首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A variant of adenovirus type 5 that contained a mutation within the L1 52- and 55-kilodalton (52/55K) protein-coding region was isolated. The mutant, termed ts369, produced L1 52/55K proteins with a two-amino-acid substitution and was temperature sensitive. Temperature-shift experiments indicated that the ts369 defect was late in the viral growth cycle. DNA replication and synthesis of late proteins occurred normally in ts369-infected cells at the nonpermissive temperature, but mature virions were not produced. Rather, capsidlike particles associated with the left-terminal region of the viral chromosome accumulated. These incomplete particles could not be chased into mature virions when the infected cells were shifted to the permissive temperature. However, previously synthesized proteins could be assembled into virions in the presence of a protein synthesis inhibitor upon shiftdown from the nonpermissive temperature, suggesting that the inactivation of the L1 52/55K proteins was reversible. These results indicate that the adenovirus L1 52/55K proteins play a role in the assembly of infectious virus particles.  相似文献   

3.
  相似文献   

4.
5.
6.
7.
The synthesis and processing of virus-specific precursor polypeptides in NIH/3T3 cells infected at the permissive temperature (31 degrees C) with temperature-sensitive (ts) mutants of Rauscher murine leukemia virus was studied in pulse-chase experiments at the permissive and nonpermissive (39 degrees C) temperatures. The newly synthesized virus-specific polypeptides were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera against Rauscher murine leukemia virus proteins. In cells infected with ts mutants defective in early replication steps (the early mutants ts17 and ts29), and ts mutants defective in postintegration steps (the late mutants ts25 and ts26), the processing of the primary gag gene product was impaired at the nonpermissive temperature. gag-pr75 of all four mutants was converted into gag-pr65; however, gag-pr65 accumulated at the nonpermissive temperature, and the main internal virion polypeptide p30 was not formed. Therefore, the proteolytic cleavage is blocked beyond gag-pr65. Concomitantly, the formation of the env gene-related polypeptide p12(E) of all four mutants was blocked at the restrictive temperature. In contrast, cells infected with the late mutant ts28, which produced noninfectious virions at 39 degrees C, showed a normal turnover of the gag and env precursor polypeptides.  相似文献   

8.
Two temperature-sensitive mutants of satellite phage P4 which do not synthesize P4 DNA at the nonpermissive temperature have been isolated. One of these phage is mutated in the P4 alpha gene. It complements a P4 delta mutant, but not a P4 alpha amber mutant; both mutants are phenotypically identical to alpha amber mutants in all properties studied. They synthesize P4 early proteins 1 and 2 as well as two additional P4-induced early proteins, 5 and 6, which are described here. P4 late proteins are not synthesized by these mutants and cannot be transactivated by helper phage P2. The mutants are unable to transactivate P2 late proteins from a P2 AB mutant. The P4 RNA polymerase activity which has been suggested to be involved in P4 DNA synthesis is not detected at the nonpermissive temperature. The P4 polymerase activity in partially purified extracts prepared from cells infected with the mutant at the permissive temperature is temperature sensitive. Reduced activity is found in vitro when these extracts are preincubated at 41 degrees C or assayed at temperatures higher than 37 degrees C. Thus, the P4 RNA polymerase is the product of the alpha gene. Temperature shift experiments show that the alpha gene product is required until late in the P4 cycle.  相似文献   

9.
Mutations in the three largest subunits of yeast RNA polymerase II (RPB1, RPB2, and RPB3) were investigated for their effects on RNA polymerase II structure and assembly. Among 23 temperature-sensitive mutations, 6 mutations affected enzyme assembly, as assayed by immunoprecipitation of epitope-tagged subunits. In all six assembly mutants, RNA polymerase II subunits synthesized at the permissive temperature were incorporated into stably assembled, immunoprecipitable enzyme and remained stably associated when cells were shifted to the nonpermissive temperature, whereas subunits synthesized at the nonpermissive temperature were not incorporated into a completely assembled enzyme. The observation that subunit subcomplexes accumulated in assembly-mutant cells at the nonpermissive temperature led us to investigate whether these subcomplexes were assembly intermediates or merely byproducts of mutant enzyme instability. The time course of assembly of RPB1, RPB2, and RPB3 was investigated in wild-type cells and subsequently in mutant cells. Glycerol gradient fractionation of extracts of cells pulse-labeled for various times revealed that a subcomplex of RPB2 and RPB3 appears soon after subunit synthesis and can be chased into fully assembled enzyme. The RPB2-plus-RPB3 subcomplexes accumulated in all RPB1 assembly mutants at the nonpermissive temperature but not in an RPB2 or RPB3 assembly mutant. These data indicate that RPB2 and RPB3 form a complex that subsequently interacts with RPB1 during the assembly of RNA polymerase II.  相似文献   

10.
Viral proteins synthesized in L cells infected with temperature-sensitive (ts) mutants of vesicular stomatitis (VS) virus at permissive (31 C) and nonpermissive (39 C) temperatures were compared by polyacrylamide gel electrophoresis. Mutant ts 5, deficient in synthesis of viral ribonucleic acid (RNA), failed to synthesize any of the five identifiable viral proteins at 39 C. Each of three RNA+ mutants, representing three separate complementation groups, showed distinctive patterns of viral protein synthesis at nonpermissive temperature. Equivalent amounts of 3H-amino acids were incorporated into the five viral proteins made in cells infected with RNA+ mutant ts 45 at 31 and 39 C. Complete virions of ts 45 could be identified by electron microscopy of infected cells incubated at the nonpermissive temperature; the defect in ts 45 appeared to be due in part to greater thermolability of virions as compared with the wild-type. RNA+ mutant ts 23 was deficient in synthesis of viral envelope protein S and failed to make detectable virions at the nonpermissive temperature. Infection of cells at 39 C with the third RNA+ mutant, ts 52, resulted in synthesis of all five viral proteins, but the peak of radioactivity representing the viral membrane glycoprotein migrated more rapidly on gels than coelectrophoresed authentic virion 14C-glycoprotein or viral 3H-glycoprotein extracted from cells infected at 31 C. These data and results of experiments on incorporation of radioactive glucosamine suggest that the primary defect in mutant ts 52 at nonpermissive temperature is failure of glycosylation of the viral glycoprotein. The viral structural proteins made in cells infected with ts 52 at the nonpermissive temperature did not assemble into sedimentable components as they did at permissive temperature; this observation indicates failure of insertion of the nonglycosylated protein (G′) into cell membrane. In support of this hypothesis was the finding that antiviral-antiferritin hybrid antibody did not detect VS viral antigen on the plasma membrane of L cells infected at 39 C with ts 52. In contrast, VS viral antigen localized in plasma membrane of L cells infected at 39 C with mutants ts 23 and ts 45 was readily detected by electron microscopy and fluorescence microscopy.  相似文献   

11.
Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA- ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 degrees C) to the nonpermissive (39 degrees C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA- phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 degrees C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant. Subviral (53S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 degrees C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.  相似文献   

12.
Thirty temperature-sensitive mutants of encephalomyocarditis virus have been isolated and partially characterized. Fifteen of these mutants are phenotypically RNA+ thirteen are RNA-, and two are RNA +/-. Six RNA + mutants, one RNA- mutants, and one RNA +/- mutant have virions which are more thermosensitive at 56 degree C than the wild-type virions. Hela cells infected at the nonpermissive temperature with any of the RNA+ mutants produced neither infective nor noninfective viral particles. The cleavage of the precursor polypeptides in cells infected with 11 of the RNA+ mutants was defective at the nonpermissive temperature. This defect in cleavage occurred only in those precursor polypeptides leading to capsid proteins.  相似文献   

13.
The tobacco etch potyvirus (TEV) RNA-dependent RNA polymerase (NIb) has been shown to interact with the proteinase domain of the VPg-proteinase (NIa). To investigate the significance of this interaction, a Saccharomyces cerevisiae two-hybrid assay was used to isolate conditional NIa mutant proteins with temperature-sensitive (ts) defects in interacting with NIb. Thirty-six unique tsNIa mutants with substitutions affecting the proteinase domain were recovered. Most of the mutants coded for proteins with little or no proteolytic activity at permissive and nonpermissive temperatures. However, three mutant proteins retained proteolytic activity at both temperatures and, in two cases (tsNIa-Q384P and tsNIa-N393D), the mutations responsible for the ts interaction phenotype could be mapped to single positions. One of the mutations (N393D) conferred a ts-genome-amplification phenotype when it was placed in a recombinant TEV strain. Suppressor NIb mutants that restored interaction with the tsNIa-N393D protein at the restrictive temperature were recovered by a two-hybrid selection system. Although most of the suppressor mutants failed to stimulate amplification of genomes encoding the tsNIa-N393D protein, two suppressors (NIb-I94T and NIb-C380R) stimulated amplification of virus containing the N393D substitution by approximately sevenfold. These results support the hypothesis that interaction between NIa and NIb is important during TEV genome replication.  相似文献   

14.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

15.
16.
17.
The central portion of the brome mosaic virus (BMV) 2a protein represents the most conserved element among the related RNA replication components of a large group of positive-strand RNA viruses of humans, animals, and plants. To characterize the functions of the 2a protein, mutations were targeted to a conserved portion of the 2a gene, resulting in substitutions between amino acids 451 and 484. After the temperature profile of wild-type BMV RNA replication was defined, RNA replication by nine selected mutants was tested in barley protoplasts at permissive (24 degrees C) and nonpermissive (34 degrees C) temperatures. Four mutants did not direct RNA synthesis at either temperature. Various levels of temperature-sensitive (ts) replication occurred in the remaining five mutants. For two ts mutants, no viral RNA synthesis was detected at 34 degrees C, while for two others, an equivalent reduction in positive- and negative-strand RNA accumulation was observed. For one mutant, positive-strand accumulation was preferentially reduced over negative-strand accumulation at 34 degrees C. Moreover, this mutant and another displayed preferential suppression of genomic over subgenomic RNA accumulation at both 24 and 34 degrees C. The combination of phenotypes observed suggests that the 2a protein may play a role in the differential initiation of specific classes of viral RNA in addition to a previously suggested role in RNA elongation.  相似文献   

18.
19.
Fourteen temperature-sensitive mutants of human adenovirus type2, which differed in their plaquing efficiencies at at the permissive and nonpermissive temperatures by 4 to 5 orders of magnitude, were isolated. These mutants, which could be assigned to seven complementation groups, were tested for their capacity to synthesize adenovirus DNA at the nonpermissive temperature. Three mutants in three different complementation groups proved deficient in viral DNA synthesis. The DNA-negative mutant H2ts206 complemented the DNA-negative mutants H5ts36 and H5ts125, whereas mutant H2ts201 complemented H5ts36 only. Among the DNA-negative mutants, H2ts206 synthesized the smallest amount of viral DNA at the nonpermissive temperature (39.5 C). Data obtained in temperature shift experiments indicated that a very early function was involved in temperature sensitivity. In keeping with this observation, early virus-specific mRNA was not detected in cells infected with H2ts206 and maintained at 39.5 C. Prolonged (52 h) incubation of cells infected with H2ts206 at the nonpermissive temperature led to the synthesis of a high-molecular-weight form of viral DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号