首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

To study the use of RapidArc techniques in the treatment of prostate cancer patients with hip prosthesis.

Background

An important aspect of treatment planning is to achieve dose homogeneity inside the planning target volume (PTV). Especially for those patients presenting with hip prosthesis, it becomes a challenging task to achieve dose uniformity inside the PTV.

Materials and methods

Five prostate patients presenting with hip prosthesis who had undergone radical radiotherapy were selected for this study. Depending on the composition of prosthesis, a predefined set of Hounsfield values were assigned to each study set. RapidArc plans were generated on an Eclipse treatment planning system. Two arcs that include clockwise and counter-clockwise arcs were used in all these cases. To avoid beams passing through the prosthesis, a simple structure was defined around it with 1 cm margin and a strict dose constraint applied to the block during VMAT optimization.

Results

The mean D2/D98 ratio of PTV for all the patients was 1.06 ± 0.01. The mean percentage rectum volume receiving 50 Gy, 60 Gy, 70 Gy and 75 Gy for all the patients were 33.1 ± 5.9, 21.7 ± 5.5, 13.8 ± 4.4 and 9.5 ± 3.0, respectively.

Conclusions

This study shows that using a double arc RapidArc technique is a simple and effective treatment method of treating prostate cancer in patients presenting with a hip prosthesis. The definition of a beam avoidance structure encompassing the prosthesis and applying strict dose constraints to it reduces the beam contribution to the prosthesis  相似文献   

2.

Aim

This study compared the dosimetric impact between prostate IMRT and VMAT due to patient''s weight loss.

Background

Dosimetric variation due to change of patient''s body contour is difficult to predict in prostate IMRT and VMAT, since a large number of small and irregular segmental fields is used in the delivery.

Materials and methods

Five patients with prostate volumes ranging from 32.0 to 86.5 cm3 and a heterogeneous pelvis phantom were used for prostate IMRT and VMAT plans using the same set of dose–volume constraints. Doses in IMRT and VMAT plans were recalculated with the patient''s and phantom''s body contour reduced by 0.5–2 cm to mimic size reduction. Dose coverage/criteria of the PTV and CTV and critical organs (rectum, bladder and femoral heads) were compared between IMRT and VMAT.

Results

In IMRT plans, increases of the D99% for the PTV and CTV were equal to 4.0 ± 0.1% per cm of reduced depth, which were higher than those in VMAT plans (2.7 ± 0.24% per cm). Moreover, increases of the D30% of the rectum and bladder per reduced depth in IMRT plans (4.0 ± 0.2% per cm and 3.5 ± 0.5% per cm) were higher than those of VMAT (2.2 ± 0.2% per cm and 2.0 ± 0.6% per cm). This was also true for the increase of the D5% for the right femoral head in a patient or phantom with size reduction due to weight loss.

Conclusions

VMAT would be preferred to IMRT in prostate radiotherapy, when a patient has potential to suffer from weight loss during the treatment.  相似文献   

3.

Purpose

Flattening filter free (FFF) beams show the potential for a higher dose rate and lower peripheral dose. We investigated the planning study of FFF beams with their role for volumetric modulated arc therapy (VMAT) in squamous cell carcinoma of the scalp.

Methods and Materials

One patient with squamous cell carcinoma which had involvement of entire scalp was subjected to VMAT using TrueBeam linear accelerator. As it was a rare skin malignancy, CT data of 7 patients with brain tumors were also included in this study, and their entire scalps were outlined as target volumes. Three VMAT plans were employed with RapidArc form: two half-field full-arcs VMAT using 6 MV standard beams (HFF-VMAT-FF), eight half-field quarter-arcs VMAT using 6 MV standard beams (HFQ-VMAT-FF), and HFQ-VMAT using FFF beams (HFQ-VMAT-FFF). Prescribed dose was 25×2 Gy (50 Gy). Plan quality and efficiency were assessed for all plans.

Results

There were no statistically significant differences among the three VMAT plans in target volume coverage, conformity, and homogeneity. For HFQ-VMAT-FF plans, there was a significant decrease by 12.6% in the mean dose to the brain compared with HFF-VMAT-FF. By the use of FFF beams, the mean dose to brain in HFQ-VMAT-FFF plans was further decreased by 7.4% compared with HFQ-VMAT-FF. Beam delivery times were similar for each technique.

Conclusions

The HFQ-VMAT-FF plans showed the superiority in dose distributions compared with HFF-VMAT-FF. HFQ-VMAT-FFF plans might provide further normal tissue sparing, particularly in the brain, showing their potential for radiation therapy in squamous cell carcinoma of the scalp.  相似文献   

4.

Aim

The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed.

Background

Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study.

Materials and methods

Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm3 and 0.65 cm3 Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.1–8

Results

All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.7

Conclusion

Results confirmed that the linear accelerator is capable of performing accurate VMAT.  相似文献   

5.

Aim

To study the influence of segment width on plan quality for volumetric modulated arc based stereotactic body radiotherapy.

Background

The redundancy of modulation for regularly shaped small volume tumors results in creation of many small segments and an increase of monitor units, with a consequent prolongation of treatment and uncertainty in treatment delivery.

Materials and methods

Six cases each in lung, abdomen and liver were taken for the study. For each case, three VMAT SBRT plans were generated with different penalties on minimum segment width of 0.5, 1.0 and 1.5 cm. A comparison was made on the metrics of dose volume histogram, dosimetric indices, monitor units (MUs) and delivery accuracy.

Results

The mean reduction of total MUs when compared with 0.5 cm plan was observed as 12.7 ± 6.0% and 17.5 ± 7.2% for 1.0 cm and 1.5 cm of minimum segment width, respectively. The p value showed a significant degradation in dosimetric indices for 1.5 cm plans when compared with 0.5 cm and 1.0 cm plans. The average deviation of measured dose with TPS calculated was 3.0 ± 1.1%, 2.1 ± 0.84% and 1.8 ± 0.9% for 0.5, 1.0 and 1.5 cm, respectively. The calculated gamma index with pass criteria of 2% dose difference and 2 mm distance to agreement was 95.9 ± 2.8%, 96.5 ± 2.6% and 97.8 ± 1.6% as calculated for 0.5, 1.0 and 1.5 cm of penalties, respectively. In view of the trade off between delivery efficiency and plan quality, 1 cm minimum segment width plans showed an improvement.

Conclusions

VMAT SBRT plans with increased optimal value of minimum segment width showed better plan quality and delivery efficiency for stereotactic body radiotherapy.  相似文献   

6.

Aim

This study evaluates the acute toxicity outcome in patients treated with RapidArc for localized prostate cancer.

Background

Modern technologies allow the delivery of high doses to the prostate while lowering the dose to the neighbouring organs at risk. Whether this dosimetric advantage translates into clinical benefit is not well known.

Materials and methods

Between December 2009 and May 2012, 45 patients with primary prostate adenocarcinoma were treated using RapidArc. All patients received 1.8 Gy per fraction, the median dose to the prostate gland, seminal vesicles, pelvic lymph nodes and surgical bed was 80 Gy (range, 77.4–81 Gy), 50.4 Gy, 50.4 Gy and 77.4 Gy (range, 75.6–79.2 Gy), respectively.

Results

The time between the last session and the last treatment follow up was a median of 10 months (range, 3–24 months). The incidence of grade 3 acute gastrointestinal (GI) and genitourinary (GU) toxicity was 2.2% and 15.5%, respectively. Grade 2 acute GI and GU toxicity occurred in 30% and 27% of patients, respectively. No grade 4 acute GI and GU toxicity were observed. Older patients (>median) or patients with V60 higher than 35% had significantly higher rates of grade ≥2 acute GI toxicity compared with the younger ones.

Conclusions

RapidArc in the treatment of localized prostate cancer is tolerated well with no Grade >3 GI and GU toxicities. Older patients or patients with higher V60 had significantly higher rates of grade ≥2 acute GI toxicity. Further research is necessary to assess definitive late toxicity and tumour control outcome.  相似文献   

7.

Aim

The purpose of this study was to examine the usefulness of using Simultaneous Integrated Boost (SIB) radiotherapy for thyroid cancer treatment.

Background

At our hospital a 3D Conformal RadioTherapy (3D-CRT) technique involving photon and electron beams for the treatment of thyroid cancer was often used.1 High dose to the spinal canal was limiting the total dose of such a treatment. After investigation of Intensity Modulated Radiotherapy (IMRT) technique involving seven photon beams for first course of treatment3 we decided to examine possibility of reducing treatment fractions by using SIB radiotherapy.

Material and methods

Plans for 10 patients were studied. For each patient, IMRT plan for the first course of treatment (50 Gy for PTV), two plans for the second course of treatment (10 Gy for BOOST) and a SIB plan (50 Gy for PTV, 56 Gy for BOOST) were prepared. For all plans, comparisons of dose statistics for the PTV, BOOST, PTV without BOOST (defined as PTV without BOOST with 1 cm margin), spinal canal and Patient Outline (Body) was done.

Results

Minimum dose for BOOST is higher in the SIB technique than in the two course treatment. PTV without BOOST receives the same average dose in SIB and the 1st course IMRT – 50.10 Gy and 49.84 Gy, respectively. In the SIB technique, higher reduction of dose delivered to the spinal canal is possible (27 Gy compared with 30 Gy).

Conclusion

SIB therapy for thyroid cancer with relation to typical two course treatment is a good proposal of reducing the number of fractions with the same dose for BOOST and PTV without BOOST. Additionally, better sparing of the spinal canal is achieved.  相似文献   

8.
9.

Aim

The aim of the study was to estimate the dose at the reference point applying an aSi-EPID device in the course of patient treatment.

Materials and methods

The method assumes direct proportionality between EPID signal and dose delivered to the patient reference point during the treatment session. The procedure consists of treatment plan calculation for the actual patient in the arc technique. The plan was realized with an elliptic water-equivalent phantom. An ionization chamber inside the phantom measured the dose delivered to the reference point. Simultaneously, the EPID matrix measured the CU distribution. EPID signal was also registered during patient irradiation with the same treatment plan. The formula for in vivo dose calculation was based on the CU(g) function, EPID signal registered during therapy and the relation between the dose and EPID signal level measured for the phantom. In vivo dose was compared with dose planned with the treatment planning system.Irradiation was performed with a Clinac accelerator by Varian Medical Systems in the RapidArc technique. The Clinac was equipped with an EPID matrix (electronic portal image device) of aSi-1000. Treatment plans were calculated with the Eclipse/Helios system. The phantom was a Scanditronix/Wellhöfer Slab phantom, and the ionization chamber was a 0.6 ccm PTW chamber.

Results

In vivo dose calculations were performed for five patients. Planned dose at the reference point was 2 Gy for each treatment plan. Mean in vivo dose was in the range of 1.96–2.09.

Conclusions

Our method was shown to be appropriate for in vivo dose evaluation in the RapidArc technique.  相似文献   

10.

Aim

To employ the thermal neutron background that affects the patient during a traditional high-energy radiotherapy treatment for BNCT (Boron Neutron Capture Therapy) in order to enhance radiotherapy effectiveness.

Background

Conventional high-energy (15–25 MV) linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons in the gantry with a mean energy of about 1 MeV due to (γ, n) reaction. This neutron flux, isotropically distributed, is considered as an unavoidable undesired dose during the treatment. Considering the moderating effect of human body, a thermal neutron fluence is localized in the tumour area: this neutron background could be employed for BNCT by previously administering 10B-Phenyl-Alanine (10BPA) to the patient.

Materials and methods

Monte Carlo simulations (MCNP4B-GN code) were performed to estimate the total amount of neutrons outside and inside human body during a traditional X-ray radiotherapy treatment.Moreover, a simplified tissue equivalent anthropomorphic phantom was used together with bubble detectors for thermal and fast neutron to evaluate the moderation effect of human body.

Results

Simulation and experimental results confirm the thermal neutron background during radiotherapy of 1.55E07 cm−2 Gy−1.The BNCT equivalent dose delivered at 4 cm depth in phantom is 1.5 mGy-eq/Gy, that is about 3 Gy-eq (4% of X-rays dose) for a 70 Gy IMRT treatment.

Conclusions

The thermal neutron component during a traditional high-energy radiotherapy treatment could produce a localized BNCT effect, with a localized therapeutic dose enhancement, corresponding to 4% or more of photon dose, following tumour characteristics. This BNCT additional dose could thus improve radiotherapy, acting as a localized radio-sensitizer.  相似文献   

11.

Aim/background

To evaluate how the use of volumetric-modulated arc therapy (VMAT) with RapidArc® can improve treatment delivery efficiency based on the analysis of the beam-on times and monitor units (MU) needed to deliver therapy for multiple clinical applications in a large patient population.

Materials and methods

A total of 898 treatment courses were delivered in 745 patients treated from October 2008 to March 2013 using RapidArc® treatment plans generated in Eclipse™ TPS. All patients were treated with curative or palliative intent using different techniques including conventional fractionation (83%) and radiosurgery or SBRT (17%), depending on the clinical indications. Treatment delivery was evaluated based on measured beam-on time and recorded MU values delivered on a Varian Trilogy™ linear accelerator.

Results

For conventional fractionation treatments using RapidArc®, the delivery times ranged from 38 s to 4 min and 40 s (average 2 min and 6 s). For radiosurgical treatments the delivery times ranged from 1 min and 42 s to 9 min and 22 s (average 4 min and 4 s). The average number of MU per Gy was 301 for the entire group, with 285 for the conventional group and 317 for the radiosurgical group.

Conclusions

In this study with a large heterogeneous population, treatments using RapidArc® were delivered with substantially less beam-on time and fewer MUs than conventional fractionation. This was highly advantageous, increasing flexibility of the scheduling allowing treatment of radiosurgery patients during the regular daily work schedule. Additionally, reduction of leakage radiation dose was achieved.  相似文献   

12.

Background

Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases.

Methods

12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated.

Results

HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures.

Conclusion

HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing.  相似文献   

13.

Background

Late rectal injury is a common side effect of external beam radiotherapy for prostate cancer.

Aim

The aim of this study was to evaluate what total dose may be safely delivered for prostate patients for 3DCRT and IMRT techniques and the CTV–PTV margin.

Materials and methods

3DCRT and IMRT plans were prepared for 12 patients. For each patient PTV was defined with CTV–PTV margins of 0.4, 0.6, …, 1.0 cm, and total doses of 70, 72, …, 80 Gy, with 2 Gy dose fraction. NTCP values for the rectum were calculated using the Lyman model. Both techniques were compared in terms of population mean DVH.

Results

Significantly smaller NTCPs for IMRT were obtained. For both techniques diminishing the margin CTV–PTV of 2 mm leads to decreasing the NTCP of about 0.03. For total dose of 80 Gy the NTCP was smaller than 10% for the 4 mm margin only. The QUANTEC dose volume constraints were more frequently fulfilled for the IMRT technique than for the 3DCRT technique.

Conclusions

The IMRT technique is safer for prostate patients than the 3DCRT. If very high total doses are applied the CTV–PTV margin of 0.4 cm and the IMRT technique should be used. If the CTV–PTV margin of 0.6 cm is applied, the NTCP is smaller than 10% for the 3DCRT and IMRT techniques for the total doses smaller than 74 Gy and 78 Gy, respectively.  相似文献   

14.

Aim

To evaluate the new Octavius 4D system for patient specific quality assurance and to study the correlation between plan complexity and gamma index analysis in patient specific quality assurance of VMAT using the Octavius 4D system.

Background

McNiven (2010) proposed a study to evaluate the utility of a complexity metric, the Modulation Complexity Score, to evaluate the relationship of the metric with deliverability in IMRT.

Materials and methods

Evaluation of the Octavius 4D system was carried out by gamma evaluation of user defined MLC created patterns and AAPM TG 119 benchmark plans. The relationship between plan complexity expressed as Modulation Complexity Score (MCS) and the gamma index analysis was established by a planar and volumetric gamma analysis of 106 clinically approved VMAT patient plans of different sites.

Results

Average volumetric 3D global gamma evaluation (3 mm/3%) results for the evaluation plans was 97.41% for 6 MV X-rays and 98.30% for 15 MV X-rays. Average MCS values for the head and neck, pelvic and thoracic plans were 0.2224, 0.3615 and 0.1874. Average volumetric 3D global gamma analysis (3 mm/3%) results for the head and neck, pelvic and thoracic VMAT plans were 95.45%, 97.51% and 96.98%, respectively. Out of 90 correlation analyses between the MCS and gamma passing rate, only 3 had the r value greater than 0.5.

Conclusions

The Octavius 4D system is a suitable device for patient specific pretreatment QA. Global and local gamma analysis results showed a weak correlation with the MCS.  相似文献   

15.

Background

Whole brain radiotherapy (WBRT) is a vital tool in radiation oncology and beyond, but it can result in adverse health effects such as neurocognitive decline. Hippocampal Avoidance WBRT (HA-WBRT) is a strategy that aims to mitigate the neuro-cognitive side effects of whole brain radiotherapy treatment by sparing the hippocampi while delivering the prescribed dose to the rest of the brain. Several competing modalities capable of delivering HA-WBRT, include: Philips Pinnacle step-and-shoot intensity modulated radiotherapy (IMRT), Varian RapidArc volumetric modulated arc therapy (RapidArc), and helical TomoTherapy (TomoTherapy).

Methods

In this study we compared these methods using 10 patient datasets. Anonymized planning CT (computerized tomography) scans and contour data based on fused MRI images were collected. Three independent planners generated treatment plans for the patients using three modalities, respectively. All treatment plans met the RTOG 0933 criteria for HA-WBRT treatment.

Results

In dosimetric comparisons between the three modalities, TomoTherapy has a significantly superior homogeneity index of 0.15 ± 0.03 compared to the other two modalities (0.28 ± .04, p < .005 for IMRT and 0.22 ± 0.03, p < .005 for RapidArc). RapidArc has the fastest average delivery time of 2.5 min compared to the other modalities (15 min for IMRT and 18 min for TomoTherapy).

Conclusion

TomoTherapy is considered to be the preferred modality for HA-WBRT due to its superior dose distribution. When TomoTherapy is not available or treatment time is a concern, RapidArc can provide sufficient dose distribution meeting RTOG criteria and efficient treatment delivery.  相似文献   

16.
17.

Background

As a routine method for stepping source simulation, a Monte Carlo program is run according to the number of steps and then the summation of dose from each run is taken to obtain total dose distribution. This method is time consuming.

Aim

As an alternative method, a matrix shift based technique was applied to simulate a stepping source for brachytherapy.

Materials and methods

The stepping source of GZP6 brachytherapy unit was simulated. In a matrix shift method, it is assumed that a radiation source is stationary and instead the data matrix is shifted based on the number of steps. In this study, by running MCNPX program for one point and calculation of the dose matrix using the matrix shift method, the isodose curves for the esophageal cancer tumor lengths of 4 and 6 cm were obtained and compared with the isodose curves obtained by running MCNPX programs in each step position separately (15 and 23 steps for esophageal cancer tumor lengths of 4 and 6 cm, respectively).

Results

The difference between the two dose matrixes for the stepping and matrix shift methods based on the average dose differences are 3.85 × 10−4 Gy and 5.19 × 10−4 Gy for treatment length of 4 cm and 6 cm, respectively. Dose differences are insignificant and these two methods are equally valid.

Conclusions

The matrix shift method presented in this study can be used for calculation of dose distribution for a brachytherapy stepping source as a quicker tool compared to other routine Monte Carlo based methods.  相似文献   

18.

Aim

To investigate the feasibility of dose escalation using rapid arc (RA) and Helical Tomotherapy (HT) for patients with upper, middle and distal esophageal carcinomas, even for large tumor volumes.

Background

In esophageal cancer, for patients with exclusive radio-chemotherapy, local disease control remains poor. Planning study with dose escalation was done for two sophisticated modulated radiotherapy techniques: Rapid arc against Tomotherapy.

Materials and methods

Six patients treated with a RA simultaneous integrated boost (SIB) of 60 Gy were re-planned for RA and HT techniques with a SIB dose escalated to 70 Gy. Dose volume histogram statistics, conformity indices and homogeneity indices were analyzed. For a given set of normal tissue constraints, the capability of each treatment modality to increase the GTV dose to 70 Gy was investigated.

Results

Either HT or VMAT may be used to escalate the dose delivered in esophageal tumors while maintaining the spinal cord, lung and heart doses within tolerance. Adequate target coverage was achieved by both techniques. Typically, HT achieved better lung sparing and PTV coverage than did RA.

Conclusions

Dose escalation for esophageal cancer becomes clinically feasible with the use of RA and HT. This promising result could be explored in a carefully controlled clinical study which considered normal tissue complications and tumor control as endpoints.  相似文献   

19.

Background

To make a radiobiological comparison, for high risk prostate cancer (T3a, PSA > 20 ng/ml or Gleason > 7) of two radiotherapy treatment techniques. One technique consists of a treatment in three phases of the pelvic nodes, vesicles and prostate using a conventional fractionation scheme of 2 Gy/fraction (SIMRT). The other technique consists of a treatment in two phases that gives simultaneously different dose levels in each phase, 2 Gy/fraction, 2.25 Gy/fraction and 2.5 Gy/fraction to the pelvic nodes, vesicles and prostate, respectively (SIBIMRT).

Materials and methods

The equivalent dose at fractionation of 2 Gy (EQD2), calculated using the linear quadratic model with α/βprostate = 1.5 Gy, was the same for both treatment strategies. For comparison the parameters employed were D95, mean dose and Tumour Control Probabilities for prostate PTV and D15, D25, D35, D50, mean dose and Normal Tissue Complication Probabilities for the rectum and bladder, with physical doses converted to EQD2. Parameters were obtained for α/βprostate = 1.5, 3 and 10 Gy and for α/βoar = 1, 2, 3, 4, 6 and 8.

Results

For prostate PTV, both treatment strategies are equivalent for α/βprostate = 1.5 Gy but for higher α/βprostate, EQD2 and TCP, decrease for the SIBIMRT technique. For the rectum and bladder when α/βoar ≤ 2 Gy, EQD2 and NTCP are lower for the SIMRT technique or equal in both techniques. For α/βoar ≥ 2–3 Gy, EQD2 and NTCP increase for the SIMRT treatment.

Conclusions

A comparison between two radiotherapy techniques is presented. The SIBIMRT technique reduces EQD2 and NTCP for α/βoar from 2 to 8 Gy.  相似文献   

20.

Aim

The purpose of this study was to evaluate acute and late toxicity and the locoregional control in patients treated with hypofractionated radical radiotherapy 2.25 Gy/fraction/day for early glottic carcinoma.

Materials and methods

A retrospective analysis was performed of 27 patients, stage T1–T2 N0 glottic squamous cell carcinoma, that underwent radical RT from April 2008 to October 2011. The mean age was 64.6 years (range 36–81). Seventeen patients were staged T1a, 3 patients T1b and 7 patients T2. All patients were 3D planned and treated in a 6 MV LINAC, 2.25 Gy/fraction/5 days per week, to a total dose between 63 Gy and 67.5 Gy. Biological Effective Dose (BED (α/β = 10)) ranged from 77.18 Gy to 82.69 Gy and EQD2 from 64.31 Gy to 68.91 Gy. Patients were evaluated in periodic follow-up. Toxicity was evaluated according to RTOG Toxicities Scales.

Results

With a median follow-time of 24.7 months (range 3.6–44.2 months), no evidence of locoregional recurrence was observed. The treatment was well tolerated and no unscheduled interruptions in treatments for toxicity were documented, with the median overall treatment time of 41 days (range 38–48). Only grades 1 and 2 acute toxicity were observed and no evidence of severe late toxicity.

Conclusion

The authors believe that this moderately hypofractionated scheme can provide a good locoregional control for T1–T2 glottic carcinomas with no increase of toxicity. As the limitation of this work is the reduced number of patients and the lack of long term follow-up, the authors hope to update this retrospective study in the future in order to improve the power of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号