首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts—which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin—served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta.  相似文献   

2.
The murine neonatal Fc receptor, FcRn, carries out two functions: materno-fetal IgG delivery and maintenance of serum IgG homeostasis. During human pregnancy maternal IgG is transferred across placental syncytiotrophoblasts presumably by the human homolog of FcRn, hFcRn. Trophoblast-derived BeWo cells express hFcRn endogenously and can be considered as a model system to investigate IgG transport in syncytiotrophoblasts. Using a pulse-chase protocol, we here demonstrate that polarized BeWo cells exhibit not only apical to basolateral transcytosis but also apical IgG recycling. Thus, for the first time we demonstrate that epithelial cells can be involved in both materno-fetal IgG transmission and regulation of serum IgG levels. Lowering the temperature from 37 to 16 degrees C reduced, but did not block, IgG recycling and transcytosis. Microtubule-disruption by nocodazole did not influence transcytosis or apical recycling. Disassembly of filamentous actin by cytochalasin D stimulated apical endocytosis and recycling, while transcytosis remained unaffected. In summary, in BeWo cells apically internalized IgG enters both a transcytotic and recycling pathway. While the transcytotic route is temperature-sensitive but independent from microtubules and actin filaments, the apical recycling pathway is temperature-influenced and stimulated by actin disassembly, suggestive for the involvement of distinct endosome subcompartments in transcytosis and recycling.  相似文献   

3.
Uteri taken from 25 bitches at various times during the early stages of pregnancy were studies cytologically to determine how the implantation chamber developed and how fetal-maternal relations were established. On day 13 after the end of estrus, knobs of trophoblastic syncytium formed and became wedged between cells of the uterine luminal epithelium. The syncytium quickly spread along the uterine lumen and into the mouths of the glands, dislodging and surrounding maternal cells. As invasion continued trophoblastic villi, consisting of cores of cytotrophoblast covered by a continuous layer of syncytium, penetrated deeper into the endometrium. The syncytium spread to surround maternal vessels and decidual cells. By day 26 the trophoblast had extended down to the large lacunae. Here syncytial trophoblast covering tips of the villi degenerated, leaving cytotrophoblast exposed to the necrotic zone. These cells possessed characteristics of absorbing cells. Hematomas were formed by focal necrosis of fetal and endometrial tissue at the poles of the implantation sites. Large pools of extravasated blood accumulated and red blood cells were phagocytized by surrounding trophoblastic cells. Therefore, the endotheliochorial relationship in the canine placenta appeared to be established by syncytial trophoblast invading a cellular endometrium. In the necrotic zone and hematomas, cellular trophoblast may have lost its syncytial covering, but elsewhere maternal vessels and decidual cells in the placenta were in direct contact only with syncytial trophoblast.  相似文献   

4.
Binucleate cells are a normal component of the ovine chorionic epithelium, but are usually separated from the fetal-maternal interface by a thin layer of cytoplasm derived from the principal or uni-nucleate cells of the trophoblast. They are distinguished not only by two distinct and separate nuclei, but also by conspicuous membrane-bound cytoplasmic inclusions in the form of haloed droplets. After fetal pituitary stalk section binucleate cells move up to and participate in the formation of the fetal-maternal interface; furthermore they extend clear blunt-ended pseudopodia into the maternal epithelial syncytium. These activities do not appear to be supppressed by fetal infusion of cortisol or ACTH. The apparent motility of binucleate cells, together with the presence of haloed droplets within the maternal epithelial syncytium, suggests that after fetal pituitary stalk section binucleate cells invade the uterine syncytium, lose their limiting membranes and discharge their contents into the syncytial cytoplasm. Large molecules such as ovine placental lactogen may be transported from fetal to maternal tissues by this mechanism.  相似文献   

5.
The syncytium formed by Utricularia is extremely unusual and perhaps unique among angiosperm syncytia. All typical plant syncytia (articulated laticifers, amoeboid tapetum, the nucellar plasmodium of river weeds) are formed only by fusion of sporophytic cells which possess the same genetic material, unlike Utricularia in which the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue and endosperm haustorium (both maternal and paternal genetic material). How is this kind of syncytium formed and organized and is it similar to other plant syncytial structures? We used light and electron microscopy to reconstruct the step-by-step development of the Utricularia syncytia. The syncytia of Utricularia developed through heterotypic cell fusion involving the digestion of the cell wall, and finally, heterokaryotic multinucleate structures were formed, which possessed different-sized nuclei that were not regularly arranged in the cytoplasm. We showed that these syncytia were characterized by hypertrophy of nuclei, abundant endoplasmic reticulum and organelles, and the occurrence of wall ingrowths. All these characters testify to high activity and may confirm the nutritive and transport functions of the syncytium for the developing embryo. In Utricularia, the formation of the syncytium provides an economical way to redistribute cell components and release nutrients from the digested cell walls, which can now be used for the embryo, and finally to create a large surface for the exchange of nutrients between the placenta and endosperm.  相似文献   

6.
During placentation, mammals employ different strategies for nourishing and supporting fetuses. Members of the Bovidae family, consisting of cloven-hoofed ruminants, utilize multiple maternal attachment points on the placenta, known as cotyledons, and hybrid cells, named trinucleate cells or syncytial plaques, made up of a fusion of fetal trophoblasts and maternal endometrial cells to provide essential hormones and maintain long gestation periods. These hybrid cells are unique to the Bovidae, as fetomaternal borders are clearly separated by syncytiotrophoblasts or epithelial cells in the placenta of other mammals. Recently, it was reported that Syncytin-Rum1 was inserted into ruminant genomes, including cattle and sheep, and was possibly involved in fetomaternal cell-to-cell fusion in both species. However, Syncytin-Rum1 alone is insufficient to explain the morphological diversity of the fetomaternal hybrids between Bovinae and Caprinae (i.e., trinucleate cells in Bovinae and syncytial plaques in Caprinae). Here we report that the bovine endogenous retrovirus K1 (BERV-K1) envelope, which we term Fematrin-1, was specifically expressed in binucleated trophoblasts throughout gestation in cattle and induced fusion with bovine endometrial cells in vitro at a significantly higher level than Syncytin-Rum1 under physiological conditions. Fematrin-1 was found to be integrated into intron 18 of FAT tumor suppressor homolog 2 (FAT2) about 18.3 to 25.4 million years ago and has been subject to purifying selection through the evolution of Bovinae. Phylogenetically, Fematrin-1 is distinct from Syncytin genes found in other mammalian species that form syncytiotrophoblasts. Our results suggest that the newly acquired endogenous retroelement has contributed to generating placentation diversity through ruminant evolution.  相似文献   

7.
Although the intracellular bacterium Listeria monocytogenes has an established predilection for disseminated infection during pregnancy that often results in spontaneous abortion or stillbirth, the specific host-pathogen interaction that dictates these disastrous complications remain incompletely defined. Herein, we demonstrate systemic maternal Listeria infection during pregnancy fractures fetal tolerance and triggers fetal wastage in a dose-dependent fashion. Listeria was recovered from the majority of concepti after high-dose infection illustrating the potential for in utero invasion. Interestingly with reduced inocula, fetal wastage occurred without direct placental or fetal invasion, and instead paralleled reductions in maternal Foxp3+ regulatory T cell suppressive potency with reciprocal expansion and activation of maternal fetal-specific effector T cells. Using mutants lacking virulence determinants required for in utero invasion, we establish Listeria cytoplasmic entry is essential for disrupting fetal tolerance that triggers maternal T cell-mediated fetal resorption. Thus, infection-induced reductions in maternal Foxp3+ regulatory T cell suppression with ensuing disruptions in fetal tolerance play critical roles in pathogenesis of immune-mediated fetal wastage.  相似文献   

8.
9.
The Gram-positive bacterium Listeria monocytogenes can enter the human central nervous system and cause life-threatening meningitis. During this process the pathogen has to invade and cross diverse cellular barriers involving the functions of the surface proteins Internalin (InlA) and InlB. Whereas the internalin-dependent crossing of the intestinal epithelium and the fetoplacental barrier have been subject to intensive investigation, limited research elucidating the crossing of the human blood–cerebrospinal fluid barrier (BCSFB) has been reported. We have recently established a functional in vitro model of the BCSFB based on human choroid plexus papilloma (HIBCPP) cells. We show polarized expression of receptors involved in listerial invasion (i.e. E-Cadherin, Met) in HIBCPP cells. Infecting HIBCPP cells with the L. monocytogenes strain EGD, we demonstrate polar invasion exclusively from the in vivo relevant basolateral cell side. Intracellular listeria were found in vacuoles and the cytoplasm, where they were often associated with “actin tail”-like structures. Furthermore, the L. monocytogenes wild type strain shows significantly higher internalization rates than isogenic mutants lacking either InlA, InlB or both surface proteins. Deletion of either one or both proteins leads to a similarly decreased invasion, suggesting an interdependent function of InlA and InlB during invasion of choroid plexus epithelial cells.  相似文献   

10.
Normal trophoblast of the human placenta elaborates at least two major protein hormones, chorionic gonadotropin (hCG), and placental lactogen (hPL). There are several gestational trophoblastic diseases of the placenta called hydatidiform mole, invasive mole, and choriocarcinoma. Molar and choriocarcinoma tissues characteristically synthesize large amounts of hCG and small quantities of hPL. To examine the role of trophoblast differentiation in the expression of the hCG and hPL genes, we studied the cytological distribution of their messenger RNA (mRNA) in tissue sections of human hydatidiform mole and choriocarcinoma by in situ hybridization. Histologically, these tissues are in different stages of cellular differentiation. In normal placenta, hCG alpha and - beta mRNA can be localized to some cytotrophoblasts and primarily to the syncytium, whereas hPL mRNA appears only in the syncytial layer. In hydatidiform mole, which still retains placental villous morphology, the hPL gene and hCG alpha and -beta genes are expressed but are poorly localized because of the admixture of cyto- and syncytiotrophoblasts. By contrast, choriocarcinoma, which is devoid of placental villous pattern but in which the cyto- and syncytiotrophoblast-like components are distinguishable, expresses hCG alpha and -beta in the syncytial- like areas but little, if any, hPL. These results suggest that a certain level of trophoblast differentiation, such as villous formation, is associated with hPL expression, while the hCG alpha gene and the hCG beta gene can be expressed in more disorganized tissues that contain cytotrophoblastic elements.  相似文献   

11.
The surface of the syncytial trophoblast of the human placenta is covered by a microvillous (brush) border that is in direct contact with maternal blood. Because of this location, it is the site of a variety of transport, enzymatic and receptor activities vital to many placental functions. The organization of the brush border as well as other features of placental villus organization may well be influenced by the distribution of cytoplasmic actin filaments. In order to determine the distribution of actin filaments in human placenta, small pieces of villi were briefly fixed in glutaraldehyde, permeabilized with saponin, and incubated in solutions containing subfragment 1 of myosin (S1). After S1 decoration of actin filaments, tissue was fixed in glutaraldehyde containing tannic acid in order to better visualize the polarity of the filaments, and prepared for electron microscopic examination. The microvilli each contained a core of actin filaments running from the tip of the microvillus to the apical cytoplasm. Most of the actin filaments displayed a distinct polarity, with the S1 arrowheads pointing away from the microvillar tips. These filaments extended only a short distance into the apical cytoplasm. There appeared to be another group of actin filaments in a matlike arrangement in the apical cytoplasm. Coated pits and vesicles were often observed between the microvilli. There appeared to be no clear association between the coated pits and decorated actin filaments, but this was difficult to establish with certainty because of the close proximity of the microvilli. Bundles of actin filaments were sometimes observed near the basal cell surface of the syncytial trophoblast, and in pericytes and capillary endothelial cells in the cores of the villi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Placental infections are major causes of maternal and fetal disease. This review introduces a new paradigm for placental infections based on current knowledge of placental defenses and how this barrier can be breached. Transmission of pathogens from mother to fetus can occur at two sites of direct contact between maternal cells and specialized fetal cells (trophoblasts) in the human placenta: firstly, maternal immune and endothelial cells juxtaposed to extravillous trophoblasts in the uterine implantation site and secondly, maternal blood surrounding the syncytiotrophoblast (SYN). Recent findings suggest that the primary vulnerability is in the implantation site. We explore evidence that the placental SYN evolved as a defense against pathogens, and that inflammation-mediated spontaneous abortion may benefit mother and pathogen.  相似文献   

13.
Placental syncytiotrophoblasts formed by the fusion of cytotrophoblasts constitute the interface between maternal and fetal circulations. The syncytium, composed of a continuous layer of syncytiotrophoblasts, assumes the fetal–maternal nutrient exchange, placental barrier, and endocrine functions important for the maintenance of normal pregnancy. Syncytin-1, an endogenous retroviral gene product, mediates the fusion of cytotrophoblasts. While the fusogenic function of syncytin-1 has been well established, little is known regarding its nonfusogenic activities. This study investigates the role of syncytin-1 in trophoblast proliferation. We found that syncytin-1 knockdown significantly inhibited BeWo cell growth and DNA synthesis. Moreover, time course studies on key cell cycle regulators demonstrated an upregulation of p15 and downregulation of CDK4, E2F1, PCNA, and c-Myc, which consequently led to a reduced level of CDK1. These results, together with those from flow cytometry analysis, indicated that syncytin-1 knockdown blocked the G1/S transition phase of the cell cycle. Moreover, syncytin-1 overexpression promoted CHO cell proliferation and led to changes opposite to those observed in syncytin-1 knockdown experiments, confirming the critical role of syncytin-1 for G1/S transition. Thus, syncytin-1, through both nonfusogenic and fusogenic, functions, may co-regulate the input (proliferation) and output (fusion) of the cytotrophoblast “pool”. Such co-regulation could be an efficient way to achieve the balance between these two opposing processes, which is required for syncytium homeostasis. Since decreased syncytin-1 expression has been shown to be associated with preeclamptic and hypoxic condition, insufficient replenishing of the cytotrophoblast “pool” may contribute to syncytium deficiency, a critical pathological change frequently found in preeclamptic placentas.  相似文献   

14.
A proteomics screen of human placental microvillous syncytiotrophoblasts (STBs) revealed the expression of dysferlin (DYSF), a plasma membrane repair protein associated with certain muscular dystrophies. This was unexpected given that previous studies of DYSF have been restricted to skeletal muscle. Within the placenta, DYSF localized to the STB and, with the exception of variable labeling in the fetal placental endothelium, none of the other cell types expressed detectable levels of DYSF. Such restricted expression was recapitulated using primary trophoblast cell cultures, because the syncytia expressed DYSF, but not the prefusion mononuclear cells. The apical plasma membrane of the STB contained approximately 4-fold more DYSF than the basal membrane, suggesting polarized trafficking. Unlike skeletal muscle, DYSF in the STB is localized to the plasma membrane in the absence of caveolin. DYSF expression in the STB was developmentally regulated, because first-trimester placentas expressed approximately 3-fold more DYSF than term placentas. As the current literature indicates that few cell types express DYSF, it is of interest that the two major syncytial structures in the human body, skeletal muscle and the STB, express this protein.  相似文献   

15.
Cell–cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted BeWo cell fusion. CNN3 at the cytoplasmic face of cytoskeleton was dislocated from F-actin with forskolin treatment and diffused into the cytoplasm in a phosphorylation-dependent manner. Phosphorylation sites were located at Ser293/296 in the C-terminal region, and deletion of this region or site-specific disruption of Ser293/296 suppressed syncytium formation. These CNN3 mutants were colocalized with F-actin and remained there after forskolin treatment, suggesting that dissociation of CNN3 from F-actin is modulated by the phosphorylation status of the C-terminal region unique to CNN3 in the CNN family proteins. The mutant missing these phosphorylation sites displayed a dominant negative effect on cell fusion, while replacement of Ser293/296 with aspartic acid enhanced syncytium formation. These results indicated that CNN3 regulates actin cytoskeleton rearrangement which is required for the plasma membranes of trophoblasts to become fusion competent.  相似文献   

16.
This study examined the placentation in the degu, the origin of the extrasubplacental trophoblast (EST) (extravillous trophoblast in human), and the activity of Na+/K+ ATPase in the placental barrier during different gestational ages, as part of a wider effort to understand the reproductive biology of this species. Fifteen degus at the first stage of gestation, midgestation and at term of pregnancy were studied. At day 27 of gestation, the subplacenta is formed under the wall of the central excavation. Simultaneously, the outermost trophoblast of the ectoplacental cone differentiated into secondary trophoblast giant cells that lie on the outside of the placenta, forming an interface with the maternal cells in the decidua. These giant cells immunostained positive for cytokeratin (CK) and placental lactogen (hPL) until term. During this period, the EST merged from the subplacenta to the decidua and immunostained negative for CK, but at term, immunostained for CK and hPL in the maternal vessels. The vascular mesenchyme of the central excavation invaded the chorioallantoic placenta during this period, forming two fetal lobules of labyrinthine-fine syncytium, the zone of the placental barrier. The activity of Na+/K+ ATPase in the placental barrier was constant during the gestational period. The residual syncytium at the periphery of the placental disc and between the lobules was not invaded by fetal mesenchyme and formed the marginal and interlobular labyrinthine syncytium that immunostained first for CK, and later for hPL, as in the labyrinthine fine syncytium. The presence of intracytoplasmic electron-dense material in the interlobular labyrinthine syncytium suggested a secretory process in these cells that are bathed in maternal blood. Placentas obtained from vaginal births presented a large, single lobe, absence of the subplacenta, and a reduced interlobular labyrinthine syncytium. At day 27, the inverted visceral yolk sac is observed and its columnar epithelium immunostained for CK and hPL. This suggests that the yolk sac is an early secretory organ. The epithelium of the parietal yolk sac covers the placenta. The origin of the EST in the degu placenta and its migration to maternal vessels allows us to present this animal model for the study of pregnancy pathologies related to alterations in the migration of the extravillous trophoblast.  相似文献   

17.
Tumor immunotherapy is currently at the cusp of becoming an important aspect of comprehensive cancer treatment in the clinic. However, the need for improved adjuvants to augment immune responses against tumor antigens is always present. In this paper, we characterize the Listeria monocytogenes-derived actin-nucleating protein, ActA, as a novel adjuvant for use in tumor immunotherapy. ActA is a virulence factor that is expressed on the cell surface of L. monocytogenes and facilitates the production of actin tails that propel Listeria throughout the cytosol of an infected host cell. It is believed that this ActA-dependent cytosolic motility allows Listeria to evade adaptive host cell defenses and facilitates its invasion into a proximal uninfected host cell. However, there is evidence that ActA fused to a tumor antigen and delivered by L. monocytogenes can perform a beneficial function in tumor immunotherapy as an adjuvant. Our investigation of this adjuvant activity demonstrates that ActA, either fused to or administered as a mixture with a tumor antigen, can augment anti-tumor immune responses, break immune tolerance and facilitate tumor eradication, which suggests that ActA is not only an effective adjuvant in tumor immunotherapy but can also be applied in a number of therapeutic settings.  相似文献   

18.
Overexposure of the fetus to glucocorticoids in gestation is detrimental to fetal development. The passage of maternal glucocorticoids into the fetal circulation is governed by 11beta-Hydroxysteroid Dehydrogenase Type 2 (HSD11B2) in the placental syncytiotrophoblasts. Human chorionic gonadotropin (hCG) plays an important role in maintaining placental HSD11B2 expression via activation of the cAMP pathway. In this study, we investigated the relationship between the activation of the cAMP pathway by hCG and subsequent phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) or p38 mitogen-activated protein kinase (MAPK) pathways in the regulation of placental HSD11B2 expression in human placental syncytiotrophoblasts. We found that treatment of the placental syncytiotrophoblasts with either hCG or dibutyl cAMP (dbcAMP) could promote the phosphorylation of p38 and ERK1/2. Inhibition of p38 MAPK with SB203580 not only reduced the basal HSD11B2 mRNA and protein levels but also attenuated HSD11B2 levels induced by either hCG or dbcAMP. By contrast, inhibition of ERK1/2 with PD98059 increased the basal mRNA and protein levels of HSD11B2 and had no effect on HSD11B2 mRNA and protein levels induced by either hCG or dbcAMP. These data suggest that p38 MAPK is involved in both basal and hCG/cAMP-induced expression of HSD11B2, and ERK1/2 may play a role opposite to p38 MAPK at least in the basal expression of HSD11B2 in human placental syncytiotrophoblasts and that there is complicated cross-talk between hCG/cAMP and MAPK cascades in the regulation of placental HSD11B2 expression.  相似文献   

19.
The structure of the placental labyrinth, interlobular or "coarse" syncytium, visceral (splanchnopleuric) yolk sac, giant cells and subplacenta of the chinchilla was studied with the electron microscope. The fine structure of the interhemal membrane of the placental labyrinth was found to be hemomonochorial, consisting of a single layer of syncytial trophoblast. In this respect, the placental labyrinth was similar to that of another caviomorph rodent, the guinea pig. The labyrinthine trophoblast had pinocytotic vesicles as well as larger vaculoes and multivesicular bodies. The interlobular syncytium contained granular endoplasmic reticulum, and in one case from early in gestation there were intracisternal granules in the ER. The visceral endodermal cells of the inverted yolk sac placenta had a well-developed system of apical vesicles and tubules as well as larger cytoplasmic vacuoles. Their appearance was similar to that of endodermal cells found in other rodents which are known to absorb proteins and other substances from the uterine lumen. Towards term the giant cells were often vacuolated and contained large deposits of glycogen as well as lipid droplets. The syncytial trophoblast of the subplacenta contained numerous moderately electron-dense granules which may be secretory in function; cytotrophoblastic cells lacked these granules. The subplacental syncytium often surrounded spaces or lacunae which contained an electron-dense granular material.  相似文献   

20.
The main disorders of human pregnancy are rooted in defective placentation. Normal placental development depends on proliferation, differentiation, and fusion of cytotrophoblasts to form and maintain an overlying syncytiotrophoblast. There is indirect evidence that the insulin-like growth factors (IGFs), which are aberrant in pregnancy disorders, are involved in regulating trophoblast turnover, but the processes that control human placental growth are poorly understood. Using an explant model of human first-trimester placental villus in which the spatial and ontological relationships between cell populations are maintained, we demonstrate that cytotrophoblast proliferation is enhanced by IGF-I/IGF-II and that both factors can rescue cytotrophoblast from apoptosis. Baseline cytotrophoblast proliferation ceases in the absence of syncytiotrophoblast, although denuded cytotrophoblasts can proliferate when exposed to IGF and the rate of cytotrophoblast differentiation/fusion and, consequently, syncytial regeneration, increases. Use of signaling inhibitors suggests that IGFs mediate their effect on cytotrophoblast proliferation/syncytial formation through the MAPK pathway, whereas effects on survival are regulated by the phosphoinositide 3-kinase pathway. These results show that directional contact between cytotrophoblast and syncytium is important in regulating the relative amounts of the two cell populations. However, IGFs can exert an exogenous regulatory influence on placental growth/development, suggesting that manipulation of the placental IGF axis may offer a potential therapeutic route to the correction of inadequate placental growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号