首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vitamin D and bone   总被引:5,自引:0,他引:5  
It is now well established that supraphysiological doses of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] stimulate bone resorption. Recent studies have established that osteoblasts/stromal cells express receptor activator of NF-kappaB ligand (RANKL) in response to several bone-resorbing factors including 1alpha,25(OH)(2)D(3) to support osteoclast differentiation from their precursors. Osteoclast precursors which express receptor activator of NF-kappaB (RANK) recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage-colony stimulating factor (M-CSF). Osteoprotegerin (OPG) acts as a decoy receptor for RANKL. We also found that daily oral administration of 1alpha,25(OH)(2)D(3) for 14 days to normocalcemic thyroparathyroidectomized (TPTX) rats constantly infused with parathyroid hormone (PTH) inhibited the PTH-induced expression of RANKL and cathepsin K mRNA in bone. The inhibitory effect of 1alpha,25(OH)(2)D(3) on the PTH-induced expression of RANKL mRNA occurred only with physiological doses of the vitamin. Supraphysiological doses of 1alpha,25(OH)(2)D(3) increased serum Ca and expression of RANKL in vivo in the presence of PTH. These results suggest that the bone-resorbing activity of vitamin D does not occur at physiological dose levels in vivo. A certain range of physiological doses of 1alpha,25(OH)(2)D(3) rather suppress the PTH-induced bone resorption in vivo, supporting the concept that 1alpha,25(OH)(2)D(3) or its derivatives are useful for the treatment of various metabolic bone diseases such as osteoporosis and secondary hyperparathyroidism.  相似文献   

2.
Osteopontin as a positive regulator in the osteoclastogenesis of arthritis   总被引:2,自引:0,他引:2  
We examined the role of osteopontin (OPN) in the osteoclastogenesis of arthritis using collagen-induced arthritis (CIA). Cells from arthritic joints of wild-type (OPN +/+) mice spontaneously developed bone-resorbing osteoclast-like cells (OCLs). The cultured cells showed an enhanced expression of receptor activator of nuclear factor kappaB ligand (RANKL) and a decreased expression of osteoprotegerin (OPG). The addition of OPG reduced the number of OCLs, indicating that the osteoclastogenesis depends on the RANK/RANKL/OPG system. The cells also produced OPN abundantly and anti-OPN neutralizing antibodies suppressed the development of OCLs. Moreover, the addition of OPN increased the expression of RANKL and augmented differentiation of OCLs from OPN-deficient (OPN -/-) cells. OPN, like the combination of 1alpha,25-dihydroxyvitamin D(3) and dexamethasone, also enhanced the RANKL expression and decreased OPG expression in a stromal cell line, ST2. These results suggest that OPN acts as a positive regulator in the osteoclastogenesis of arthritis through the RANK/RANKL/OPG system.  相似文献   

3.
The differentiation and activity of osteoclasts are positively and negatively controlled by receptor activator of nuclear factor-kappaB ligand (RANKL), which is expressed on the surface of osteoblasts and stromal cells, and its decoy receptor osteoprotegerin (OPG), which is secreted by osteoblasts and stromal cells, respectively. The expression of the genes for RANKL and OPG is regulated by 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)]. Runt-related gene-2 (Runx-2) is essential for osteoblast differentiation and there are several reports that Runx-2 is involved in osteoclast formation. Therefore, to clarify the role of Runx-2 in osteoclastogenesis, we designed a series of experiments using C2 cells and C6 cells, which are derived from calvariae of runx2-deficient mice. Treatment of C2 cells and C6 cells with 1alpha,25(OH)(2)D(3) for 2-4 days increased and decreased the levels of expression of the mRNAs for RANKL and OPG, respectively, and the effects were dose-dependent. However, by day 8, the level of RANKL mRNA had fallen and that of OPG mRNA had risen. Furthermore, C6 cells induced the differentiation of mouse spleen cells into tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated cells (osteoclast-like cells) in the presence of 10(-7)M 1alpha,25(OH)(2)D(3). Such formation of osteoclast-like cells was inhibited by exogenous OPG in a dose-dependent manner. Thus, our findings indicate that Runx-2 is not essential for the expression of RANKL and OPG, and the formation of osteoclast-like cells.  相似文献   

4.
5.
Receptor activator of NF-kappaB ligand (RANKL) is a membrane-bound or soluble cytokine essential for osteoclast differentiation, whereas the decoy receptor osteoprotegerin (OPG) masks RANKL activity. In mouse serum, both soluble RANKL and OPG are detectable. We observed that mice injected with LPS showed significantly down-regulated serum RANKL levels, whereas serum OPG levels were up-regulated. However, the roles of RANKL and OPG in innate immunity remain obscure. We found that RANKL pretreatment suppressed production of proinflammatory cytokines in macrophages in response to stimulation by bacteria and their components. Furthermore, such RANKL-induced tolerance in macrophages was inhibited by GM-CSF treatment, which blocks RANKL signaling. RANKL-induced tolerance occurred in the absence of c-Fos, which is essential for osteoclast differentiation. In mice lacking OPG, LPS-induced production of proinflammatory cytokines was reduced, whereas in mice lacking RANKL, it was increased, and lethality following LPS injection was also elevated, suggesting that constitutive activities of RANKL suppress cytokine responsiveness to LPS in vivo. Strikingly, prior administration of RANKL protected mice from LPS-induced death. These data reveal prophylactic potential of RANKL in acute inflammatory diseases.  相似文献   

6.
Macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) induce the differentiation of bone marrow macrophages (BMMs) into osteoclasts. To delineate mechanisms involved, the effect of M-CSF on the production of osteoprotegerin (OPG), decoy receptor of RANKL, in BMMs was investigated. Mouse bone marrow cells were cultured with M-CSF for 4 days and adherent cells formed were used as BMMs. BMMs were cultured with or without M-CSF, and analyzed for expression of OPG and receptor activator of NF-kappaB (RANK; receptor for RANKL) mRNAs by real-time polymerase chain reaction and secretion of OPG by enzyme-linked immunosorbent assay. BMMs expressed macrophage markers, CD115 (c-fms), Mac-1 and F4/80, and showed phagocytotic activity. In addition, BMMs expressed OPG mRNA and secreted OPG into medium. M-CSF inhibited both the OPG mRNA expression and the OPG secretion dose-dependently and reversibly. The expression of RANK mRNA was not significantly affected by M-CSF. The results showed that M-CSF suppresses the OPG production in BMMs, which may increase the sensitivity of BMMs to RANKL.  相似文献   

7.
Statins stimulate bone formation partly by inducing osteoblast differentiation, although there is controversy about the effects of statins on bone mineral density and fracture risk. Several studies have revealed that statins suppress bone resorption. However, the mechanism by which statins inhibit bone resorption is still unclear. The present study was performed to clarify the effects of statins on osteoclast formation as well as the levels of osteoprotegerin (OPG) and receptor activator of NFkappaB ligand (RANKL) mRNA in mouse bone-cell cultures by semiquantitative RT-PCR. 10(-8) M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] significantly stimulated osteoclast formation and 10(-6) M statins (mevastatin and simvastatin) significantly antagonized osteoclast formation stimulated by 1,25(OH)2D3 in mouse bone-cell cultures, including both osteoblasts and osteoclasts. 10(-6) M mevastatin and simvastatin increased the level of OPG mRNA in mouse bone-cell cultures. On the other hand, 10(-6) M mevastatin and simvastatin inhibited the level of RANKL mRNA in these cultures. In conclusion, the present study demonstrates that statins inhibit osteoclast formation in mouse bone-cell cultures. Moreover, statins also increased and decreased the levels of OPG and RANKL mRNA expression in these cultures, respectively. The modulation of OPG/RANKL may be involved in the inhibition of osteoclast formation by statins.  相似文献   

8.
The receptor activator of NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), are the important proteins involved in osteoclastogenesis. In this study, we investigated the expressions of RANKL and OPG in cultured human periodontal ligament cells derived from deciduous teeth (DPDL cells) and their roles in osteoclastogenesis. Northern blotting revealed that the OPG mRNA was down-regulated by application of 10(-8) M 1 alpha, 25(OH)2 vitamin D3 [1,25-(OH)2D3] and 10(-7) M dexamethasone (Dex). In contrast, RANKL mRNA was up-regulated by the same treatment. Western blotting demonstrated a decrease in OPG following application of 1, 25-(OH)2D3 and Dex. Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs) were induced when DPDL cells were co-cultured with mouse bone marrow cells in the presence of 1,25-(OH)2D3 and Dex. TRAP-positive MNCs increased significantly when the DPDL cells were co-cultured with bone marrow cells in the presence of anti-human OPG antibody together with 1, 25-(OH)2D3 and Dex. These results indicate that PDL cells derived from deciduous teeth synthesize both RANKL and OPG and could regulate the differentiation of osteoclasts.  相似文献   

9.
The role that androgens play in the regulation of bone metabolism has been substantiated in animals and humans. We previously demonstrated that testosterone inhibits osteoclast differentiation stimulated by parathyroid hormone through the androgen receptor in mouse bone-cell cultures. However, the details of this mechanism are still unknown. The present study was aimed at examining whether testosterone would affect the mRNA levels of osteoprotegerin (OPG) and receptor activator of Nf kappa B ligand (RANKL) in mouse bone-cell cultures as well as mouse osteoblastic cell-line, MC3T3-E1 cells by employing semi-quantitative RT-PCR. Testosterone increased OPG mRNA expression in both mouse bone-cell cultures and MC3T3-E1 cells. 10-8 M PTH-(1-34) as well as 10-8M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibited OPG mRNA expression in mouse bone cells. 10-8 M testosterone antagonized OPG mRNA expression inhibited by 10-8 M PTH-(1-34), but failed to affect OPG mRNA expression inhibited by 10-8 M 1,25(OH)2D3. 10-8 M alpha-dehydrotestosterone, a non-aromatizable androgen, increased OPG mRNA expression. On the other hand, testosterone did not affect RANKL mRNA expression in MC3T3-E1 or mouse bone cells. In conclusion, the present study demonstrated that testosterone increased OPG mRNA expression in mouse bone-cell cultures and the osteoblastic cell line. These effects are likely to take place through the androgen receptor.  相似文献   

10.
Although high inorganic phosphate (Pi) concentration in culture media directly inhibits generation of new osteoclasts and also inhibits bone resorption by mature osteoclasts, its precise mechanism and the physiological role have not been elucidated. The present study was performed to investigate these issues. Increase in extracellular Pi concentration ([Pi](e)) (2.5-4 mM) concentration dependently inhibited 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or parathyroid hormone (PTH)-(1-34)-induced osteoclast-like cell formation from unfractionated bone cells in the presence of stromal cells. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited 1,25(OH)(2)D(3)-, PTH-(1-34)-, or receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced osteoclast-like cell formation from hemopoietic blast cells in the absence of stromal cells. Increase in [Pi](e) (2.5-4 mM) dose dependently stimulated the expression of osteoprotegerin (OPG) mRNA and increased the expression of OPG mRNA suppressed by PTH-(1-34) or 1,25(OH)(2)D(3) in unfractionated bone cells, while it did not affect RANKL mRNA. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited the bone-resorbing activity of isolated rabbit osteoclasts. Increase in [Pi](e) (4 mM) induced the apoptosis of isolated rabbit osteoclasts while it did not affect the apoptosis of osteoclast precursor cells and mouse macrophage-like cell line C7 cells that can differentiate into osteoclasts in the presence of RANKL and M-CSF. These results indicate that increase in [Pi](e) inhibits osteoclast differentiation both by up-regulating OPG expression and by direct action on osteoclast precursor cells. It is also indicated that increase in [Pi](e) inhibits osteoclastic activity at least in part by the direct induction of apoptosis of osteoclasts.  相似文献   

11.
It is known that pharmacological or toxic doses of vitamin D induce bone resorption both in vivo and in vitro, whereas physiological doses of the vitamin have a protective effect on bone in vivo. To investigate the discrepancies of the dose-dependent effect of vitamin D on bone resorption, we examined the in vivo effect of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on the expression of the receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) and osteoprotegerin (OPG) mRNAs in bone of thyroparathyroidectomized (TPTX) rats infused with or without parathyroid hormone (PTH). Continuous infusion of 50 ng/h of PTH greatly increased the expression of RANKL mRNA in bone of TPTX rats. Expression of OPG mRNA was not altered by PTH infusion. When graded doses of 1,25(OH)(2)D(3) was daily administered orally for 14 days to normocalcemic TPTX rats constantly infused with PTH, 0.01 and 0.1 microg/kg of 1,25(OH)(2)D(3) inhibited the PTH-induced RANKL mRNA expression, but 0.5 microg/kg of the vitamin did not inhibit it. Regulator of G protein signaling-2 (RGS-2) gene expression was suppressed by 1,25(OH)(2)D(3) dose-dependently, but PTH/PTHrP receptor mRNA expression was not altered. Bone morphometric analyses revealed that 1,25(OH)(2)D(3) suppressed PTH-induced osteoclast number in vivo. These results suggest that pharmacological or toxic doses of 1,25(OH)(2)D(3) stimulate bone resorption by inducing RANKL, but a certain range of physiological doses of the vitamin inhibit PTH-induced bone resorption, the latter mechanism appeared to be mediated, at least in part, by the suppression of the PTH/PTHrP receptor-mediated signaling.  相似文献   

12.
The presence of a network of peptidergic nerve fibers in the skeleton, expressing several neuropeptides including vasoactive intestinal peptide (VIP), has been demonstrated. This observation, together with our findings in vitro showing that VIP can regulate the activities of osteoblasts and osteoclasts as well as the recruitment of osteoclasts, has suggested the existence of a neuro-osteogenic interplay in bone metabolism. In the present study, the effects of VIP and pituitary adenylate cyclase-activating polypeptide (PACAP), two members of the VIP/secretin/glucagon superfamily, on osteoclast formation and mRNA expression of three key regulatory proteins involved in osteoclast formation have been investigated. VIP, PACAP-27, and PACAP-38, at concentrations of 10(-6) M, all significantly inhibited formation of tartrate-resistant acid phosphatase-positive multinuclear cells (TRAP + MNC) in mouse bone marrow cultures stimulated by 1, 25(OH)(2)-vitamin D3 (D3; 10(-8) M). By using semiquantitative RT-PCR, it was found that D3 upregulated the mRNA expressions of receptor activator of NF-kappaB ligand (RANKL) and receptor activator of NF-kappaB (RANK), whereas the expression of osteoprotegerin (OPG) was downregulated in mouse bone marrow cultures stimulated by D3 for 7 days. Both VIP and PACAP-38 decreased the stimulatory effects of D3 on RANKL and RANK expression, whereas the inhibitory effect of D3 on OPG expression was reversed by VIP and PACAP-38. These observations indicate that the inhibitory effects of VIP and PACAP on osteoclast recruitment are due to regulation of the expression of key proteins involved in later stages of osteoclast differentiation.  相似文献   

13.
14.
Receptor activator of NF-kappaB ligand (RANKL) is an essential mediator of osteoclast formation, function, and survival. The effects of RANKL are inhibited by a soluble decoy receptor called osteoprotegerin (OPG). Total ablation of RANKL in knockout mice leads to high bone mass, lymph node agenesis, and altered lymphocyte differentiation. In contrast, RANKL inhibition via OPG suppresses bone resorption but not inflammation in animal models of inflammatory bone loss. This suggests that the immune phenotype of RANKL knockout mice is related to total RANKL ablation. We hypothesized that prenatal RANKL inhibition via OPG overexpression would suppress bone resorption without influencing lymph node formation or subsequent immune responses. Transgenic rats were created, wherein soluble OPG was overexpressed by 100-fold vs wild type (WT) controls, by gestational day 11 (i.e., before lymph node formation). The structure of lymph nodes, spleen, and thymus of OPG-transgenic (OPG-Tg) animals were comparable to those of age-matched WT rats at gestational day 19 and in adulthood. The OPG-Tg neonates had elevated bone mass, confirming the prenatal inhibition of RANKL. Adult OPG-Tg rats and OPG-Tg mice exhibited no significant functional alterations relative to WT controls when subjected to immune challenges to test for altered innate and humoral responses (e.g., contact hypersensitivity to oxazolone, IgM response to Pneumovax, IgG response to keyhole limpet hemocyanin, or cytokine response to LPS). In summary, prenatal RANKL inhibition did not impair lymph node development, nor did continuous life-long RANKL inhibition cause obvious changes in innate or humoral immune responses in mice or rats.  相似文献   

15.
Prolactin (PRL) is the primary hormone that, in conjunction with local factors, leads to lobuloalveolar development during pregnancy. Recently, receptor activator of NF-kappaB ligand (RANKL) has been identified as one of the effector molecules essential for lobuloalveolar development. The molecular mechanisms by which PRL may induce RANKL expression have not been carefully examined. Here we report that RANKL expression in the mammary gland is developmentally regulated and dependent on PRL and progesterone, whereas its receptor RANK (receptor activator of NF-kappaB) and decoy receptor osteoprotegerin (OPG) are constitutively expressed at all stages in both normal (PRL+/-) and prolactin knockout (PRL-/-) mice. In vitro, PRL markedly increased RANKL expression in primary mammary epithelial cells and RANKL-luciferase reporter activity in CHOD6 cells, which constitutively express the PRL receptor. We identified a gamma-interferon activation sequence (GAS) in the region between residues -965 to -725 of the RANKL promoter, which conferred a PRL response. Using dominant negative mutants of recombinant Jak2 and Stat5 in CHOD6 cells, and by reconstituting the Jak2/Stat5 pathway in COS7 cells, we determined that Jak2 and Stat5a are essential for the PRL-induced RANKL expression in mammary gland.  相似文献   

16.
To better understand the complex roles of transforming growth factor-beta (TGF-beta) in bone metabolism, we examined the impact of a range of TGF-beta concentrations on osteoclast differentiation. In co-cultures of support cells and spleen or marrow osteoclast precursors, low TGF-beta concentrations stimulated while high concentrations inhibited differentiation. We investigated the influences of TGF-beta on macrophage colony stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) expression and found a dose dependent inhibition of M-CSF expression. RANKL expression was elevated at low TGF-beta concentrations with a less dramatic increase in OPG. Addition of OPG blocked differentiation at the stimulatory TGF-beta dose. Thus, low TGF-beta concentrations elevated the RANKL/OPG ratio while high concentrations did not, supporting that, at low TGF-beta concentrations, there is sufficient M-CSF and a high RANKL/OPG ratio to stimulate differentiation. At high TGF-beta concentrations, the RANKL/OPG ratio and M-CSF expression were both repressed and there was no differentiation. We examined whether TGF-beta-mediated repression of osteoclasts differentiation is due to these changes by adding M-CSF and/or RANKL and did not observe any impact on differentiation repression. We studied direct TGF-beta impacts on osteoclast precursors by culturing spleen or marrow cells with M-CSF and RANKL. TGF-beta treatment dose-dependently stimulated osteoclast differentiation. These data indicate that low TGF-beta levels stimulate osteoclast differentiation by impacting the RANKL/OPG ratio while high TGF-beta levels repress osteoclast differentiation by multiple avenues including mechanisms independent of the RANKL/OPG ratio or M-CSF expression regulation.  相似文献   

17.
Interleukin-1alpha (IL-1alpha) is one of the most potent bone-resorbing factors involved in the bone loss that is associated with inflammation. We examined the effect of the inflammatory mediator IL-1alpha on the expression of macrophage colony-stimulating factor (M-CSF), osteoprotegerin (OPG), and prostaglandin E2 (PGE2) in rat osteoblasts, and the indirect effect of IL-1alpha on the formation of osteoclast-like cells. Osteoblasts were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with or without 100 units/ml of IL-1alpha for up to 14 days. The gene and protein expression of M-CSF and OPG were estimated by determining mRNA levels using the real-time polymerase chain reaction and protein levels using Western blot analysis. PGE2 expression was determined using an enzyme-linked immunosorbent assay. The formation of osteoclast-like cells was estimated using tartrate-resistant acid phosphatase (TRAP) staining of osteoclast precursors in culture with conditioned medium from IL-1alpha-treated osteoblasts and the soluble receptor activator of NF-kappaB ligand (RANKL). M-CSF and PGE2 expression in osteoblasts increased markedly in cells cultured with IL-1alpha, whereas OPG expression decreased. The conditioned medium containing M-CSF and PGE2 produced by IL-1alpha-treated osteoblasts and soluble RANKL increased the TRAP staining of osteoclast precursors. These results suggest that IL-1alpha stimulated the formation of osteoclast-like cells via an increase in M-CSF and PGE2 production, and a decrease in OPG production by osteoblasts.  相似文献   

18.
IL-6, leukemia inhibitory factor (LIF), and oncostatin M (OSM) are IL-6-type cytokines that stimulate osteoclast formation and function. In the present study, the resorptive effects of these agents and their regulation of receptor activator of NF-kappaB ligand (RANKL), RANK, and osteoprotegerin (OPG) were studied in neonatal mouse calvaria. When tested separately, neither human (h) IL-6 nor the human soluble IL-6R (shIL-6R) stimulated bone resorption, but when hIL-6 and the shIL-6R were combined, significant stimulation of both mineral and matrix release from bone explants was noted. Semiquantitative RT-PCR showed that hIL-6 plus shIL-6R enhanced the expression of RANKL and OPG in calvarial bones, but decreased RANK expression. Human LIF, hOSM, and mouse OSM (mOSM) also stimulated 45Ca release and enhanced the mRNA expression of RANKL and OPG in mouse calvaria, but had no effect on the expression of RANK. In agreement with the RT-PCR analyses, ELISA measurements showed that both hIL-6 plus shIL-6R and mOSM increased RANKL and OPG proteins. 1,25-Dihydroxyvitamin D3 (D3) also increased the RANKL protein level, but decreased the protein level of OPG. OPG inhibited 45Ca release stimulated by RANKL, hIL-6 plus shIL-6R, hLIF, hOSM, mOSM, and D3. An Ab neutralizing mouse gp130 inhibited 45Ca release induced by hIL-6 plus shIL-6R. These experiments demonstrated stimulation of calvarial bone resorption and regulation of mRNA and protein expression of RANKL and OPG by D3 and IL-6 family cytokines as well as regulation of RANK expression in preosteoclasts/osteoclasts of mouse calvaria by D3 and hIL-6 plus shIL-6R.  相似文献   

19.
IL-17 is a T cell-derived proinflammatory cytokine in experimental arthritis and is a stimulator of osteoclastogenesis in vitro. In this study, we report the effects of IL-17 overexpression (AdIL-17) in the knee joint of type II collagen-immunized mice on bone erosion and synovial receptor activator of NF-kappa B ligand (RANKL)/receptor activator of NF-kappa B/osteoprotegerin (OPG) expression. Local IL-17 promoted osteoclastic bone destruction, which was accompanied with marked tartrate-resistant acid phosphatase activity at sites of bone erosion in cortical, subchondral, and trabecular bone. Accelerated expression of RANKL and its receptor, receptor activator of NF-kappa B, was found in the synovial infiltrate and at sites of focal bone erosion, using specific immunohistochemistry. Interestingly, AdIL-17 not only enhanced RANKL expression but also strongly up-regulated the RANKL/OPG ratio in the synovium. Comparison of arthritic mice from the AdIL-17 collagen-induced arthritis group with full-blown collagen-arthritic mice having similar clinical scores for joint inflammation revealed lower RANKL/OPG ratio and tartrate-resistant acid phosphatase activity in the latter group. Interestingly, systemic OPG treatment prevented joint damage induced by local AdIL-17 gene transfer in type II collagen-immunized mice. These findings suggest T cell IL-17 to be an important inducer of RANKL expression leading to loss of the RANKL/OPG balance, stimulating osteoclastogenesis and bone erosion in arthritis.  相似文献   

20.
Porphyromonas gingivalis is a major etiological pathogen of adult periodontitis characterized by alveolar bone resorption. Vascular endothelial cells supply many inflammatory cytokines into periodontal tissue. However, whether the cells contribute to bone metabolism in periodontitis remains unknown. In this study, we investigated the effect of P. gingivalis on osteoprotegerin (OPG) and receptor activator of NF-kappaB ligand (RANKL) production, both of which are key regulators of bone metabolism, in human microvascular endothelial cells (HMVECs). We showed that P. gingivalis upregulated expression of OPG but not RANKL mRNA in HMVEC. P. gingivalis induced NF-kappaB activation, and the induction of OPG in HMVEC by the pathogen was blocked by the inhibitors of NF-kappaB. In addition, incubation of OPG with P. gingivalis supernatant resulted in loss of the protein. These results indicate that P. gingivalis-stimulated HMVEC secrete OPG via a NF-kappaB-dependent pathway, while the OPG is partly degraded by the bacteria. Thus, microvascular endothelial cells can act as a source of OPG and thereby may play an important role in regulating bone metabolism in periodontitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号