首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Phylogeography and conservation genetics of Eld's deer (Cervus eldi)   总被引:6,自引:0,他引:6  
Eld's deer (Cervus eldi) is a highly endangered cervid, distributed historically throughout much of South Asia and Indochina. We analysed variation in the mitochondrial DNA (mtDNA) control region for representatives of all three Eld's deer subspecies to gain a better understanding of the genetic population structure and evolutionary history of this species. A phylogeny of mtDNA haplotypes indicates that the critically endangered and ecologically divergent C. eldi eldi is related more closely to C. e. thamin than to C. e. siamensis, a result that is consistent with biogeographic considerations. The results also suggest a strong degree of phylogeographic structure both between subspecies and among populations within subspecies, suggesting that dispersal of individuals between populations has been very limited historically. Haplotype diversity was relatively high for two of the three subspecies (thamin and siamensis), indicating that recent population declines have not yet substantially eroded genetic diversity. In contrast, we found no haplotype variation within C. eldi eldi or the Hainan Island population of C. eldi siamensis, two populations which are known to have suffered severe population bottlenecks. We also compared levels of haplotype and nucleotide diversity in an unmanaged captive population, a managed captive population and a relatively healthy wild population. Diversity indices were higher in the latter two, suggesting the efficacy of well-designed breeding programmes for maintaining genetic diversity in captivity. Based on significant genetic differentiation among Eld's deer subspecies, we recommend the continued management of this species in three distinct evolutionarily significant units (ESUs). Where possible, it may be advisable to translocate individuals between isolated populations within a subspecies to maintain levels of genetic variation in remaining Eld's deer populations.  相似文献   

2.
Low levels of genetic variation are thought to contribute significantly to the higher extinction rates of endemic island populations compared to their mainland counterparts. We used six microsatellite loci to compare the genetic structure of the endangered silver rice rat (Oryzomys argentatus) population in Saddlebunch Key, Florida to the mainland population of the closely related marsh rice rat (Oryzomys palustris natator) in Everglades National Park. Allelic richness and gene diversity are significantly lower in Saddlebunch Key than in the larger mainland population, and the two populations are significantly differentiated as measured by both F-statistics and Bayesian clustering methods. These findings support the classification of the Keys population as a “distinct vertebrate population” by the U.S. Fish and Wildlife Service. Current gene diversity (H E) is higher than expected under mutation-drift equilibrium in Saddlebunch Key, indicating a genetic bottleneck. The Keys population also exhibits a mode shift in its allele frequency distribution which suggests a very recent bottleneck has occurred and is consistent with reports of recent population declines. Although habitat loss and exotic species pose a more immediate and serious threat to silver rice rats, the continued loss of genetic variation may contribute to their long-term extinction risk due to inbreeding or by lowering the population’s ability to adapt to future environmental changes. The protection of habitat and the removal of introduced predators and competitors may help increase the population size of silver rice rats and lower their risk of extinction, both from a demographic and a genetic perspective.  相似文献   

3.
Common Terns nesting at Bermuda are isolated by 1,000–4,000?km from other populations of the species around the North Atlantic Ocean. This population experienced a severe demographic bottleneck as a result of a hurricane in 2003 and was subsequently re-established by four males and four females. Using seven microsatellite loci, we compared the genetic diversity of the pre- and post-bottleneck populations, compared the genetic profile of the Bermuda population with those of other populations around the North Atlantic Ocean and mainland Europe, and assessed the potential contribution of immigration to genetic diversity. We found a loss of genetic diversity (number of alleles and heterozygosity) in the post-bottleneck Bermudian population (4.6–2.9 and 0.56–0.52, respectively). We also report significant differentiation among all sampled locations (global FST?=?0.16) with no evidence for immigration into Bermuda. Common Terns from the Azores were genetically more similar to those from mainland North America than to those from Bermuda or mainland Europe. Our results suggest that the critically endangered population in Bermuda is genetically distinct and requires continued and enhanced conservation priority.  相似文献   

4.
Delphinium variegatum is subdivided into three subspecies: D. v. variegatum is widespread in central and northern California, while D. v. kinkiense (an endangered taxon) and D. v. thornei are endemic to San Clemente Island off the coast of southern California. Electrophoretic data for 19 loci were collected from 7 populations of the mainland subspecies and all 24 known populations of the two insular endemic subspecies. Populations of the widespread mainland subspecies have more polymorphic loci (33.6% vs. 24.5%) and more alleles per polymorphic locus (2.61 vs. 2.15) than the insular endemic subspecies. However, observed heterozygosities are lower in the mainland subspecies (0.041 vs. 0.071), presumably due to lower levels of outcrossing (t = 0.464 vs. 0.895). Expected heterozygosities are similar (0.064 vs. 0.074) due to lower alternative allele frequencies in populations of the mainland subspecies (mean q = 0.075 vs. 0.190). Populations of the two insular subspecies are almost equivalent genetically (mean I = 0.997) regardless of taxonomic designation or geographic location. In contrast, one of the mainland populations is genetically well differentiated from the others. If this exceptional population is excluded, the mainland subspecies partitions genetic diversity similarly to the island subspecies, with most variation being found within populations (G(ST) = 0.073 vs. 0.030).  相似文献   

5.
海南坡鹿的起源、进化及保护   总被引:1,自引:0,他引:1  
坡鹿是世界濒危物种,三个亚种分布在东南亚大陆,仅海南坡鹿种群分布在中国海南岛.2003年,国际社会的专家和学者提出了将海南坡鹿引入泰国亚种原分布区,重建已经绝灭野生种群的建议.在此种情况下,明确海南坡鹿的起源、与其它亚种间的系统发生关系、以及遗传多样性水平对有效保护坡鹿具有重要意义.本研究以线粒体DNA D-loop区490 bp基因片段为分子标记,比较分析了海南坡鹿、泰国亚种和缅甸亚种共35个样本的序列差异.我们所测的样本中,总共发现4种单倍型.所有21个海南坡鹿样品共享1种单倍型.利用最大似然法(ML)、最大简约法(MP)、邻接法(NJ)和贝叶斯法(Bayesian)构建的系统进化树表明海南坡鹿种群与泰国亚种的关系较近.但是,二者也发生一定程度的遗传分化.海南坡鹿与泰国亚种的遗传距离均值为0.026.我们推测海南坡鹿可能是在更新世冰期(69万年前)通过陆桥由东南亚大陆迁入中国海南岛.我们的结论说明海南坡鹿的遗传多样性很低,并且已独立进化很长时间.因此,我们不支持将海南坡鹿引入泰国亚种的原分布区,重建已经绝灭的野生种群的设想和建议.我们建议将海南坡鹿与泰国亚种分别作为两个独立的进化显著单元(ESUs)进行管理.  相似文献   

6.
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control‐region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post‐colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.  相似文献   

7.
保护新疆马鹿塔里木亚种的建议   总被引:1,自引:0,他引:1  
马鹿塔里木亚种分布于新疆塔里木盆地各沿河地带,强度适应荒漠生境。采用分子系统学方法研究表明,世界马鹿分为东西两大系统,马鹿塔里木亚种是我国唯一属于西部系统的亚种。在中国濒危动物红皮书中被列为濒危(E)亚种,按国际自然与自然资源保护联盟(IUCN)1993年制定的世界物种红色名录濒危定级标准,属于极危级(EN)。自20世纪50年代以来,由于自然和人为因素的影响,种群数量急骤下降,现今马鹿塔里木亚种在塔河流域被隔离为莎雅、尉犁和且末3个小种群,当前该亚种正受到栖息地减小和片断化的双重影响,而且因遗传漂变和近亲繁殖的不断增加也进一步加剧它的濒危程度。为有效保护该物种特提出可行的保护建议。  相似文献   

8.
The endemic Samango monkey subspecies (Cercopithecus albogularis labiatus) inhabits small discontinuous Afromontane forest patches in the Eastern Cape, KwaZulu-Natal midlands and southern Mpumalanga Provinces in South Africa. The subspecies is affected by restricted migration between forest patches which may impact on gene flow resulting in inbreeding and possible localized extinction. Current consensus, based on habitat quality, is that C. a. labiatus can be considered as endangered as the small forest patches they inhabit may not be large enough to sustain them. The aim of this study was to conduct a molecular genetic investigation to determine if the observed isolation has affected the genetic variability of the subspecies. A total of 65 Samango monkeys (including juveniles, subadults and adults) were sampled from two localities within the Hogsback area in the Amathole Mountains. Nuclear and mitochondrial DNA variation was assessed using 17 microsatellite markers and by sequencing the hypervariable 1 region (HVR1). Microsatellite data generated was used to determine population structure, genetic diversity and the extent of inbreeding. Sequences of the HVR1 were used to infer individual origins, haplotype sharing and haplotype diversity. No negative genetic factors associated with isolation such as inbreeding were detected in the two groups and gene flow between groups can be regarded as fairly high primarily as a result of male migration. This was in contrast to the low nuclear genetic diversity observed (H o = 0.45). A further reduction in heterozygosity may lead to inbreeding and reduced offspring fitness. Translocations and establishment of habitat corridors between forest patches are some of the recommendations that have emerged from this study which will increase long-term population viability of the subspecies.  相似文献   

9.
The Roseate Tern, Sterna dougallii, is an endangered species in the Northwest Atlantic, where it has undergone transient reductions in population size over the past 120 years. This population has been slow to regain former size and range, perhaps in part due to the female-biased sex ratio, which results in female–female pairs, reducing the average productivity of the colony. The larger populations of the Western Pacific and Indian Oceans are not endangered and there is no evidence of a biased sex ratio at breeding in Western Australia. We developed four novel microsatellite markers and adapted one other and these are the first used in the genus Sterna. We also determined the utility of these markers for 17 related species. Here we report the population genetic structure within and between two regions, the Northwest Atlantic and Western Australia. A significant finding is that the Northwestern Atlantic region has much lower allelic diversity than the Western Australia region, promoting the recommendation for increased protection of sites in this region in order to preserve remaining genetic diversity and new potential breeding habitats.  相似文献   

10.
Red deer (n = 149) from eight geographical locations, including the endangered endemic populations from the Tyrrhenian islands (Sardinia and Corsica), were analysed at eight polymorphic microsatellite loci. Two questions were addressed: (1) Is there a founder effect in the Corsican population, which was reintroduced to the island using Sardinian deer after the species’ extinction on Corsica? (2) What is the origin of the Tyrrhenian or Corsican red deer (Cervus elaphus corsicanus)? Our results showed signs of a founder effect for the red deer on Corsica in that these deer showed differentiation from the Sardinian population as measured by FST values, assignment tests (with and without a priori definition of populations) and individual-based dendrograms. Genetic variability, however, did not differ significantly between the two populations. With respect to the phylogeography of C. e. corsicanus we found that both deer from North-Africa and Mesola on the Italian mainland were genetically close to the Corsican red deer, but phylogenetic trees based on genetic distances were only poorly supported statistically. Among all populations studied the Mesola red deer showed the lowest distance values from Corsican red deer and yielded allele frequencies that were more similar to those of C. e. corsicanus than were those of North-African red deer. These results are in line with recent palaeontological and archaeozoological findings which suggest that the Corsican red deer is derived from small Italian red deer introduced from the mainland to Sardinia and Corsica during the Late Neolithic and just before the beginning of Classical Antiquity, respectively. They also suggest a possible recent introduction of Tyrrhenian red deer to North-Africa (rather than the other way around), thus accounting for the close genetic relationship (especially based on mitochondrial DNA) that has repeatedly been found between C. e. corsicanus and C. e. barbarus.  相似文献   

11.
新疆马鹿塔里木亚种的现状与保护   总被引:14,自引:1,他引:13  
新疆马鹿塔里木亚种高度适应荒漠生境, 自20 世纪50 年代以来, 由于自然和人为因素的影响, 种群数量急剧下降。栖息地退缩和片段化不仅导致种群遗传多样性的丧失, 而且也因遗传漂变和近亲繁殖, 不断地加剧了该亚种的濒危程度。为有效的保护该物种, 特提出可行的保护措施建议。  相似文献   

12.
Current understanding of phylogeographical structure and genetic diversity of Siberian roe deer remains limited mainly due to small sample size and/or low geographical coverage in previous studies. Published data suggest at least two phylogroups: western (Ural Mountains and Western Siberia) and eastern (east from lake Baikal, including the Korean peninsula), but their phylogenetic relationship remains unclear. Combined sequences of cytochrome b (1140 bp) and the mtDNA control region (963 bp) were analyzed from 219 Siberian roe deer from 12 locations in Russia, Mongolia, and South Korea, which cover a large part of its range, to assess genetic diversity and phylogeographical status. Special emphasis was placed on the demographic history and genetic features of central, peripheral, and isolated populations. Results of median‐joining network and phylogenetic tree analyses indicate that Siberian roe deer from the Urals to the Pacific Ocean are genetically diverse and that geographical distribution and composition of haplogroups coincide with previously described ranges of the subspecies Capreolus pygargus pygargus and Capreolus pygargus tianschanicus. We found that peripheral populations in the northwestern parts of the species range (Urals), as well as the isolated population from Jeju Island, are genetically distinct from those in the core part of the range, both in terms of genetic diversity and quantitative composition of haplogroups. We also found that northwestern (Urals) and northern (Yakutia) peripheral populations share the same haplogroup and fall into the same phylogenetic clade with the isolated population from Jeju Island. This finding sheds light on the taxonomic status of the Jeju Island population and leads to hypotheses about the discordance of morphological and genetic evolution in isolated populations and specific genetic features of peripheral populations.  相似文献   

13.
Sex determination is ruled by haplodiploidy in Hymenoptera, with haploid males arising from unfertilized eggs and diploid females from fertilized eggs. However, diploid males with null fitness are produced under complementary sex determination (CSD), when individuals are homozygous for this locus. Diploid males are expected to be more frequent in genetically eroded populations (such as islands and captive populations), as genetic diversity at the csd locus should be low. However, only a few studies have focused on the relation between population size, genetic diversity, and the proportion of diploid males in the field. Here, we developed new microsatellite markers in order to assess and compare genetic diversity and diploid male proportion (DMP) in populations from three distinct habitat types – mainland, island, or captive –, in the parasitoid wasp Venturia canescens. Eroded genetic diversity and higher DMP were found in island and captive populations, and habitat type had large effect on genetic diversity. Therefore, DMP reflects the decreasing genetic diversity in small and isolated populations. Thus, Hymenopteran populations can be at high extinction risk due to habitat destruction or fragmentation.  相似文献   

14.
东北马鹿(Cervuscanadensis)种群面临着地理隔绝和生境破碎化等问题,对其种群遗传多样性和性别结构的研究,有助于了解其隔离种群的生存现状,为保护与管理工作提供科学依据.本研究利用8对微卫星分子标记,对内蒙古赛罕乌拉国家级自然保护区的456份马鹿粪便样品进行遗传多样性分析.结果识别出2015年冬季56只个体,...  相似文献   

15.
Genetic diversity generally underpins population resilience and persistence. Reductions in population size and absence of gene flow can lead to reductions in genetic diversity, reproductive fitness, and a limited ability to adapt to environmental change increasing the risk of extinction. Island populations are typically small and isolated, and as a result, inbreeding and reduced genetic diversity elevate their extinction risk. Two island populations of the platypus, Ornithorhynchus anatinus, exist; a naturally occurring population on King Island in Bass Strait and a recently introduced population on Kangaroo Island off the coast of South Australia. Here we assessed the genetic diversity within these two island populations and contrasted these patterns with genetic diversity estimates in areas from which the populations are likely to have been founded. On Kangaroo Island, we also modeled live capture data to determine estimates of population size. Levels of genetic diversity in King Island platypuses are perilously low, with eight of 13 microsatellite loci fixed, likely reflecting their small population size and prolonged isolation. Estimates of heterozygosity detected by microsatellites (H(E)= 0.032) are among the lowest level of genetic diversity recorded by this method in a naturally outbreeding vertebrate population. In contrast, estimates of genetic diversity on Kangaroo Island are somewhat higher. However, estimates of small population size and the limited founders combined with genetic isolation are likely to lead to further losses of genetic diversity through time for the Kangaroo Island platypus population. Implications for the future of these and similarly isolated or genetically depauperate populations are discussed.  相似文献   

16.
As a consequence of founder effects, small population size and demographic constraints, island populations are often characterized by low genetic diversity and high inbreeding. The effects of inbreeding are more pronounced in haplo-diploid insects like bees than in similar diploid species, because their method of sex determination requires heterozygosity at a sex locus. Inbreeding leads to homozygosity at the sex locus and the production of non-viable diploid males. This means that island populations of bees are particularly prone to extinction. Here we determine the levels of diversity and isolation between islands and mainland populations of the bumble bee Bombus morio in southeast Brazil. We analyzed 659 individuals from 24 populations, sequencing two mitochondrial genes (COI and Cytb) and genotyping all individuals at 14 microsatellite loci. Surprisingly, genetic diversity was high and genetic isolation was low in all populations except Teodoro Sampaio (mainland) and Ilha da Vitória (island). Genetic diversity is not significantly correlated with island area, but is lower in populations that are more distant from the mainland. Except perhaps for Ilha da Vitória, we suggest that the island populations are unlikely to go extinct due to genetic factors. Finally, based on its genetic distance from all other populations, we identify a putative new subspecies in the Teodoro Sampaio region.  相似文献   

17.
To optimize conservation efforts, it is necessary to determine the risk of extinction by collecting reliable population information for a given species. We developed eight novel, polymorphic microsatellite markers and used these markers in conjunction with twelve existing markers to measure genetic diversity of South Korean populations of leopard cat (Prionailurus bengalensis), a species for which population size and habitat area data are unknown in the country, to assess its conservation status. The average number of alleles and the observed heterozygosity of the species were 3.8 and 0.41, respectively, and microsatellite diversity was lower than the average genetic diversity of 57 populations of 12 other felid species, and lower than that of other mammal populations occurring in South Korea, including the raccoon dog (Nyctereutes procyonoides), water deer (Hydropotes inermis), and endangered long-tailed goral (Naemorhedus caudatus). Furthermore, analysis of genetic structure in the national leopard cat population showed no clear genetic differentiation, suggesting that it is not necessary to divide the South Korean leopard cat population into multiple management units for the purposes of conservation. These results indicate that the genetic diversity of the leopard cat in South Korea is unexpectedly low, and that the risk of local extinction is, as a result, substantial. Thus, it is necessary to begin appropriate conservation efforts at a national level to conserve the leopard cat population in South Korea.  相似文献   

18.
The conservation of many fragmented and small populations of endangered African wild dogs (Lycaon pictus) relies on understanding the natural processes affecting genetic diversity, demographics, and future viability. We used extensive behavioural, life-history, and genetic data from reintroduced African wild dogs in South Africa to (1) test for inbreeding avoidance via mate selection and (2) model the potential consequences of avoidance on population persistence. Results suggested that wild dogs avoided mating with kin. Inbreeding was rare in natal packs, after reproductive vacancies, and between sibling cohorts (observed on 0.8%, 12.5%, and 3.8% of occasions, respectively). Only one of the six (16.7%) breeding pairs confirmed as third-order (or closer) kin consisted of animals that were familiar with each other, while no other paired individuals had any prior association. Computer-simulated populations allowed to experience inbreeding had only a 1.6% probability of extinction within 100 years, whereas all populations avoiding incestuous matings became extinct due to the absence of unrelated mates. Populations that avoided mating with first-order relatives became extinct after 63 years compared with persistence of 37 and 19 years for those also prevented from second-order and third-order matings, respectively. Although stronger inbreeding avoidance maintains significantly more genetic variation, our results demonstrate the potentially severe demographic impacts of reduced numbers of suitable mates on the future viability of small, isolated wild dog populations. The rapid rate of population decline suggests that extinction may occur before inbreeding depression is observed.  相似文献   

19.
Many animal populations that are endangered in mainland areas exist in stable island populations, which have the potential to act as an “ark” in case of mainland population declines. Previous studies have found neutral genetic variation in such species to be up to an order of magnitude lower in island compared to mainland populations. If low genetic variation is prevalent across fitness-related loci, this would reduce the effectiveness of island populations as a source of individuals to supplement declining mainland populations or re-establish extinct mainland populations. One such species, the black-footed rock-wallaby (Petrogale lateralis lateralis), exists within fragmented mainland populations and small island populations off Western Australia. We examined sequence variation in this species within a fitness-related locus under positive selection, the MHC class II DAB β1 locus. The mainland populations displayed greater levels of allelic diversity (4–7 alleles) than the island population, despite being small and isolated, and contained at least two DAB gene copies. The island population displayed low allelic diversity (2 alleles) and fewer alleles per individual in comparison to mainland populations, and probably possesses only one DAB gene copy. The patterns of DAB diversity suggested that the island population has a markedly lower level of genetic variation than the mainland populations, in concordance with results from microsatellites (genotyped in a previous study), but preserved unique alleles which were not found in mainland populations. Where possible, conservation actions should pool individuals from multiple populations, not only island populations, for translocation programs, and focus on preventing further declines in mainland populations.  相似文献   

20.
In Australia, many species have been introduced that have since undergone drastic declines in their native range. One species of note is the hog deer (Axis porcinus) which was introduced in the 1860s to Victoria, Australia, and has since become endangered in its native range throughout South‐East Asia. There is increased interest in using non‐native populations as a source for genetic rescue; however, considerations need to be made of the genetic suitability of the non‐native population. Three mitochondrial markers and two nuclear markers were sequenced to assess the genetic variation of the Victorian population of hog deer, which identified that the Victorian population has hybrid origins with the closely related chital (Axis axis), a species that is no longer present in the wild in Victoria. In addition, the mitochondrial D‐loop region within the Victorian hog deer is monomorphic, demonstrating that mitochondrial genetic diversity is very low within this population. This study is the first to report of long‐term persistence of hog deer and chital hybrids in a wild setting, and the continual survival of this population suggests that hybrids of these two species are fertile. Despite the newly discovered hybrid status in Victorian hog deer, this population may still be beneficial for future translocations within the native range. However, more in‐depth analysis of genetic diversity within the Victorian hog deer population and investigation of hybridization rates within the native range are necessary before translocations are attempted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号