首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Belonging to the genus Dendrobium of Orchidaceae, Dendrobium moniliforme is an endangered species with disjunct distribution in East Asia, possessing significant medicinal value. To investigate its phylogeography, this study compared sequences of two mitochondrial DNA (mtDNA) fragments (nad 1/b-c and nad 7/2-3) from 143 samples of 18 natural populations of D. moniliforme almost covering the entire range of the Sino-Japanese Floristic Region (SJFR) of East Asia. As a result, a total of 30 mtDNA haplotypes were identified in these populations which revealed high levels of haplotype diversity (H d  = 0.8733) and total genetic diversity (H T  = 0.8886). Additionally, G ST value being significantly lower (0.451) than N ST value (0.722) (P < 0.05) indicated the presence of strong phylogeographic structure in these populations, and the network of mtDNA haplotypes showed that all haplotypes were divided into two clades (A and B). Haplotype overlap was observed among several D. moniliforme population groups in mainland China, suggesting the occurrence of ongoing and/or historical gene flow among them. No common haplotypes were shared by D. moniliforme populations from mainland China and the CKJ Islands (representing Taiwan [China], South Korea, and Japan collectively), pointing to their allopatric evolution in the two regions. Moreover, mismatch distribution analysis and neutral test of mtDNA data rejected the population expansion model. According to the mtDNA-based results, we infer that multiple refugia for D. moniliforme existed in the SJFR of East Asia during the Quaternary glacial period.  相似文献   

2.
We examined phylogeographic differentiation of the red-eyed grass snake (Natrix astreptophora) using 1984 bp of mtDNA and 13 microsatellite loci from specimens collected across its distribution range in southwestern Europe and northwestern Africa. Based on phylogenetic analyses of mtDNA, European N. astreptophora constituted the sister clade to a weakly supported North African clade comprised of two deeply divergent and well-supported clades, one corresponding to Moroccan snakes and the other to snakes from Algeria and Tunisia. This tripartite differentiation was confirmed by analyses of microsatellite loci. According to a fossil-calibrated molecular clock, European and North African N. astreptophora diverged 5.44 million years ago (mya), and the two Maghrebian clades split 4.64 mya. These dates suggest that the radiation of the three clades was initiated by the environmental changes related to the Messinian Salinity Crisis and the reflooding of the Mediterranean Basin. The differentiation of N. astreptophora, with distinct clades in the Iberian Peninsula and in the western and eastern Maghreb, corresponds to a general phylogeographic paradigm and resembles the differentiation found in another co-distributed Natrix species, the viperine snake (N. maura). Despite both species being good swimmers, the Strait of Gibraltar constitutes a significant biogeographic barrier for them. The discovery that North Africa harbours two endemic lineages of N. astreptophora necessitates more conservation efforts for these imperilled snakes.  相似文献   

3.
Drosophila incompta belongs to the flavopilosa group of Drosophila, and has a restricted ecology, being adapted to flowers of Cestrum as feeding and oviposition sites. We sequenced, assembled, and characterized the complete mitochondrial genome (mtDNA) of D. incompta. In addition, we performed phylogenomic and polymorphism analyses to assess evolutionary diversification of this species. Our results suggest that this genome is syntenic with the other published mtDNA of Drosophila. This molecule contains 15,641 bp and encompasses two rRNA, 22 tRNA and 13 protein-coding genes. Regarding nucleotide composition, we found a high A?T bias (76.6 %). The recovered phylogenies indicate D. incompta in the virilisrepleta radiation, as sister to the virilis or repleta groups. The most interesting result is the high degree of polymorphism found throughout the D. incompta mitogenome, revealing pronounced intrapopulational variation. Furthermore, intraspecific nucleotide diversity levels varied between different regions of the genome, thus allowing the use of different mitochondrial molecular markers for analysis of population structure of this species.  相似文献   

4.
The uplift of mountains and climatic oscillations are important for understanding of the demographic history and genetic structure of species. We investigated the biogeographic history of the boreal tree species Ulmus lamellosa (Ulmaceae) in China, by using a combined phylogeographic and paleodistribution modeling approach. In this study, 14 populations of endangered U. lamellosa were analyzed by using chloroplast DNA (cpDNA) sequences. A high level of genetic differentiation (Φ ST = 86.22%) among populations with a significant phylogeographic pattern (N ST > G ST, P < 0.05) was found in U. lamellosa. Ten haplotypes were detected by combining chloroplast DNA data, and haplotype 3 (H3) was found to be common and widespread. The intraspecific divergence of all U. lamellosa cpDNA haplotypes (9.27 Ma; 95% HPD 5.17–13.33 Ma) most probably began in the late Miocene. The pairwise difference among haplotypes and neutrality tests (Tajima’s D and Fu’s Fs statistic) indicated that populations of U. lamellosa, except group I, have not experienced recent sudden expansions. Multiple refuge areas were identified across the entire distribution ranges of U. lamellosa. The low level of gene flow (Nm = 0.14) among populations may have resulted from isolation resulting from distance and complex topography during climatic oscillations; this isolation was probably the major process that shaped the present distribution of haplotypes. These results support the hypothesis that U. lamellosa persisted in situ during glaciations and occupied multiple localized glacial refugia, contrary to the hypotheses of large-scale range contraction and long-distance southward migration.  相似文献   

5.
Understanding genetic connectivity is fundamental for ecosystem-based management of marine resources. Here we investigate the metapopulation structure of the edible sea cucumber Holothuria edulis Lesson, 1830 across Okinawa Island, Japan. This species is of economic and ecological importance and is distributed from the Red Sea to Hawai‘i. We examined sequence variation in fragments of mitochondrial cytochrome oxidase subunit I (COI) and 16S ribosomal RNA (16S), and nuclear histone (H3) at six locations across Okinawa Island. We found higher haplotype diversity for mtDNA (COI: Hd = 0.69 and 16S: Hd = 0.67) and higher heterozygosity of nDNA (H3: H E = 0.39) in populations from the west coast of Okinawa compared to individuals from populations on the east coast (COI: Hd = 0.40; 16S: Hd = 0.21; H3: H E = 0.14). Overall population structure was significant (AMOVA results for COI: Φ ST = 0.49, P < 0.0001; 16S: Φ ST = 0.34, P < 0.0001; H3: Φ ST = 0.12, P < 0.0001). One population in the east, Uruma, showed elevated pairwise Φ ST values in comparisons with all other sites and a marked reduction of genetic diversity (COI: Hd = 0.25 and 16S: Hd = 0.24), possibly as a consequence of a shift to a more dominant asexual reproduction mode. Recent reports have indicated that coastal development in this area influences many marine organisms, and ecosystem degradation in this location could cause the observed decrease of genetic diversity and isolation of H. edulis in Uruma. Our study should provide valuable data to help with the urgently needed management of sea cucumber populations in Okinawa, and indicates particular attention needs to be paid to vulnerable locations.  相似文献   

6.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

7.
Given the impact of climate change on the availability of water resources, it becomes necessary the use of plant species well suited to planting on dryland sites. Eucalyptus cladocalyx, a native tree of South Australia, is capable of growing under relatively dry environments and saline soils. Two hundred twenty simple sequence repeat (microsatellites) markers, from a consensus linkage map of Eucalyptus, were selected to examine genetic diversity and population structure in a collection of E. cladocalyx introduced to southern Atacama Desert, Chile. A total of 130 microsatellites were successfully amplified, some of which are associated with quantitative traits of interest in Eucalyptus. Genetic analysis revealed a total of 457 alleles, ranging from 2 to 8 alleles per locus. A moderate level of genetic diversity (He = 0.492) and differentiation (FST = 0.086) was found among the populations. Mount Remarkable and Marble Range showed the highest and lowest level of genetic diversity, respectively. The Bayesian clustering analysis revealed three homogeneous genetic groups confirming that the individuals of E. cladocalyx from natural forest are highly and significantly structured. These results provide a novel information for the development of breeding strategies in E. cladocalyx by using marker-assisted selection in regions with low rainfall patterns.  相似文献   

8.
Vavilovia formosa is one of five genera in tribe Fabeae, (Fabaceae, Leguminosae) with close phylogenetic relationships to Pisum. It grows in subalpine and alpine levels in Armenia, Azerbaijan, Georgia, Iran, Iraq, Lebanon, Russia and Turkey and is recognized as an endangered and protected plant. This study was conducted to reveal its intraspecific variability, as well as to predict the past, extant and future species distribution range. We analysed 51 accessions with common phylogenetic markers (trnF-trnL, trnS-trnG, matK, rbcL, psbA-trnH and ITS). These represent in total up to 2551 bp of chloroplast and 664 bp of nuclear sequences per sample. Two populations from Turkey and Armenia were analysed for genetic diversity by AFLP. Leaf morphometry was conducted on 1457 leaflets from 43 specimens. Extracted bioclimatic parameters were used for niche-modelling approach. Analysis of cpDNA revealed two haplotypes, 12 samples from Armenia, Daghestan, Nakhichevan and Iran belonged to H1 group, while 39 samples of all Turkish and part of Armenian were in H2 group. The mean intrapopulation diversity based on AFLP was low (H E = 0.088) indicating limited outcrossing rate. A significantly positive correlation between geographical latitude and leaf area (\(\rho\) = 0.527, p < 0.05) was found. Niche modelling has shown temporal variation of predicted occurrence across the projected time periods. Vavilovia formosa has suffered a range reduction following climate warming after last glacial maximum, which classify this species as cold-adapted among the Fabeae species as well as a glacial relict.  相似文献   

9.
The three surviving ‘brush-tailed’ bettong species—Bettongia gaimardi (Tasmania), B. tropica (Queensland) and B. penicillata (Western Australia), are all classified as threatened or endangered. These macropodids are prolific diggers and are recognised as important ‘ecosystem engineers’ that improve soil quality and increase seed germination success. However, a combination of introduced predators, habitat loss and disease has seen populations become increasingly fragmented and census numbers decline. Robust phylogenies are vital to conservation management, but the extent of extirpation and fragmentation in brush-tailed bettongs is such that a phylogeny based upon modern samples alone may provide a misleading picture of former connectivity, genetic diversity and species boundaries. Using ancient DNA isolated from fossil bones and museum skins, we genotyped two mitochondrial DNA (mtDNA) genes: cytochrome b (266 bp) and control region (356 bp). These ancient DNA data were combined with a pre-existing modern DNA data set on the historically broadly distributed brush-tailed bettongs (~300 samples total), to investigate their phylogenetic relationships. Molecular dating estimates the most recent common ancestor of these bettongs occurred c. 2.5 Ma (million years ago), which suggests that increasing aridity likely shaped their modern-day distribution. Analyses of the concatenated mtDNA sequences of all brush-tailed bettongs generated five distinct and well-supported clades including: a highly divergent Nullarbor form (Clade I), B. tropica (Clade II), B. penicillata (Clades III and V), and B. gaimardi (Clade IV). The generated phylogeny does not reflect current taxonomy and the question remains outstanding of whether the brush-tailed bettongs consisted of several species, or a single widespread species. The use of nuclear DNA markers (single nucleotide polymorphisms and/or short tandem repeats) will be needed to better inform decisions about historical connectivity and the appropriateness of ongoing conservation measures such as translocations and captive breeding.  相似文献   

10.
Most perennial herbaceous plants are able to reproduce vegetatively as well as sexually. Sometimes, such plants may lose the capacity for sexual reproduction. We have studied the case of sterility in triploid populations (2n = 3x = 45) of Gladiolus tenuis M.Bieb. in a considerable part of its area of distribution. Initially, we recorded the presence of a large clone of G. tenuis to the east of the Volga River, as a result of isozyme analysis. We also used AFLP fingerprinting to genotype 55 samples from 10 populations of G. tenuis and one population of the closely related G. imbricutus L. This analysis revealed an extremely low genetic diversity in sterile triploid populations of G. tenuis and a rather high genetic diversity in fertile tetraploid populations (2n = 4x = 60) over most of the area of this species. Genetic distances between fertile and sterile populations of G. tenuis were similar to those between different species of gladioli. It appears that a single sterile genotype has spread vegetatively over 800 km, propagating by daughter corms. The study of the reproductive features of G. tenuis suggests that the cause of sterility may be self-incompatibility between individuals of the clone.  相似文献   

11.
12.
The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064–0.116 (all P = 0.001), pairwise G′′ST = 0.107–0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.  相似文献   

13.
PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD600, gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.  相似文献   

14.
Twenty four rhizobial strains were isolated from root nodules of Melilotus, Medicago and Trigonella plants growing wild in soils throughout Egypt. The nearly complete 16S rRNA gene sequence from each strain showed that 12 strains (50 %) were closely related to the Ensifer meliloti LMG6133T type strain with identity values higher than 99.0 %, that 9 (37.5 %) strains were more than 99 % identical to the E. medicae WSM419T type strain, and that 3 (12.5 %) strains showed 100 % identity with the type strain of N. huautlense S02T. Accordingly, the diversity of rhizobial strains nodulating wild Melilotus, Medicago and Trigonella species in Egypt is marked by predominance of two genetic types, E. meliloti and E. medicae, although the frequency of isolation was slightly higher in E. meliloti. Sequencing of the symbiotic nodC gene from selected Medicago and Melilotus strains revealed that they were all similar to those of the E. meliloti LMG6133T and E. medicae WSM419T type strains, respectively. Similarly, nodC sequences of strains identified as members of the genus Neorhizobium were more than 99 % identical to that of N. galegae symbiovar officinalis HAMBI 114.  相似文献   

15.
16.
Acacia senegal is endemic to dry forest and woodland ecosystems of Sub-Saharan Africa and provides both ecological and socio-economic benefits. However, these ecosystems are threatened by escalating human disturbances and fragmentation. To investigate the human impacts on genetic diversity and structure of A. senegal, we studied genetic variability and differentiation of 330 individual trees from 11 natural A. senegal populations, grouped into lightly and heavily disturbed, using 12 polymorphic nuclear microsatellite markers. Gene diversity (H E ) ranged from H E = 0.570 to H E = 0.632. Significant differences (P < 0.05) between the levels of disturbances are reported for mean gene diversity, number of alleles and allelic richness with lightly disturbed populations showing higher values. Overall, the indirect estimates of average outcrossing rates ranged from 0.794 (Kiserian) to 0.999 (Kampi ya Moto) with a mean of 0.997 suggesting a predominantly outcrossing species. There was no significant relationship (P > 0.05) detected between genetic and geographic distances, showing lack of isolation by distance. Analysis of population structure using unweighted pair group method with arithmetic mean and Bayesian model suggests presence of three gene pools as most probable, although most individuals showed mixed ancestry. The diversity and genetic structure reported in this study revealed negative impacts of human disturbance on A. senegal within this ecosystem. We recommend in-situ conservation strategies to safeguard the woodland ecosystem from further deforestation.  相似文献   

17.
Liposcelis bostrychophila (Psocoptera: Liposcelidae) is a widely distributed pest that can cause considerable economic losses and pose human health risks. Rapid development of insecticide resistance has made L. bostrychophila increasingly difficult to control. To obtain information potentially useful for pest management, genetic diversity and differentiation of L. bostrychophila from five geographic locations in China was studied using inter-simple sequence repeat (ISSR). A total of 104 loci were found by ISSR markers and amplified using 9 selected primers. The percentage of polymorphic bands (PPB) was 91.4%. Shannon’s information index (I) and Nei’s gene diversity (He) indicated high genetic diversity at the species level. Population differentiation (Gst = 0.484) was average in these populations. Analysis of molecular variation (AMOVA) indicated that genetic variation was mainly distributed within populations. Gene flow (Nm = 0.534) was moderate. Cluster analysis showed that genotypes isolated from the same locations displayed higher genetic similarity and permitted the grouping of isolates of L. bostrychophila into three distinct clusters. The correlation between genetic distance and geographic distance was not significant.  相似文献   

18.
Nine microsatellite loci for genetic analysis of three populations of the tropical tree Eugenia uniflora L. (pitanga or Brazilian cherry) from fragments of semideciduous forest were developed. We used the technique of building a (GA) n and (CA) n microsatellite-enriched library by capture with streptavidin-coated magnetic beads. We assessed the polymorphism of seven microsatellites in 84 mature trees found in three areas (Ribeirão Preto, Tambaú and São José do Rio Pardo), highly impacted by the agricultural practices, in a large region among Pardo river and Mogi-Guaçu river basins, in state of São Paulo, Brazil. All loci were polymorphic, and the number of alleles was high, ranging from 6 to 24, with a mean of 14.4. All stands showed the same high level of genetic diversity (mean H E  = 0.83) and a low genetic differentiation (mean F ST = 0.031), indicating that genetic diversity was higher within rather than among populations. Seven of the nine loci were highly variable, and sufficiently informative for E. uniflora. It was concluded that these new SSR markers can be efficiently used for gene flow studies.  相似文献   

19.
Genetic diversity among 43 petroleum hydrocarbon-degrading Pseudomonas belonging to four different species and the type strain Pseudomonas aeruginosa MTCC1034 was assessed by using restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR)-amplified 16S–23S rDNA intergenic spacer regions (ISRs) polymorphism. PCR amplification from all Pseudomonas species yielded almost identical ISR amplicons of “?” 800 bp and in nested PCR of “?” 550 bp. The RFLP analysis with MboI and AluI revealed considerable intraspecific variations within the Pseudomonas species. The dendrogram constructed on the basis of the PCR-RFLP patterns of 16S–23S rDNA intergenic spacer regions differentiated all the species into seven different clusters.  相似文献   

20.
The Arabian oryx (Oryx leucoryx) historically ranged across the Arabian Peninsula and neighboring countries until its extirpation in 1972. In 1963–1964 a captive breeding program for this species was started at the Phoenix Zoo (PHX); it ultimately consisted of 11 animals that became known as the ‘World Herd’. In 19781979 a wild population was established at the Shaumari Wildlife Reserve (SWR), Jordan, with eight descendants from the World Herd and three individuals from Qatar. We described the mtDNA and nuclear genetic diversity and structure of PHX and SWR. We also determined the long-term demographic and genetic viability of these populations under different reciprocal translocation scenarios. PHX displayed a greater number of mtDNA haplotypes (n = 4) than SWR (n = 2). Additionally, PHX and SWR presented nuclear genetic diversities of \(\bar{N}_{\text{A}}\) = 2.88 vs. 2.75, \(\bar{H}_{\text{O}}\) = 0.469 vs. 0.387, and \(\bar{H}_{\text{E}}\) = 0.501 vs. 0.421, respectively. Although these populations showed no signs of inbreeding (\(\bar{F}_{\text{IS}}\) ≈ 0), they were highly differentiated (\(G^{\prime\prime}_{\text{ST}}\) = 0.580; P < 0.001). Migration between PHX and SWR (Nm = 1, 4, and 8 individuals/generation) increased their genetic diversity in the short-term and substantially reduced the probability of extinction in PHX during 25 generations. Under such scenarios, maximum genetic diversities were achieved in the first generations before the effects of genetic drift became predominant. Although captive populations can function as sources of genetic variation for reintroduction programs, we recommend promoting mutual and continuous gene flow with wild populations to ensure the long-term survival of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号