, literature relevant to low-density lipoprotein (LDL) and highdensity lipoprotein (HDL) cholesterol, hemoglobin A1c, acute hyperglycemia, postprandial hyperglycemia, systolic blood pressure, insulin resistance, endothelial dysfunction, microalbuminuria, diabetic cardiomyopathy, left ventricular hypertrophy, function inhibitors of the renin-angiotensin system and sympathetic nervous system, statins, and antiplatelet therapy as related to cardiac events and mortality in type 2 diabetic patients was reviewed.ResultsIncreased numbers of cardiac events and mortality in type 2 diabetes are associated with low HDL and high LDL cholesterol, high hemoglobin A1c, and high systolic blood pressure. Acute hyperglycemia, postprandial hyperglycemia, and possibly use of traditional sulfonylureas also increase incidence of cardiac events and mortality. The presence of microalbuminuria signifies endothelial dysfunction and an increased risk of cardiac events. Hypertension should be treated to goals that are lower in the diabetic patient with multiple therapies, which include suppressors of the renin-angiotensin and sympathetic nervous systems. Decreased improvement in outcomes for the diabetic patient with cardiovascular disease may be accounted for by the failure to treat insulin resistance and ventricular dysfunction. The high incidence of heart failure in the diabetic patient is due to the toxic triad of diabetic cardiomyopathy, left ventricular hypertrophy, and extensive coronary artery disease.ConclusionHigh risk of cardiovascular events, heart failure, and mortality in type 2 diabetes can be lowered with risk factor reduction and therapies that prevent or improve ventricular function. (Endocr Pract. 2008;14:924-932)  相似文献   

9.
Multiple factors of metabolic syndrome have been implicated in the pathogenesis of Alzheimer''s disease (AD), including abdominal obesity, insulin resistance, endocrine dysfunction and dyslipidemia. High fat diet, a common experimental model of obesity and metabolic syndrome, has been shown to accelerate cognitive decline and AD-related neuropathology in animal models. However, sex interacts with the metabolic outcomes of high fat diet and, therefore, may alter neuropathological consequences of dietary manipulations. This study examines the effects of sex and high fat diet on metabolic and AD-related neuropathological outcomes in 3xTg-AD mice. Three month-old male and female 3xTg-AD mice were fed either standard or high fat diets for 4 months. Obesity was observed in all high fat fed mice; however, ectopic fat accumulation, hyperglycemia and hyperinsulinemia were observed only in males. Interestingly, despite the different metabolic outcomes of high fat diet, the neuropathological consequences were similar: both male and female mice maintained under high fat diet exhibited significant worsening in behavioral performance and hippocampal accumulation of β-amyloid protein. Because high fat diet resulted in obesity and increased AD-like pathology in both sexes, these data support a role of obesity-related factors in promoting AD pathogenesis.  相似文献   

10.
The effect of calcium channel blockers (CCBs) on type 2 diabetes is still unclear. The present study was undertaken to examine the efficacy of nifedipine, a dihydropyridine CCB, on obesity, glucose intolerance and vascular endothelial dysfunction in db/db mice (a mouse model of obesity and type 2 diabetes). db/db mice, fed high-fat diet (HFD) were treated with vehicle, nifedipine (10 mg kg(-1) day(-1)) or hydralazine (5 mg kg(-1) day(-1)) for 4 weeks, and the protective effects were compared. Although nifedipine and hydralazine exerted similar blood pressure lowering in db/db mice, neither affected body weight, fat weight, and glucose intolerance of db/db mice. However, nifedipine, but not hydralazine, significantly improved vascular endothelial function in db/db mice, being accompanied by more attenuation of vascular superoxide by nifedipine than hydralazine. These protective effects of nifedipine were attributed to the attenuation of eNOS uncoupling as shown by the prevention of vascular endothelial nitric oxide synthase (eNOS) dimer disruption, and the prevention of dihydrofolate reductase (DHFR) downregulation, the key enzyme responsible for eNOS uncoupling. Moreover, nifedipine, but not hydralazine, significantly prevented the decreases in phosphorylation of vascular akt and eNOS in db/db mice. Our work provided the first evidence that nifedipine prevents vascular endothelial dysfunction, through the inhibition of eNOS uncoupling and the enhancement of eNOS phosphorylation, independently of blood pressure-lowering effect. We propose that nifedipine may be a promising therapeutic agent for cardiovascular complications in type 2 diabetes.  相似文献   

11.
The methionine choline-deficient (MCD) diet results in liver injury similar to human nonalcoholic steatohepatitis (NASH). The aims of this study were to define mechanisms of MCD-induced steatosis in insulin-resistant db/db and insulin-sensitive db/m mice. MCD-fed db/db mice developed more hepatic steatosis and retained more insulin resistance than MCD-fed db/m mice. Both subcutaneous and gonadal fat were reduced by MCD feeding: gonadal fat decreased by 23% in db/db mice and by 90% in db/m mice. Weight loss was attenuated in the db/db mice, being only 13% compared with 35% in MCD-fed db/db and db/m mice, respectively. Both strains had upregulation of hepatic fatty acid transport proteins as well as increased hepatic uptake of [14C]oleic acid: 3-fold in db/m mice (P < 0.001) and 2-fold in db/db mice (P < 0.01) after 4 weeks of MCD feeding. In both murine strains, the MCD diet reduced triglyceride secretion and downregulated genes involved in triglyceride synthesis. Therefore, increased fatty acid uptake and decreased VLDL secretion represent two important mechanisms by which the MCD diet promotes intrahepatic lipid accumulation in this model. Feeding the MCD diet to diabetic rodents broadens the applicability of this model for the study of human NASH.  相似文献   

12.
Insulin resistance in skeletal muscle and heart plays a major role in the development of type 2 diabetes and diabetic heart failure and may be causally associated with altered lipid metabolism. Hormone-sensitive lipase (HSL) is a rate-determining enzyme in the hydrolysis of triglyceride in adipocytes, and HSL-deficient mice have reduced circulating fatty acids and are resistant to diet-induced obesity. To determine the metabolic role of HSL, we examined the changes in tissue-specific insulin action and glucose metabolism in vivo during hyperinsulinemic euglycemic clamps after 3 wk of high-fat or normal chow diet in awake, HSL-deficient (HSL-KO) mice. On normal diet, HSL-KO mice showed a twofold increase in hepatic insulin action but a 40% decrease in insulin-stimulated cardiac glucose uptake compared with wild-type littermates. High-fat feeding caused a similar increase in whole body fat mass in both groups of mice. Insulin-stimulated glucose uptake was reduced by 50-80% in skeletal muscle and heart of wild-type mice after high-fat feeding. In contrast, HSL-KO mice were protected from diet-induced insulin resistance in skeletal muscle and heart, and these effects were associated with reduced intramuscular triglyceride and fatty acyl-CoA levels in the fat-fed HSL-KO mice. Overall, these findings demonstrate the important role of HSL on skeletal muscle, heart, and liver glucose metabolism.  相似文献   

13.
ObjectivesInvestigation of the effect of SGLT2 inhibition by empagliflozin on left ventricular function in a model of diabetic cardiomyopathy.BackgroundSGLT2 inhibition is a new strategy to treat diabetes. In the EMPA-REG Outcome trial empagliflozin treatment reduced cardiovascular and overall mortality in patients with diabetes presumably due to beneficial cardiac effects, leading to reduced heart failure hospitalization. The relevant mechanisms remain currently elusive but might be mediated by a shift in cardiac substrate utilization leading to improved energetic supply to the heart.MethodsWe used db/db mice on high-fat western diet with or without empagliflozin treatment as a model of severe diabetes. Left ventricular function was assessed by pressure catheter with or without dobutamine stress.ResultsTreatment with empagliflozin significantly increased glycosuria, improved glucose metabolism, ameliorated left ventricular diastolic function and reduced mortality of mice. This was associated with reduced cardiac glucose concentrations and decreased calcium/calmodulin-dependent protein kinase (CaMKII) activation with subsequent less phosphorylation of the ryanodine receptor (RyR). No change of cardiac ketone bodies or branched-chain amino acid (BCAA) metabolites in serum was detected nor was cardiac expression of relevant catabolic enzymes for these substrates affected.ConclusionsIn a murine model of severe diabetes empagliflozin-dependent SGLT2 inhibition improved diastolic function and reduced mortality. Improvement of diastolic function was likely mediated by reduced spontaneous diastolic sarcoplasmic reticulum (SR) calcium release but independent of changes in cardiac ketone and BCAA metabolism.  相似文献   

14.
Adiponectin (APN), an adipose-derived adipokine, offers cardioprotective effects although the precise mechanism of action remains unclear. This study was designed to examine the role of APN in high fat diet-induced obesity and cardiac pathology. Adult C57BL/6 wild-type and APN knockout mice were fed a low or high fat diet for 22 weeks. After 40 day feeding, mice were treated with 2 mg/kg rapamycin or vehicle every other day for 42 days on respective fat diet. Cardiomyocyte contractile and Ca2 + transient properties were evaluated. Myocardial function was evaluated using echocardiography. Dual energy X-ray absorptiometry was used to evaluate adiposity. Energy expenditure, metabolic rate and physical activity were monitored using a metabolic cage. Lipid deposition, serum triglyceride, glucose tolerance, markers of autophagy and fatty acid metabolism including LC3, p62, Beclin-1, AMPK, mTOR, fatty acid synthase (FAS) were evaluated. High fat diet intake induced obesity, systemic glucose intolerance, cardiac hypertrophy, dampened metabolic ability, cardiac and intracellular Ca2 + derangements, the effects of which were accentuated by APN knockout. Furthermore, APN deficiency augmented high fat diet-induced upregulation in the autophagy adaptor p62 and the decline in AMPK without affecting high fat diet-induced decrease in LC3II and LC3II-to-LC3I ratio. Neither high fat diet nor APN deficiency altered Beclin-1. Interestingly, rapamycin negated high fat diet-induced/APN-deficiency-accentuated obesity, cardiac hypertrophy and contractile dysfunction as well as AMPK dephosphorylation, mTOR phosphorylation and p62 buildup. Our results collectively revealed that APN deficiency may aggravate high fat diet-induced obesity, metabolic derangement, cardiac hypertrophy and contractile dysfunction possibly through decreased myocardial autophagy.  相似文献   

15.
Recent extensive studies have revealed that molecular hydrogen (H(2)) has great potential for improving oxidative stress-related diseases by inhaling H(2) gas, injecting saline with dissolved H(2), or drinking water with dissolved H(2) (H(2)-water); however, little is known about the dynamic movement of H(2) in a body. First, we show that hepatic glycogen accumulates H(2) after oral administration of H(2)-water, explaining why consumption of even a small amount of H(2) over a short span time efficiently improves various disease models. This finding was supported by an in vitro experiment in which glycogen solution maintained H(2). Next, we examined the benefit of ad libitum drinking H(2)-water to type 2 diabetes using db/db obesity model mice lacking the functional leptin receptor. Drinking H(2)-water reduced hepatic oxidative stress, and significantly alleviated fatty liver in db/db mice as well as high fat-diet-induced fatty liver in wild-type mice. Long-term drinking H(2)-water significantly controlled fat and body weights, despite no increase in consumption of diet and water. Moreover, drinking H(2)-water decreased levels of plasma glucose, insulin, and triglyceride, the effect of which on hyperglycemia was similar to diet restriction. To examine how drinking H(2)-water improves obesity and metabolic parameters at the molecular level, we examined gene-expression profiles, and found enhanced expression of a hepatic hormone, fibroblast growth factor 21 (FGF21), which functions to enhance fatty acid and glucose expenditure. Indeed, H(2) stimulated energy metabolism as measured by oxygen consumption. The present results suggest the potential benefit of H(2) in improving obesity, diabetes, and metabolic syndrome.  相似文献   

16.
Insulin resistance impairs postprandial glucose uptake through glucose transporter type 4 (GLUT4) and is the primary defect preceding type 2 diabetes. We previously generated an insulin-resistant mouse model with human GLUT4 promoter-driven insulin receptor knockout (GIRKO) in the muscle, adipose, and neuronal subpopulations. However, the rate of diabetes in GIRKO mice remained low prior to 6 months of age on normal chow diet (NCD), suggesting that additional factors/mechanisms are responsible for adverse metabolic effects driving the ultimate progression of overt diabetes. In this study, we characterized the metabolic phenotypes of the adult GIRKO mice acutely switched to high-fat diet (HFD) feeding in order to identify additional metabolic challenges required for disease progression. Distinct from other diet-induced obesity (DIO) and genetic models (e.g., db/db mice), GIRKO mice remained leaner on HFD feeding, but developed other cardinal features of insulin resistance syndrome. GIRKO mice rapidly developed hyperglycemia despite compensatory increases in β-cell mass and hyperinsulinemia. Furthermore, GIRKO mice also had impaired oral glucose tolerance and a limited glucose-lowering benefit from exendin-4, suggesting that the blunted incretin effect contributed to hyperglycemia. Secondly, GIRKO mice manifested severe dyslipidemia while on HFD due to elevated hepatic lipid secretion, serum triglyceride concentration, and lipid droplet accumulation in hepatocytes. Thirdly, GIRKO mice on HFD had increased inflammatory cues in the gut, which were associated with the HFD-induced microbiome alterations and increased serum lipopolysaccharide (LPS). In conclusion, our studies identified important gene/diet interactions contributing to diabetes progression, which might be leveraged to develop more efficacious therapies.  相似文献   

17.
Zhang HM  Dang H  Kamat A  Yeh CK  Zhang BX 《PloS one》2012,7(3):e32746
Diabetic nephropathy is a serious complication of longstanding diabetes and its pathogenesis remains unclear. Oxidative stress may play a critical role in the pathogenesis and progression of diabetic nephropathy. Our previous studies have demonstrated that polyunsaturated fatty acids (PUFA) induce peroxynitrite generation in primary human kidney mesangial cells and heat shock protein 90β1 (hsp90β1) is indispensable for the PUFA action. Here we investigated the effects of high fat diet (HFD) on kidney function and structure of db/db mice, a widely used rodent model of type 2 diabetes. Our results indicated that HFD dramatically increased the 24 h-urine output and worsened albuminuria in db/db mice. Discontinuation of HFD reversed the exacerbated albuminuria but not the increased urine output. Prolonged HFD feeding resulted in early death of db/db mice, which was associated with oliguria and anuria. Treatment with the geldanamycin derivative, 17-(dimethylaminoehtylamino)-17-demethoxygeldanamycin (17-DMAG), an hsp90 inhibitor, preserved kidney function, and ameliorated glomerular and tubular damage by HFD. 17-DMAG also significantly extended survival of the animals and protected them from the high mortality associated with renal failure. The benefit effect of 17-DMAG on renal function and structure was associated with a decreased level of kidney nitrotyrosine and a diminished kidney mitochondrial Ca(2+) efflux in HFD-fed db/db mice. These results suggest that hsp90β1 is a potential target for the treatment of nephropathy and renal failure in diabetes.  相似文献   

18.
Low levels of adiponectin, a fat‐derived hormone, are found to be correlated with coronary heart disease, type 2 diabetes, obesity, and insulin resistance. Conversely, high adiponectin levels are predictive of reduced coronary risk in long‐term epidemiologic studies. However, the precise role of adiponectin in cardiomyocyte function is still not clear. This study was designed to examine the role of adiponectin in cardiac contractile function in the db/db model of diabetic obesity. Mechanical properties and intracellular Ca2+ transients were evaluated in cardiomyocytes from lean control and db/db mice with or without adiponectin (10 µg/ml) treatment. Expression and phosphorylation of IRS‐1, Akt, c‐Jun, and c‐Jun N terminal kinase (JNK) as well as markers of endoplasmic reticulum (ER) stress were evaluated using western blotting. Cardiomyocytes from db/db mice exhibited greater cross‐sectional area, depressed peak shortening (PS), and maximal velocity of shortening/re‐lengthening as well as prolonged duration of re‐lengthening. Consistently, myocytes from db/db mice displayed a reduced electrically stimulated rise in intracellular Ca2+ and prolonged intracellular Ca2+ decay, which were abrogated by adiponectin treatment. Ratios between phosphorylated c‐Jun and c‐Jun as well as phosphorylated IRS‐1 and IRS‐1 were increased in db/db mice, the effect of which was attenuated by adiponectin. Levels of the phosphorylated ER stress makers PERK (Thr980), IRE‐1, and eIF2α were significantly elevated in db/db mice compared with lean controls, although the effect was unaffected by adiponectin. Collectively, our data suggest that adiponectin improves cardiomyocyte dysfunction in db/db diabetic obese mice through a mechanism possibly related to c‐Jun and IRS‐1.  相似文献   

19.
The factors underlying cardiovascular risk in patients with diabetes have not been clearly elucidated. Efforts to study this in mice have been hindered because the usual atherogenic diets that contain fat and cholesterol also lead to obesity and insulin resistance. We compared plasma glucose, insulin, and atherosclerotic lesion formation in LDL receptor knockout (Ldlr(-/-)) mice fed diets with varying fat and cholesterol content that induced similar lipoprotein profiles. Ldlr(-/-) mice fed a high-fat diet developed obesity, mild hyperglycemia, hyperinsulinemia, and hypertriglyceridemia. Quantitative and qualitative assessments of atherosclerosis were unchanged in diabetic Ldlr(-/-) mice fed a high-fat diet compared with lean nondiabetic control mice after 20 weeks of diet. Although one group of mice fed diets for 40 weeks had larger lesions at the aortic root, this was associated with a more atherogenic lipoprotein profile. The presence of a human aldose reductase transgene had no effect on atherosclerosis in fat-fed Ldlr(-/-) mice with mild diabetes. Our data suggest that when lipoprotein profiles are similar, addition of fat to a cholesterol-rich diet does not increase atherosclerotic lesion formation in Ldlr(-/-) mice.  相似文献   

20.
目的:探讨烟酰胺核糖(NR)对2型糖尿病小鼠心肌病的治疗作用及其机制。方法:2型糖尿病模型db/db鼠和及其严格对照小鼠db/+小鼠,将小鼠分为Con (db/+)组,DM (db/db)组,DM+NR组。采用超声测小鼠心脏功能,western-blot及免疫组化测SIRT1表达含量,DHE染色、MDA含量和MnSOD活性检测反映氧化应激水平。结果:与对照组相比,db/db小鼠心脏功能显著下降(LVEF:42.3±7.2vs 73.7±10.2, P0.01;LVFS:22.1±4.2vs 42.7±6.9, P0.01),SIRT1表达量显著下调(P0.01)。NR喂养提高SIRT1表达量(P0.01),并有效改善db/db小鼠心脏功能(LVEF:53.1±8.1vs 42.3±7.2, P0.01;LVFS:33.4±6.9vs 22.1±4.2, P0.01)。同时,NR喂养显著降低了db/db小鼠心肌组织的凋亡水平和氧化应激水平(P0.05)。结论:NR有效改善了db/db小鼠的心功能障碍,降低了db/db小鼠的心肌凋亡水平和氧化应激水平,这些作用的发挥可能与NR增加SIRT1的表达量有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号