首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
A single thin layer chromatography and three antibodies were used for the specific radioimmunoassay of four androgens in pooled rat plasma (Sprague-Dawley adult males). The following values were found (pg/ml ± SD). Testosterone : 3, 138 ± 173; dihydrotestosterone : 374 ± 20; 5α-androstane-3α 17β-diol : 284 ± 24; 5α-androstane-3β, 17β-diol : 223 ± 11.  相似文献   

2.
K.M. Pirke 《Steroids》1977,30(1):53-60
A reliable radioimmunoassay for the determination of 5-androstene-3β, 17β-diol in plasma is described. Antisera were obtained by immunization of rabbits with 3β,17β-dihydroxy-5-androsten-16-one coupled to bovine serum albumin in position 16. The antiserum was characterized by titer, affinity, and specificity. Only dehydroepi-androsterone (24.3 %) and pregnenolone (2.7 %) showed a small crossreactivity. The assay method consisted of extraction with ether, thin-layer chromatography and endpoint determination.The reliability of the method was studied. The interassay variability was 7.5 % at a concentration of 1.22 μg/l. The limit of detection was 0.068 μg/l. Specificity was achieved by Chromatographic separation of the crossreacting steroids. Mass recovery experiments with 250 and 500 pg were performed, in which 99.0 ± 4.6 % of the smaller and 97.6 ± 11.3 % of the greater mass were recovered. In 45 healthy adult males plasma concentrations between 0.44 and 1.80 μg/l were found. The median was 1.06 μg/l. Stimulation of the Leydig cells with human chorionic gonadotropin (HCG) increased plasma concentrations by 93 % (average in 12 males). Therapeutic castration in 8 men caused an average decrease of 55.4 % in plasma values.  相似文献   

3.
This study has identified the polar metabolites of 5α-androstane-3β, 17β-diol(3β-diol) produced by the canine prostate. The major metabolite is 5α-androstane-3β, 7α, 17β-triol (7α-triol) accounting for approximately 80% of the total polar metabolites of 3β-diol. The remaining 20% is accounted for exclusively by another triol, 5α-androstane-3β, 6α, 17β-triol(6α-triol). This study has also characterized two enzymatic hydroxylases responsible for respective triol formation: 5α-androstane-3β, 17β-diol 6α-hydroxylase (6α-hydroxylase) and 5α-androstane-3β, 17β-diol 7α-hydroxylase (7α-hydroxylase). Both of these irreversible hydroxylases are located in the particulate fraction of the prostate and can utilize either NADH or NADPH as cofactor. Several in vitro steroid inhibitors of these hydroxylases were identified including cholesterol, estradiol and diethylstilbestrol. Neither of the hydroxylases were found to be decreased by castration (3 months) when expressed as activity/DNA. Using a variety of C19 androstane substrates, 6α- and 7α-triol were found to be major components of the total 3β-hydroxy-5α-androstane metabolites produced by the canine prostate.  相似文献   

4.
Anordrin, an antifertility agent that is an antiestrogen with weak estrogenic activity, has been studied to further characterize its hormonal activities. A dose of 2.0 μg/mouse·day for 7 days did not increase the uterine content of protein, but it did inhibit to a small extent the effect of administered estradiol-17β on uterine protein content and more significantly the effect of estradiol-17β on the uterine content of progesterone receptors. Anordrin also decreased serum corticosteroid-binding globulin levels. Administration of an average daily dose of 160 μg/day of anordrin to intact male mice had no effect on weights of kidney, testis, or seminal vesicle after 10 days, but seminal vesicle weight was significantly decreased after 30 days at a slightly lower dose. Similarly, anordrin inhibited the increase in seminal vesicle weight induced by testosterone propionate treatment of castrated mice. In female mice anordrin failed to maintain deciduomata and blocked the ability of progesterone (2.0 mg/mouse·day) to do so. However, anordrin did not compete with the androgen [3H]R1881 for binding in kidney cytosol or with the progestin [3H]R5020 for uterine receptor sites. Anordrin also did not compete with [3H]corticosterone for binding to serum proteins.  相似文献   

5.
17β-Nandrolone (17β-NT) is one of the most frequently misused anabolic steroids in meat producing animals. As a result of its extensive metabolism combined with the possibility of interferences with other endogenous compounds, detection of its illegal use often turns out to be a difficult issue. In recent years, proving the illegal administration of 17β-NT became even more challenging since the presence of endogenous presence of 17β-NT or some of its metabolite in different species was demonstrated. In bovines, 17α-NT can occur naturally in the urine of pregnant cows and recent findings reported that both forms can be detected in injured animals. Because efficient control must both take into account metabolic patterns and associated kinetics of elimination, the purpose of the present study was to investigate further some estranediols (5α-estrane-3β,17β-diol (abb), 5β-estrane-3α,17β-diol (bab), 5α-estrane-3β,17α-diol (aba), 5α-estrane-3α,17β-diol (aab) and 5β-estrane-3α,17α-diol (baa)) as particular metabolites of 17β-NT on a large number of injured (n=65) or pregnant (n=40) bovines. Whereas the metabolites abb, bab, aba and baa have previously been detected in urine up to several days after 17β-NT administration, the present study showed that some of the isomers abb (5α-estrane-3β,17β-diol) and bab (5β-estrane-3α,17β-diol) could not be detected in injured or pregnant animals, even at very low levels. This result may open a new way for the screening of anabolic steroid administration considering these 2 estranediols as biomarkers to indicate nandrolone abuse in cattle.  相似文献   

6.
5α-Androstane-3α,17β-diol (3α-diol) is reduced from the potent androgen, 5α-dihydrotestosterone (5α-DHT), by reductive 3α-hydroxysteroid dehydrogenases (3α-HSDs) in the prostate. 3α-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5α-DHT. However, 3α-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3α-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3α-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3α-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3α-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3α-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3α-HSD expression are significantly elevated in localized and advanced prostate cancer, 3α-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

7.
The syntheses of 3-O-carboxymethyl ether derivatives of estrone, estradiol-17β, and estriol and the preparation of their bovine serum albumin (BSA) conjugates are described. These conjugates were employed for the generation of specific antisera suitable for radioimmunoassay (RIA) of estrone, estradiol-17β, and estriol. The previous concept that specific antisera for estrogens cannot be obtained by employing estrogens derivatized at the 3-position is unfounded.  相似文献   

8.
Cholesterol metabolism has been recently linked to cancer, highlighting the importance of the characterization of new metabolic pathways in the sterol series. One of these pathways is centered on cholesterol-5,6-epoxides (5,6-ECs). 5,6-ECs can either generate dendrogenin A, a tumor suppressor present in healthy mammalian tissues, or the carcinogenic cholestane-3β,5α,6β-triol (CT) and its putative metabolite 6-oxo-cholestan-3β,5α-diol (OCDO) in tumor cells. We are currently investigating the identification of the enzyme involved in OCDO biosynthesis, which would be highly facilitated by the use of commercially unavailable [14C]-cholestane-3β,5α,6β-triol and [14C]-6-oxo-cholestan-3β,5α-diol. In the present study we report the one-step synthesis of [14C]-cholestane-3β,5α,6β-triol and [14C]-6-oxo-cholestan-3β,5α-diol by oxidation of [14C]-cholesterol with iodide metaperiodate (HIO4).  相似文献   

9.
Balssa F  Fischer M  Bonnaire Y 《Steroids》2011,76(7):667-668
5α-Estrane-3β,17α-diol is the major metabolite of nandrolone in horse urine. The presence of 5α-estrane-3β,17α-diol in female and gelding urines is prohibited by Racing Rules and its natural presence in male urine led regulation authorities to establish a concentration threshold of 45 ng/mL. This paper describes a rapid, simple and stereoselective synthesis of 5α-estrane-3β,17α-diol, providing horseracing laboratories with an essential reference material for their antidoping performance.  相似文献   

10.
5α-Androstane-3α, 16α 17β-triol was synthesized from 3β-hy-droxy-5-androsten-17-one. The procedure Involved catalytic hydrogenation of 3β-hydroxy-5-androsten-17-one to 3β-hydroxy-5α-androstan-17-one. This was followed by conversion of the 3β-hydroxy group to 3α-benzoyloxy group by the Mitsunobu reaction. Further treatment with isopropenyl acetate yielded 5α-androsten-16-ene-3α, 17-diol 3-benzoate 17-acetate. This was then converted to 3α, 17-dihydroxy-5α-androstan-16-one 3-benzoate 17-acetate via the unstable epoxide intermediate after treatment with m-cloroperoxybenzoic acid. LiAlH4 reduction of this compound formed 5α-androstane-3α, 16α, 17β-trlol. 1H and 13C NMR of various steroids are presented to confirm the structure of this compound.  相似文献   

11.
Summary With growing cells of a Nocardia sp., isolated from soil, the degradation of 5-pregnene-3, 20-diol into 3-[5-oxo-7a-methyl-1 (1-hydroxo)-ethyl-3a-perhydroindane-4]-propionic acid was investigated. The results show that iron is essential for production of the perhydroindanpropionic acid, that this production is greatly enhanced by the presence of calcium and that it is maximal in the pH range 7.0–7.5.Abbreviations used in the text PD 5-pregnene-3, 20-diol (pregnendiol) - PDSA 3-[5-oxo-7a-methyl-1(1-hydroxo)-ethyl-3a-perhydroindane-4]-propionic acid (pregnendiol-secoacid) - PSA 3-[5-oxo-7a-methyl-1-acetyl-3a-perhydroindane-4]-propionic acid (progesterone-secoacid) - EDTA Ethylendiamintetracetic acid - DMSO Dimethylsulfoxide  相似文献   

12.
Ahlem CN  White SK  Page TM  Frincke JM 《Steroids》2011,76(7):669-674
The potent anti-inflammatory activity of exogenous dehydroepiandrosterone (DHEA) in rodents has not translated to humans. This disparity in pharmacological effects has been attributed to factors such as differences in expression and function of molecular targets and differential metabolism. Hepatocytes from rats, dogs, monkeys, and humans were used to measure species-specific metabolism of a related compound, androst-5-ene-3β,17β-diol (5-AED) using reversed-phase radio-HPLC, to explore the metabolic contribution to this interspecies disparity. We found that rat hepatocytes transformed 5-AED predominantly into an array of highly oxidized metabolites. Canine metabolites overlapped with rat, but contained a greater abundance of less hydrophilic species. Monkey and human metabolites were strikingly less hydrophilic, dominated by 5-AED and DHEA conjugates. From the accumulating evidence indicating that the DHEA anti-inflammatory activity may actually reside in its more highly oxidized metabolites, we advance a hypothesis that the virtual absence of these metabolites in humans is central to the failure of exogenous DHEA to produce a potent pharmacological effect in clinical investigations. Accordingly, emulation of its anti-inflammatory activity in humans will require administration of an active native metabolite or a synthetic pharmaceutical derivative.  相似文献   

13.
A short and efficient method for the stereospecific synthesis of 3α,7α-dihydroxy-5β-androstan-17-one was accomplished from the readily available 4-androstene-3,17-dione. Key steps are the stereospecific and selective epoxidation of 4,6-androstadiene-3,17-dione, followed by hydrogenations with carefully selected reagents, solvents and reaction conditions.  相似文献   

14.
Both the 5α, 6α- and 5β, 6β-dichloromethylene adducts (2a and 2b) of 3β-acetoxy-5-androsten-17-one (1) are produced when the latter is exposed to dichlorocarbene generated from chloroform and base by Phase Transfer Catalysis using ultrasound as a means of agitation. The 1H NMR substituent effects of 5α, 6α- and 5β, 6β-dichloromethylene on the angular methyl groups (Zürcher values) are given. The 13C NMR spectra for both compounds are presented and discussed.  相似文献   

15.
Two D-homosteroids were isolated from the hydrolyzate of 5β-pregnane -3α,20α-diol disulfate (II) when it was refluxed in 3N hydrochloric acid. The structures of these steroids have been elucidated as 17α-methyl-D-homo-5β-androstane-3α, 17aβ-diol (VI) and 17α-methyl-17aγb-chloro-D-homo-5β-androstan-3α-ol (VIII) by instrumental analyses. The former was identical with a synthetic specimen derived from 5β-pregnane-3α,20β-diol di-sulfate (IV) by uranediol rearrangement. The main hydrolyzates obtained were 17α-ethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (V) and 5β-pregnane-3α, 20α-diol (III).  相似文献   

16.
ME Baker  KY Uh  C Chandsawangbhuwana 《Steroids》2012,77(12):1192-1197
Recently, binding of 5-androsten-3β,17β-diol (Δ(5)-androstenediol) to human estrogen receptor-beta (ERβ) was found to repress microglia-mediated inflammation, which is associated with various neurodegenerative diseases, such as multiple sclerosis. In contrast, binding of estradiol to ERβ resulted in little or no repression of microglia-mediated inflammation. Binding of Δ(5)-androstenediol to ERβ, as well as to ERα, is unexpected because unlike estradiol, Δ(5)-androstenediol has a saturated A ring and a C19 methyl group. To begin to elucidate the interaction of Δ(5)-androstenediol with both ERs, we constructed 3D models of Δ(5)-androstenediol with human ERα and ERβ for comparison with the crystal structures of estradiol in ERα and ERβ. Conformational flexibility in human ERα and ERβ accommodates the C19 methyl on Δ(5)-androstenediol. This conformational flexibility may be relevant for binding of other Δ(5)-steroids with C19 methyl substituents, such as 25-hydroxycholesterol and 27-hydroxycholesterol, to ERs.  相似文献   

17.
Adult beagle dogs, castrated one month previously, were treated with 5α-androstane-3α, 17α-diol (total dose 300 mg) over a period of one month. Examination of the prostate after treatment showed no significant change in size, weight or histological appearance from the castrate dog prostate. Subsequent administration of 5α-androstane-3α, 17β-diol (300 mg) over the same period of time resulted in restoration of the prostate size, weight and histological appearance to that of the normal intact dog prostate. It is concluded that exogenously administered 5α-androstane-3α, 17α-diol does not promote prostatic growth in the castrate beagle dog.  相似文献   

18.
The pattern of androgenic metabolites in blood, muscle, caput and cauda epididymidis has been investigated in functionally hepatectomized 24 hours castrated rats, 3 hours after the intra-muscular injection of 200 μCi of 3H -3α-diol. Identification of the radioactive metabolites showed only negligible differences between the epididymal regions. In both caput and cauda the main metabolite was DHT (17β-hydroxy-5α-androstane-3-one); 3α- and 3β-diol, androsterone (3α-hydroxy-5α-androstane-17-one), 5-A-dione (5α-androstane-3,17-dione), Δ16-3α-ol (5α-androst-l6-en-3α-ol), Δ16-3β-ol (5α-androst-l6-en-3α-ol) and Δ16-3-one (5α-androst-l6-en-3-one) were also present.Androsterone and 3α-diol were the predominant metabolites in blood and muscle. No Δ16 compounds could be detected and in constrast to epididymis, more than 50% of the radioactivity was associated with polar compounds. From determination of total radioactivity, it was seen that retention by epididymis varied from two to four times that of muscle. Purification and identification of the radioactivity associated with the nuclear fraction demonstrated that DHT was the only nuclear bound androgen.It is suggested from these results that at least one effect of 3α-diol on the rat epididymis is exerted through its conversion to DHT.  相似文献   

19.
A major component of sexual maturation in the male rat is a progressive decline in serum concentrations of 5α-androstane-3α,17β-diol (3α-diol) and a concomitant increase in testicular testosterone biosynthesis and secretion. Chronic administration of synthetic luteinizing hormone releasing hormone (LHRH) or luteinizing hormone (LH)/human chorionic gonadotropin (hCG) to immature male rats has been shown to result in a delay in sexual maturation as evidenced by decreased sex accessory gland weights and altered testicular testosterone production. We have examined the postulate that such treatments may either reverse or retard the normal developmental pattern of serum testosterone and 3α-diol concentrations. Chronic in vivo treatment of 28 day old immature male rats for 2 weeks with daily injections of either 0.5 μg of LHRH, 1.0 μg of LHRH, or 30 μg of LH was found to result in significant reductions in weights of the seminal vesicles and ventral prostate glands and diminutions in serum testosterone concentrations. Serum content of 3α-diol was either unchanged or slightly elevated in the LHRH treated animals and increased significantly in the LH treated animals. These data suggest that either a reversal of or retardation in the normal developmental pattern of serum testosterone and 3α-diol content has been achieved in the immature male rat by chronic LHRH or LH treatment.  相似文献   

20.
2,2′,4,4′-3H4-dihydrotigogenin was converted by Digitalis lanata plants into tigogenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号