首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
Mechanism of export of colicin E1 and colicin E3.   总被引:10,自引:5,他引:5       下载免费PDF全文
The mechanism of export of colicins E1 and E3 was examined. Neither colicin E1, colicin E3, Nor colicin E3 immunity protein appears to be synthesized as a precursor protein with an amino-terminal extension. Instead, the colicins, as well as the colicin E3 immunity protein, appear to leave the cells where they are made, long after their synthesis, by a nonspecific mechanism which results in increased permeability of the producing cells. Induction of ColE3-containing cells with mitomycin C leads to actual lysis of those cells, as some time after synthesis of the colicin E3 and its immunity protein has been completed. Induction of ColE1-containing cells results in increased permeability of the cells, but not in actual lysis, and most of the colicin E1 produced never leaves the producing cells. Intracellular proteins such as elongation factor G can be found outside of colicinogenic cells after mitomycin C induction, along with the colicin. Until substantial increases in permeability occur, most of the colicin remains cell associated, in the soluble cytosol, rather than in a membrane-associated form.  相似文献   

2.
Incompatibility between E colicin plasmids   总被引:1,自引:0,他引:1  
We have tested the ability of pairs of colicin E plasmids to replicate stably in the same cell line. Although many of the pairs of E colicin plasmids were compatible, plasmids ColE3-CA38, ColE7-K317 and ColE8-J were mutually incompatible, as were ColE5-099, ColE6-CT14 and ColE9-J. Incompatibility between ColE6-CT14 and ColE5-099 or ColE9-J was asymmetrical, whereas incompatibility between the other plasmid pairs was symmetrical.  相似文献   

3.
Colicin plasmids E2 and E3 (Col E2 and Col E3) deoxyribonucleic acid (DNA) has been shown to contain, respectively, two and three EcoR1 restriction endonuclease-sensitive sites. This was determined by measuring the DNA fragments generated after EcoR1 endonuclease treatment by agarose gel electrophoresis and electron microscopy. The structure of heteroduplex Col E2-col E3 DNA molecules formed from EcoR1-generated fragments permitted a localization of the EcoR1-sensitive sites on the plasmid chromosomes.  相似文献   

4.
Purification and characterization of colicin E1   总被引:39,自引:0,他引:39  
  相似文献   

5.
Summary Base substitutions have been introduced into the segment of the colicin E1 gene corresponding to the polypeptide region between the 404th and the 502nd residues which was considered to participate in colicin E1 export and bacteriocin activity. The methods used were in vitro localized mutagenesis with sodium bisulphite and in vivo mutagenesis using either nitrosoguanidine or ethyl methane sulphonate. Cells carrying mutagenized plasmids were screened by their inability to form a clear zone on a lawn of colicin E1 sensitive cells. Mutation sites were determined from the nucleotide sequence analysis and the altered amino acid residues were reduced. The mutant proteins were analysed for their ability to be exported to the periplasmic space and for their bacteriocin activity. Out of eight mutants obtained, three had a single amino acid replacement. Mutant proteins that had Ser and Glu in place of Pro-462 and Gly-502, respectively, showed a decrease in both the export and the bacteriocin activity. A mutant protein having Arg in place of Gly-439 showed a decrease only in the bacteriocin activity. These results suggest that the target region of colicin E1 contributes to the export as well as the bacteriocin activity but the two functions are supported in part by different amino acid residues of the protein.  相似文献   

6.
7.
8.
9.
A small plasmid (pAO2, 1 megadalton) carrying genes responsible for replication and colicin E1 immunity has been constructed from colicin E1 plasmid (A. Oka, K. Sugimoto, and M. Takanami, Proc. Mol. Biol. Jpn., p. 113-115, 1976). pAO2 DNA was cleaved into unique fragments with seven restriction endonucleases (R.HaeII,R.HaeIII,R.HapII,R.HhaI,R.AluI,R.HgaI, and R.HinfI). R.HaeII cleaved pAO2 DNA at two sites, R.HaeIII at four sites, R.HapII at nine sites, R.HhaI at eight sites, R-AluI at nine sites, R.HgaI at two sites, and R.HinfI at four sites, respectively. The order of HaeIII fragments of pAO2 was deduced from the physical map of colicin E1 plasmid previously reported (A. Oka and M. Takanami, Nature (London) 264:193-196, 1976). HapII, HhaI, and AluI fragments of pAO2 were assigned by analyzing overlapping sets of fragments arising upon digestion of individual HaeIII fragments with one of R.HapII, R.HhaI, or R.AluI, and upon their reciprocal digestion. The cleavage sites for R.HaeII, R.HgaI, and R.HinfI were localized on HapII, HhaI, and AluI fragments by combined digestion. On the basis of these data and estimates of the size of each fragment, a fine cleavage map of pAO2 was constructed.  相似文献   

10.
The insensitivity ofCitrobacter freundii to the E colicins is based on tolerance to colicin E1 and resistance to colicins E2 and E3. Spontaneous colicin A resistant mutants ofC. freundii also lost their colicin E1 receptor function. Sensitivity to colicin E1 can be induced by F′gal + tol + plasmids, thetol A+ gene product of which is responsible for this effect. Receptor function for colicins E2 and E3 is induced by theE. coli F′14bfe + plasmid, which is also able to enhance notably the receptor capacity for colicin E1. Thebfe + gene product ofE. coli, which is responsible for these phenomena, also restores the receptor function for colicin A and E1 in colicin A resistant mutants ofC. freundii. All results show that there is a remarkable difference between theE. coli bfe + gene product and thebfe + gene product ofC. freundii and also between thetol A+ gene products of these strains. The sensitivity to phage BF23 parallels the sensitivity to colicins E2 and E3 and is also induced by the F′14bfe + plasmid.  相似文献   

11.
Escherichia coli strain CL137, a K-12 derivative made E colicinogenic by contact with Fredericq's strain K317, was unaffected by colicin E2-P9, but K-12 carrying ColE2-P9 was sensitive to the E colicin made by strains CL137 and K317. This colicin we named E7-K317 because by the test of colicinogenic immunity it differed from colicins E1-K30, E2-P9, and E3-CA38 and from recently recognized colicins termed E4Horak, E5, and E6. Strain K317 as conjugational donor transmitted E7 colicinogeny; about half the E7-colicinogenic transconjugants were immune to colicin E2-P9. A spontaneous variant of CL137 retained E7 colicinogeny but was sensitive to E2 colicins. We attribute the E2 immunity of strain CL137 and some E7-coliconogeic transconjugants to a "colicin-immunity plasmid," ColE2imm-K317, from strain K317. Tra+ E7-colicinogenic transconjugants restricted phage BF23 in the same way as strains carrying ColIb-P9. We attribute Tra+ and restricting ability to a plasmid, pRES-K317, acquired from strain K317, and related to the ColI plasmids.  相似文献   

12.
Interaction between colicin E2 and DNA in vitro   总被引:8,自引:0,他引:8  
P S Ringrose 《FEBS letters》1972,23(2):241-243
  相似文献   

13.
Crystals of the channel-forming domain of colicin E1 from E. coli were grown by vapor diffusion at pH 6.4 and higher pH values. Cleavage of the colicin molecule with trypsin or thermolysin produced two of the pore-forming polypeptides used in these experiments. The third polypeptide was purified from a constructed plasmid that overexpresses only the C-terminal domain of colicin E1. Polypeptide crystals are tetragonal with space group I4, have one monomer in the asymmetric unit, and diffract to 2.2–2.4 Å. Unit cell parameters for the tryptic and thermolytic polypeptides are a = 102.9 Å and c = 35.6 Å. Crystals of the overexpressed polypeptide have unit cell parameters of a =87.2 Å and c =59.1 Å. The crystals were characterized by precession photography, and native data sets of each channel-forming fragment were collected on a Siemens-Nicolet area detector. The crystallization and characterization of these polypeptides are the first steps in the structure determination of the channel-forming domain of colicin E1. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Purification and properties of colicin E3 immunity protein   总被引:24,自引:0,他引:24  
  相似文献   

15.
Thermodynamic properties, stability, and structure of the toxin-like molecule colicin E1 were analyzed by differential scanning calorimetry and circular dichroism to determine the number of structurally independent domains, and the interdomain interactions necessary for colicin import into the Escherichia coli cell. Analysis of denaturation profiles of the 522 residue colicin E1, together with fragments of 342 and 178 residues that contain subsets of the domains, showed three stable cooperative blocks that differ in thermal stability and correspond to three major functional domains of the colicin: (i) the COOH-terminal channel-forming (C) domain with the highest thermal stability; (ii) the BtuB receptor binding (R) domain; and (iii) the N-terminal translocation (T) domain that has the smallest stabilization enthalpy and thermal stability. Interdomain interactions were described in which T-R interactions stabilize R, and T-C and R-C interactions stabilize R and T, but destabilize C. The R and T domains behaved in a similar way as a function of pH and ionic strength. Interacting extended helices of the R domain, possibly a coiled-coil, were implied by: (i) the very high (>90%) alpha-helical content of the R domain, (ii) cooperative decreases in alpha-helical content near the T(tr) of thermal denaturation of the R domain; (iii) a large denaturation enthalpy, implying extensive H-bond and van der Waals interactions. The R domain was inferred, from the extended network of interacting helices, large DeltaH, and steep temperature dependence of its stabilization energy to have a dominant role in determining the conformation of other domains. It is proposed that cellular import starts with the R domain binding to the BtuB receptor, followed by unfolding of the R domain coiled-coil and thereby of the T domain, which then interacts with the TolC receptor-translocator.  相似文献   

16.
Structure and dynamics of the colicin E1 channel   总被引:13,自引:0,他引:13  
The toxin-like and bactericidal colicin E1 molecule is of interest for problems of toxin action, polypeptide translocation across membranes, voltage-gated channels, and receptor function. Colicin E1 binds to a receptor in the outer membrane and is translocated across the cell envelope to the inner membrane. Import of the colicin channel-forming domain into the inner membrane involves a translocation-competent intermediate state and a membrane potential-dependent movement of one third to one half of the channel peptide into the membrane bilayer. The voltage-gated channel has a conductance sufficiently large to depolarize the Escherichia coli cytoplasmic membrane. Amino acid residues that affect the channel ion selectivity have been identified by site-directed mutagenesis. The colicin E1 channel is one of a few membrane proteins whose secondary structures in the membrane, predominantly alpha-helix, have been determined by physico-chemical techniques. Hypothesis for the identity of the trans-membrane helices, and the mechanism of binding to the membrane, are influenced by the solved crystal structure of the soluble colicin A channel peptide. The protective action of immunity protein is a unique aspect of the colicin problem, and information has been obtained, by genetic techniques, about the probable membrane topography of the imm gene product.  相似文献   

17.
Temporal control of colicin E1 induction.   总被引:12,自引:7,他引:5       下载免费PDF全文
The expression of the gene encoding colicin E1, cea, was studied in Escherichia coli by using cea-lacZ gene fusions. Expression of the fusions showed the same characteristics as those of the wild-type cea gene: induction by treatments that damage DNA and regulation by the SOS response, sensitivity to catabolite repression, and a low basal level of expression, despite the presence of the fusion in a multicopy plasmid. Induction of expression by DNA-damaging treatments was found to differ from other genes involved in the SOS response (exemplified by recA), in that higher levels of DNA damage were required and expression occurred only after a pronounced delay. The delay in expression following an inducing treatment was more pronounced under conditions of catabolite repression, indicating that the cyclic AMP-cyclic AMP receptor protein complex may play a role in induction. These observations also suggest a biological rationale for the control of cea expression by the SOS response and the cyclic AMP-cyclic AMP receptor protein catabolite repression system.  相似文献   

18.
Anaerobic control of colicin E1 production.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

19.
Expression of colicin factor E2-P9   总被引:4,自引:0,他引:4  
  相似文献   

20.
A DNA fragment containing only the putative immunity gene-coding sequence was cloned under the control of the trp and lambda PL promoters, generating pRKA11 and pIPL, respectively. Escherichia coli hosts containing either construction were immune to colicin E1. Cells harboring both pIPL and pNT204, which encodes a temperature-sensitive cI repressor, were sensitive to colicin E1 at 30 degrees C, but became immune after 0.5 h of incubation at 42 degrees C. In addition, pRKA11 directed the synthesis of a 14.5-kDA protein in maxicells, identical to that found with the wild-type immunity gene. This evidence identifies unequivocally the coding sequence of the immunity gene as that extending from bases 1214 to 1552 [OKA, A., et al., Mol. Gen. Genet. 172, 151-159 (1979)]. The entire immunity gene operon was also cloned under the control of the tac promoter, generating pTCU2, which, upon induction with isopropyl beta-D-thiogalactopyranoside, produced the imm gene product in amounts sufficient to be visualized by autoradiography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号