首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
People suffering from developmental dyscalculia encounter difficulties in automatically accessing numerical magnitudes [1-3]. For example, when instructed to attend to the physical size of a number while ignoring its numerical value, dyscalculic subjects, unlike healthy participants, fail to process the irrelevant dimension automatically and subsequently show a smaller size-congruity effect (difference in reaction time between incongruent [e.g., a physically large 2 and a physically small 4] and congruent [e.g., a physically small 2 and a physically large 4] conditions), and no facilitation (neutral [e.g., a physically small 2 and a physically large 2] versus congruent) [3]. Previous imaging studies determined the intraparietal sulcus (IPS) as a central area for numerical processing [4-11]. A few studies tried to identify the brain dysfunction underlying developmental dyscalculia but yielded mixed results regarding the involvement of the left [12] or the right [13] IPS. Here we applied fMRI-guided TMS neuronavigation to disrupt left- or right-IPS activation clusters in order to induce dyscalculic-like behavioral deficits in healthy volunteers. Automatic magnitude processing was impaired only during disruption of right-IPS activity. When using the identical paradigm with dyscalculic participants, we reproduced a result pattern similar to that obtained with nondyscalculic volunteers during right-IPS disruption. These findings provide direct evidence for the functional role of right IPS in automatic magnitude processing.  相似文献   

2.
Previous studies have implicated several brain areas as subserving numerical approximation. Most studies have examined brain correlates of adult numerical approximation and have not considered individual differences in mathematical ability. The present study examined non-symbolic numerical approximation in two groups of 10-year-olds: Children with low and high mathematical ability. The aims of this study were to investigate the brain mechanisms associated with approximate numerosity in children and to assess whether individual differences in mathematical ability are associated with differential brain correlates during the approximation task. The results suggest that, similarly to adults, multiple and distributed brain areas are involved in approximation in children. Despite equal behavioral performance, there were differences in the brain activation patterns between low and high mathematical ability groups during the approximation task. This suggests that individual differences in mathematical ability are reflected in differential brain response during approximation.  相似文献   

3.
Impaired parietal magnitude processing in developmental dyscalculia   总被引:3,自引:0,他引:3  
Developmental dyscalculia (DD) is a specific learning disability affecting the acquisition of school-level mathematical abilities in the context of otherwise normal academic achievement, with prevalence estimates in the order of 3-6%. Behavioural studies show deficits in elementary numerical processing among individuals with pure DD, indicating that deficits in higher-level mathematical skills may stem from impaired representation and processing of basic numerical magnitude. Adult neuropsychological and neuroimaging research points to the intraparietal sulcus as a key region for the representation and processing of numerical magnitude. This raises the possibility of a parietal dysfunction as a root cause of DD. We show that, in children with pure DD, the right intraparietal sulcus is not modulated in response to numerical processing demands to the same degree as in typically developing children. This finding provides the first direct evidence for a specific impairment of parietal magnitude systems in DD during non-symbolic numerosity processing.  相似文献   

4.
Arithmetic and the brain   总被引:16,自引:0,他引:16  
Recent studies in human neuroimaging, primate neurophysiology, and developmental neuropsychology indicate that the human ability for arithmetic has a tangible cerebral substrate. The human intraparietal sulcus is systematically activated in all number tasks and could host a central amodal representation of quantity. Areas of the precentral and inferior prefrontal cortex also activate when subjects engage in mental calculation. A monkey analogue of these parieto-frontal regions has recently been identified, and a neuronal population code for number has been characterized. Finally, pathologies of this system, leading to acalculia in adults or to developmental dyscalculia in children, are beginning to be understood, thus paving the way for brain-oriented intervention studies.  相似文献   

5.
Mathematical learning deficits are defined as a neurodevelopmental disorder (dyscalculia) in the International Classification of Diseases. It is not known, however, how such deficits emerge in the course of early brain development. Here, we conducted functional and structural magnetic resonance imaging (MRI) experiments in 3- to 6-year-old children without formal mathematical learning experience. We followed this sample until the age of 7 to 9 years, identified individuals who developed deficits, and matched them to a typically developing control group using comprehensive behavioral assessments. Multivariate pattern classification distinguished future cases from controls with up to 87% accuracy based on the regional functional activity of the right posterior parietal cortex (PPC), the network-level functional activity of the right dorsolateral prefrontal cortex (DLPFC), and the effective functional and structural connectivity of these regions. Our results indicate that mathematical learning deficits originate from atypical development of a frontoparietal network that is already detectable in early childhood.

Longitudinal neuroimaging of 3-6-year-old children reveals a predisposition for dyscalculia in early childhood originating from altered spontaneous activity, functional interaction and structural connectivity of a frontoparietal brain network.  相似文献   

6.
Individual and age-related characteristics of visual perception as a whole and its individual components were studied in seven-year-old children as related to their brain functional development. A dependence was found between the success of visual perception and the characteristics determining the functional maturity of both the cerebral cortex and the brain regulatory structures. Difficulties in noise resistance, visuospatial perception, and visual analysis/synthesis were greater in first-year school students with signs of immaturity of the bioelectrical activity of the cerebral cortex. Poor development of the visual perception system in schoolchildren was also determined by an underdeveloped frontothalamic regulatory system and deviations in the functional state of the nonspecific activation system.  相似文献   

7.
Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on conceptual differences between MVF devices. However, our findings need to be validated within specific patient groups.  相似文献   

8.
The approximate number system (ANS) has been consistently found to be associated with math achievement. However, little is known about the interactions between the different instantiations of the ANS and in how many ways they are related to exact calculation. In a cross-sectional design, we investigated the relationship between three measures of ANS acuity (non-symbolic comparison, non-symbolic estimation and non-symbolic addition), their cross-sectional trajectories and specific contributions to exact calculation. Children with mathematical difficulties (MD) and typically achieving (TA) controls attending the first six years of formal schooling participated in the study. The MD group exhibited impairments in multiple instantiations of the ANS compared to their TA peers. The ANS acuity measured by all three tasks positively correlated with age in TA children, while no correlation was found between non-symbolic comparison and age in the MD group. The measures of ANS acuity significantly correlated with each other, reflecting at least in part a common numerosity code. Crucially, we found that non-symbolic estimation partially and non-symbolic addition fully mediated the effects of non-symbolic comparison in exact calculation.  相似文献   

9.
Working memory impairments are frequent in Attention Deficit/Hyperactivity Disorder (ADHD) and create problems along numerous functional dimensions. The present study utilized the Visual Serial Addition Task (VSAT) and functional magnetic resonance imaging (fMRI) to explore working memory processes in thirteen typically developing (TD) control and thirteen children with ADHD, Combined type. Analysis of Variance (ANOVA) was used to examine both main effects and interactions. Working memory-specific activity was found in TD children in the bilateral prefrontal cortex. In contrast the within-group map in ADHD did not reveal any working-memory specific regions. Main effects of condition suggested that the right middle frontal gyrus (BA6) and the right precuneus were engaged by both groups during working memory processing. Group differences were driven by significantly greater, non-working memory-specific, activation in the ADHD relative to TD group in the bilateral insula extending into basal ganglia and the medial prefrontal cortex. A region of interest analysis revealed a region in left middle frontal gyrus that was more active during working memory in TD controls. Thus, only the TD group appeared to display working memory-modulated brain activation. In conclusion, children with ADHD demonstrated reduced working memory task specific brain activation in comparison to their peers. These data suggest inefficiency in functional recruitment by individuals with ADHD represented by a poor match between task demands and appropriate levels of brain activity.  相似文献   

10.
Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted.  相似文献   

11.
Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain’s transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to “read out” category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition.  相似文献   

12.
Rubinsten O  Sury D 《PloS one》2011,6(9):e24079
In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made "ordered" or "non-ordered" judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information.  相似文献   

13.
Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing.  相似文献   

14.
The developmental features of individual components of the visual perception and brain functional organization during visuo-spatial activity of different complexity were studied in right-handed and left-handed 6–7-year-old children. The results of psychophysiological testing of their visual perception testify to the underdevelopment of the mechanisms of integrative brain activity. Some specific features of the brain functional organization were revealed in the left-handed children during visuo-spatial performance. More autonomous functioning of the cerebral hemispheres and the duplication of the activation processes in the right and left hemisphere during visuo-spaital performance of different complexity are characteristic of these children. This is probably associated with the involvement of compensatory mechanisms, which enable the performance reliability.  相似文献   

15.
Adult humans, infants, pre-school children, and non-human animals appear to share a system of approximate numerical processing for non-symbolic stimuli such as arrays of dots or sequences of tones. Behavioral studies of adult humans implicate a link between these non-symbolic numerical abilities and symbolic numerical processing (e.g., similar distance effects in accuracy and reaction-time for arrays of dots and Arabic numerals). However, neuroimaging studies have remained inconclusive on the neural basis of this link. The intraparietal sulcus (IPS) is known to respond selectively to symbolic numerical stimuli such as Arabic numerals. Recent studies, however, have arrived at conflicting conclusions regarding the role of the IPS in processing non-symbolic, numerosity arrays in adulthood, and very little is known about the brain basis of numerical processing early in development. Addressing the question of whether there is an early-developing neural basis for abstract numerical processing is essential for understanding the cognitive origins of our uniquely human capacity for math and science. Using functional magnetic resonance imaging (fMRI) at 4-Tesla and an event-related fMRI adaptation paradigm, we found that adults showed a greater IPS response to visual arrays that deviated from standard stimuli in their number of elements, than to stimuli that deviated in local element shape. These results support previous claims that there is a neurophysiological link between non-symbolic and symbolic numerical processing in adulthood. In parallel, we tested 4-y-old children with the same fMRI adaptation paradigm as adults to determine whether the neural locus of non-symbolic numerical activity in adults shows continuity in function over development. We found that the IPS responded to numerical deviants similarly in 4-y-old children and adults. To our knowledge, this is the first evidence that the neural locus of adult numerical cognition takes form early in development, prior to sophisticated symbolic numerical experience. More broadly, this is also, to our knowledge, the first cognitive fMRI study to test healthy children as young as 4 y, providing new insights into the neurophysiology of human cognitive development.  相似文献   

16.
This article describes the discovery of a set of biologically-driven semantic dimensions underlying the neural representation of concrete nouns, and then demonstrates how a resulting theory of noun representation can be used to identify simple thoughts through their fMRI patterns. We use factor analysis of fMRI brain imaging data to reveal the biological representation of individual concrete nouns like apple, in the absence of any pictorial stimuli. From this analysis emerge three main semantic factors underpinning the neural representation of nouns naming physical objects, which we label manipulation, shelter, and eating. Each factor is neurally represented in 3–4 different brain locations that correspond to a cortical network that co-activates in non-linguistic tasks, such as tool use pantomime for the manipulation factor. Several converging methods, such as the use of behavioral ratings of word meaning and text corpus characteristics, provide independent evidence of the centrality of these factors to the representations. The factors are then used with machine learning classifier techniques to show that the fMRI-measured brain representation of an individual concrete noun like apple can be identified with good accuracy from among 60 candidate words, using only the fMRI activity in the 16 locations associated with these factors. To further demonstrate the generativity of the proposed account, a theory-based model is developed to predict the brain activation patterns for words to which the algorithm has not been previously exposed. The methods, findings, and theory constitute a new approach of using brain activity for understanding how object concepts are represented in the mind.  相似文献   

17.
Autism is a psychiatric syndrome characterized by impairments in three domains: social interaction, communication, and restricted and repetitive behaviours and interests. Recent findings implicate the amygdala in the neurobiology of autism. In this paper, we report the results of a series of novel experimental investigations focusing on the structure and function of the amygdala in a group of children with autism. The first section attempts to determine if abnormality of the amygdala can be identified in an individual using magnetic resonance imaging in vivo. Using single-case voxel-based morphometric analyses, abnormality in the amygdala was detected in half the children with autism. Abnormalities in other regions were also found. In the second section, emotional modulation of the startle response was investigated in the group of autistic children. Surprisingly, there were no significant differences between the patterns of emotional modulation of the startle response in the autistic group compared with the controls.  相似文献   

18.
While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects – a deficit termed simultanagnosia – greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres.  相似文献   

19.
Short interval intracortical inhibition (SICI) of motor cortex, measured by transcranial magnetic stimulation (TMS) in a passive (resting) condition, has been suggested as a neurophysiological marker of hyperactivity in attention-deficit/hyperactivity disorder (ADHD). The aim of this study was to determine motor excitability in a go/nogo task at stages of response preparation, activation and suppression in children with ADHD, depending on the level of hyperactivity and impulsivity. Motor evoked potentials were recorded in 29 typically developing children and 43 children with ADHD (subdivided in two groups with higher and lower levels of hyperactivity/impulsivity; H/I-high and H/I-low). In the H/I-high group, SICI was markedly reduced in the resting condition and during response preparation. Though these children were able to increase SICI when inhibiting a response, SICI was still reduced compared to typically developing children. Interestingly, SICI at rest and during response activation were comparable, which may be associated with their hypermotoric behaviour. In the H/I-low group, response activation was accompanied by a pronounced decrease of SICI, indicating reduced motor control in the context of a fast motor response. In summary, different excitability patterns were obtained for the three groups allowing a better understanding of dysfunctional response activation and inhibition processes within the motor cortex in children with ADHD.  相似文献   

20.
A challenging goal for cognitive neuroscience researchers is to determine how mental representations are mapped onto the patterns of neural activity. To address this problem, functional magnetic resonance imaging (fMRI) researchers have developed a large number of encoding and decoding methods. However, previous studies typically used rather limited stimuli representation, like semantic labels and Wavelet Gabor filters, and largely focused on voxel-based brain patterns. Here, we present a new fMRI encoding model to predict the human brain’s responses to free viewing of video clips which aims to deal with this limitation. In this model, we represent the stimuli using a variety of representative visual features in the computer vision community, which can describe the global color distribution, local shape and spatial information and motion information contained in videos, and apply the functional connectivity to model the brain’s activity pattern evoked by these video clips. Our experimental results demonstrate that brain network responses during free viewing of videos can be robustly and accurately predicted across subjects by using visual features. Our study suggests the feasibility of exploring cognitive neuroscience studies by computational image/video analysis and provides a novel concept of using the brain encoding as a test-bed for evaluating visual feature extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号