首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

Background

Estimates of the effectiveness of influenza vaccines in older adults may be biased because of difficulties identifying and adjusting for confounders of the vaccine-outcome association. We estimated vaccine effectiveness for prevention of serious influenza complications among older persons by using methods to account for underlying differences in risk for these complications.

Methods

We conducted a retrospective cohort study among Ontario residents aged ≥65 years from September 1993 through September 2008. We linked weekly vaccination, hospitalization, and death records for 1.4 million community-dwelling persons aged ≥65 years. Vaccine effectiveness was estimated by comparing ratios of outcome rates during weeks of high versus low influenza activity (defined by viral surveillance data) among vaccinated and unvaccinated subjects by using log-linear regression models that accounted for temperature and time trends with natural spline functions. Effectiveness was estimated for three influenza-associated outcomes: all-cause deaths, deaths occurring within 30 days of pneumonia/influenza hospitalizations, and pneumonia/influenza hospitalizations.

Results

During weeks when 5% of respiratory specimens tested positive for influenza A, vaccine effectiveness among persons aged ≥65 years was 22% (95% confidence interval [CI], −6%–42%) for all influenza-associated deaths, 25% (95% CI, 13%–37%) for deaths occurring within 30 days after an influenza-associated pneumonia/influenza hospitalization, and 19% (95% CI, 4%–31%) for influenza-associated pneumonia/influenza hospitalizations. Because small proportions of deaths, deaths after pneumonia/influenza hospitalizations, and pneumonia/influenza hospitalizations were associated with influenza virus circulation, we estimated that vaccination prevented 1.6%, 4.8%, and 4.1% of these outcomes, respectively.

Conclusions

By using confounding-reducing techniques with 15 years of provincial-level data including vaccination and health outcomes, we estimated that influenza vaccination prevented ∼4% of influenza-associated hospitalizations and deaths occurring after hospitalizations among older adults in Ontario.  相似文献   

2.

Background

In Kenya, detailed data on the age-specific burden of influenza and RSV are essential to inform use of limited vaccination and treatment resources.

Methods

We analyzed surveillance data from August 2009 to July 2012 for hospitalized severe acute respiratory illness (SARI) and outpatient influenza-like illness (ILI) at two health facilities in western Kenya to estimate the burden of influenza and respiratory syncytial virus (RSV). Incidence rates were estimated by dividing the number of cases with laboratory-confirmed virus infections by the mid-year population. Rates were adjusted for healthcare-seeking behavior, and to account for patients who met the SARI/ILI case definitions but were not tested.

Results

The average annual incidence of influenza-associated SARI hospitalization per 1,000 persons was 2.7 (95% CI 1.8–3.9) among children <5 years and 0.3 (95% CI 0.2–0.4) among persons ≥5 years; for RSV-associated SARI hospitalization, it was 5.2 (95% CI 4.0–6.8) among children <5 years and 0.1 (95% CI 0.0–0.2) among persons ≥5 years. The incidence of influenza-associated medically-attended ILI per 1,000 was 24.0 (95% CI 16.6–34.7) among children <5 years and 3.8 (95% CI 2.6–5.7) among persons ≥5 years. The incidence of RSV-associated medically-attended ILI was 24.6 (95% CI 17.0–35.4) among children <5 years and 0.8 (95% CI 0.3–1.9) among persons ≥5 years.

Conclusions

Influenza and RSV both exact an important burden in children. This highlights the possible value of influenza vaccines, and future RSV vaccines, for Kenyan children.  相似文献   

3.

Background

Knowing the national disease burden of severe influenza in low-income countries can inform policy decisions around influenza treatment and prevention. We present a novel methodology using locally generated data for estimating this burden.

Methods and Findings

This method begins with calculating the hospitalized severe acute respiratory illness (SARI) incidence for children <5 years old and persons ≥5 years old from population-based surveillance in one province. This base rate of SARI is then adjusted for each province based on the prevalence of risk factors and healthcare-seeking behavior. The percentage of SARI with influenza virus detected is determined from provincial-level sentinel surveillance and applied to the adjusted provincial rates of hospitalized SARI. Healthcare-seeking data from healthcare utilization surveys is used to estimate non-hospitalized influenza-associated SARI. Rates of hospitalized and non-hospitalized influenza-associated SARI are applied to census data to calculate the national number of cases. The method was field-tested in Kenya, and validated in Guatemala, using data from August 2009–July 2011. In Kenya (2009 population 38.6 million persons), the annual number of hospitalized influenza-associated SARI cases ranged from 17,129–27,659 for children <5 years old (2.9–4.7 per 1,000 persons) and 6,882–7,836 for persons ≥5 years old (0.21–0.24 per 1,000 persons), depending on year and base rate used. In Guatemala (2011 population 14.7 million persons), the annual number of hospitalized cases of influenza-associated pneumonia ranged from 1,065–2,259 (0.5–1.0 per 1,000 persons) among children <5 years old and 779–2,252 cases (0.1–0.2 per 1,000 persons) for persons ≥5 years old, depending on year and base rate used. In both countries, the number of non-hospitalized influenza-associated cases was several-fold higher than the hospitalized cases.

Conclusions

Influenza virus was associated with a substantial amount of severe disease in Kenya and Guatemala. This method can be performed in most low and lower-middle income countries.  相似文献   

4.

Background

Statins possess immunomodulatory properties and have been proposed for reducing morbidity during an influenza pandemic. We sought to evaluate the effect of statins on hospitalizations and deaths related to seasonal influenza outbreaks.

Methodology/Principal Findings

We conducted a population-based cohort study over 10 influenza seasons (1996 to 2006) using linked administrative databases in Ontario, Canada. We identified all adults older than 65 years who had received an influenza vaccination prior to the start of influenza season and distinguished those also prescribed statins (23%) from those not also prescribed statins (77%). Propensity-based matching, which accounted for each individual''s likelihood of receiving a statin, yielded a final cohort of 2,240,638 patients, exactly half of whom received statins. Statins were associated with small protective effects against pneumonia hospitalization (odds ratio [OR] 0.92; 95% CI 0.89–0.95), 30-day pneumonia mortality (0.84; 95% CI 0.77–0.91), and all-cause mortality (0.87; 95% CI 0.84–0.89). These protective effects attenuated substantially after multivariate adjustment and when we excluded multiple observations for each individual, declined over time, differed across propensity score quintiles and risk groups, and were unchanged during post-influenza season periods. The main limitations of this study were the observational study design, the non-specific outcomes, and the lack of information on medications while hospitalized.

Conclusions/Significance

Statin use is associated with a statistically significant but minimal protective effect against influenza morbidity that can easily be attributed to residual confounding. Public health officials and clinicians should focus on other measures to reduce morbidity and mortality from the next influenza pandemic.  相似文献   

5.

Background

The clinical consequences of co-infection with two or more respiratory viruses are poorly understood. We sought to determine if co-infection with pandemic 2009–2010 influenza A H1N1 (pH1N1) and another respiratory virus was associated with worse clinical outcomes.

Methods

A retrospective cohort study was performed of all hospitalized patients with a positive respiratory viral panel (RVP) for two or more viruses within 72 hours of admission at our institution from October 2009 to December 2009. We compared patients infected with one respiratory virus to those with respiratory viral co-infection.

Results

We identified 617 inpatients with a positive RVP sample with a single virus and 49 inpatients with a positive RVP sample for two viruses (i.e. co-infection). Co-infected patients were significantly younger, more often had fever/chills, tachypnea, and they more often demonstrated interstitial opacities suggestive of viral pneumonia on the presenting chest radiograph (OR 7.5, 95% CI 3.4–16.5). The likelihood of death, length of stay, and requirement for intensive care unit level of care were similar in both groups, but patients with any respiratory virus co-infection were more likely to experience complications, particularly treatment for a secondary bacterial pneumonia (OR 6.8, 95% CI 3.3–14.2). Patients co-infected with pH1N1 and another respiratory virus were more likely to present with chest radiograph changes suggestive of a viral pneumonia, compared to mono-infection with pH1N1 (OR 16.9, 95% CI 4.5–62.7). By logistic regression using mono-infection with non-PH1N1 viruses as the reference group, co-infection with pH1N1 was the strongest independent predictor of treatment for a secondary bacterial pneumonia (OR 17.8, 95% CI 6.7–47.1).

Conclusion

Patients with viral co-infection, particularly with pH1N1, were more likely to have chest radiograph features compatible with a viral pneumonia and complications during their hospital course, particularly treatment for secondary bacterial pneumonia. Despite this, co-infection was not associated with ICU admission.  相似文献   

6.

Background

We combined hospital-based surveillance and health utilization survey data to estimate the incidence of respiratory viral infections associated hospitalization among children aged < 5 years in Bangladesh.

Methods

Surveillance physicians collected respiratory specimens from children aged <5 years hospitalized with respiratory illness and residing in the primary hospital catchment areas. We tested respiratory specimens for respiratory syncytial virus, parainfluenza viruses, human metapneumovirus, influenza, adenovirus and rhinoviruses using rRT-PCR. During 2013, we conducted a health utilization survey in the primary catchment areas of the hospitals to determine the proportion of all hospitalizations for respiratory illness among children aged <5 years at the surveillance hospitals during the preceding 12 months. We estimated the respiratory virus-specific incidence of hospitalization by dividing the estimated number of hospitalized children with a laboratory confirmed infection with a respiratory virus by the population aged <5 years of the catchment areas and adjusted for the proportion of children who were hospitalized at the surveillance hospitals.

Results

We estimated that the annual incidence per 1000 children (95% CI) of all cause associated respiratory hospitalization was 11.5 (10–12). The incidences per 1000 children (95% CI) per year for respiratory syncytial virus, parainfluenza, adenovirus, human metapneumovirus and influenza infections were 3(2–3), 0.5(0.4–0.8), 0.4 (0.3–0.6), 0.4 (0.3–0.6), and 0.4 (0.3–0.6) respectively. The incidences per 1000 children (95%CI) of rhinovirus-associated infections among hospitalized children were 5 (3–7), 2 (1–3), 1 (0.6–2), and 3 (2–4) in 2010, 2011, 2012 and 2013, respectively.

Conclusion

Our data suggest that respiratory viruses are associated with a substantial burden of hospitalization in children aged <5 years in Bangladesh.  相似文献   

7.

Context

The goal of influenza vaccination programs is to reduce influenza-associated disease outcomes. Therefore, estimating the reduced burden of influenza as a result of vaccination over time and by age group would allow for a clear understanding of the value of influenza vaccines in the US, and of areas where improvements could lead to greatest benefits.

Objective

To estimate the direct effect of influenza vaccination in the US in terms of averted number of cases, medically-attended cases, and hospitalizations over six recent influenza seasons.

Design

Using existing surveillance data, we present a method for assessing the impact of influenza vaccination where impact is defined as either the number of averted outcomes or as the prevented disease fraction (the number of cases estimated to have been averted relative to the number of cases that would have occurred in the absence of vaccination).

Results

We estimated that during our 6-year study period, the number of influenza illnesses averted by vaccination ranged from a low of approximately 1.1 million (95% confidence interval (CI) 0.6–1.7 million) during the 2006–2007 season to a high of 5 million (CI 2.9–8.6 million) during the 2010–2011 season while the number of averted hospitalizations ranged from a low of 7,700 (CI 3,700–14,100) in 2009–2010 to a high of 40,400 (CI 20,800–73,000) in 2010–2011. Prevented fractions varied across age groups and over time. The highest prevented fraction in the study period was observed in 2010–2011, reflecting the post-pandemic expansion of vaccination coverage.

Conclusions

Influenza vaccination programs in the US produce a substantial health benefit in terms of averted cases, clinic visits and hospitalizations. Our results underscore the potential for additional disease prevention through increased vaccination coverage, particularly among nonelderly adults, and increased vaccine effectiveness, particularly among the elderly.  相似文献   

8.

Background

Published data on the interaction between influenza and pulmonary tuberculosis (PTB) are limited. We aimed to estimate the influenza-associated mortality among individuals with PTB in South Africa from 1999–2009.

Methods

We modelled the excess influenza-associated mortality by applying Poisson regression models to monthly PTB and non-tuberculosis respiratory deaths, using laboratory-confirmed influenza as a covariate.

Results

PTB deaths increased each winter, coinciding with influenza virus circulation. Among individuals of any age, mean annual influenza-associated PTB mortality rate was 164/100,000 person-years (n = 439). The rate of non-tuberculosis respiratory deaths was 27/100,000 (n = 1125) for HIV-infected and 5/100,000 (n = 2367) for HIV-uninfected individuals of all ages. Among individuals aged <65 years, influenza-associated PTB mortality risk was elevated compared to influenza-associated non-tuberculosis respiratory deaths in HIV-infected (relative risk (RR): 5.2; 95% CI: 4.6–5.9) and HIV-uninfected individuals (RR: 61.0; CI: 41.4–91.0). Among individuals aged ≥65 years, influenza-associated PTB mortality risk was elevated compared to influenza-associated non-tuberculosis respiratory deaths in HIV-uninfected individuals (RR: 13.0; 95% CI: 12.0–14.0).

Conclusion

We observed an increased risk of influenza-associated mortality in persons with PTB compared to non-tuberculosis respiratory deaths. If confirmed in other settings, our findings may support recommendations for active inclusion of patients with TB for influenza vaccination and empiric influenza anti-viral treatment of patients with TB during influenza epidemics.  相似文献   

9.

Background

The weekly proportion of laboratory tests that are positive for influenza is used in public health surveillance systems to identify periods of influenza activity. We aimed to estimate the sensitivity of influenza testing in Canada based on results of a national respiratory virus surveillance system.

Methods and Findings

The weekly number of influenza-negative tests from 1999 to 2006 was modelled as a function of laboratory-confirmed positive tests for influenza, respiratory syncytial virus (RSV), adenovirus and parainfluenza viruses, seasonality, and trend using Poisson regression. Sensitivity was calculated as the number of influenza positive tests divided by the number of influenza positive tests plus the model-estimated number of false negative tests. The sensitivity of influenza testing was estimated to be 33% (95%CI 32–34%), varying from 30–40% depending on the season and region.

Conclusions

The estimated sensitivity of influenza tests reported to this national laboratory surveillance system is considerably less than reported test characteristics for most laboratory tests. A number of factors may explain this difference, including sample quality and specimen procurement issues as well as test characteristics. Improved diagnosis would permit better estimation of the burden of influenza.  相似文献   

10.

Background

The optimal vaccination strategy to mitigate the impact of influenza epidemics is unclear. In 2005, a countywide school-based influenza vaccination campaign was launched in Knox County, Tennessee (population 385,899). Approximately 41% and 48% of eligible county children aged 5–17 years were immunized with live attenuated influenza vaccine before the 2005–2006 and 2006–2007 influenza seasons, respectively. We sought to determine the population impact of this campaign.

Methods

Laboratory-confirmed influenza data defined influenza seasons. We calculated the incidence of medically attended acute respiratory illness attributable to influenza in Knox and Knox-surrounding counties (concurrent controls) during consecutive seasons (5 precampaign and 2 campaign seasons) using negative binomial regression and rate difference methods. Age-stratified analyses compared the incidence of emergency department (ED) visits and hospitalizations attributable to influenza.

Results

During precampaign seasons, estimated ED visit rates attributable to influenza were 12.39 (95% CI: 10.34–14.44) per 1000 Knox children aged 5–17 years and similar in Knox-surrounding counties. During the campaign seasons, annual Knox influenza-associated ED visit rates declined relative to rates in Knox-surrounding counties: rate ratios 0.55 (95% CI: 0.27–0.83) and 0.70 (95% CI: 0.56–0.84) for the first and second campaign seasons, respectively. Overall, there were about 35% or 4.86 per 1000 fewer influenza-associated ED visits among Knox County children aged 5–17 years attributable to the campaign. No significant declines in Knox compared to surrounding counties were detected for influenza associated ED visits in children aged <5 years, all adults combined or selected adult age subgroups, although power for these analyses was limited. Alternate rate-difference analyses yielded consistent results.

Conclusion

Vaccination of approximately 45% of Knox school-aged children with influenza vaccine was associated with a 35% annual reduction (4.86 per 1000) in ED visit rates attributable to influenza. Higher vaccination coverage and/or larger studies would be needed to determine whether similar interventions have indirect benefits in other age groups.  相似文献   

11.

Background

Influenza is often not recognized as an important cause of severe or fatal disease in tropical and subtropical countries in Southeast Asia. The extent to which Oseltamivir treatment may protect against a fatal outcome in severe influenza infections is not known. Thailand''s National Avian Influenza Surveillance (NAIS) system affords a unique opportunity to describe the epidemiology of laboratory-confirmed severe and fatal human influenza infections.

Methodology/Principal Findings

During January 2004 through December 2006, 11,641 notifications to the NAIS were investigated in 73 of 76 Thai provinces. Clinical and demographic data and respiratory swab specimens were collected and tested by PCR for influenza. Using the NAIS database, we identified all patients with laboratory confirmed human influenza (A/H3N2, A/H1N1 and Type B) infection. A retrospective medical record review was conducted on all fatal cases with laboratory confirmed influenza and from a sample of hospitalized cases in 28 provinces. The association of underlying risk factors, Oseltamivir treatment and risk of a fatal outcome were examined. Human influenza infections were identified in 2,075 (18%) cases. Twenty-two (1%) deaths occurred including seven deaths in children less than ten years of age. Thirty-five percent of hospitalized human influenza infections had chest X-ray confirmed pneumonia. Current or former smoking; advanced age, hypertension and underlying cardiovascular, pulmonary or endocrine disease were associated with a fatal outcome from human influenza infection. Treatment with Oseltamivir was statistically associated with survival with a crude OR of .11 (95% CI: 0.04–0.30) and .13 (95% CI: 0.04–0.40) after controlling for age.

Conclusions

Severe and fatal human influenza infections were commonly identified in the NAIS designed to identify avian A/H5N1 cases. Treatment with Oseltamivir is associated with survival in hospitalized human influenza pneumonia patients.  相似文献   

12.

Background

Little is known on the effectiveness of influenza vaccine in ESRD patients. This study compared the incidence of hospitalization, morbidity, and mortality in end-stage renal disease (ESRD) patients undergoing hemodialysis (HD) between cohorts with and without influenza vaccination.

Methods

We used the insurance claims data from 1998 to 2009 in Taiwan to determine the incidence of these events within one year after influenza vaccination in the vaccine (N = 831) and the non-vaccine (N = 3187) cohorts. The vaccine cohort to the non-vaccine cohort incidence rate ratio and hazard ratio (HR) of morbidities and mortality were measured.

Results

The age-specific analysis showed that the elderly in the vaccine cohort had lower hospitalization rate (100.8 vs. 133.9 per 100 person-years), contributing to an overall HR of 0.81 (95% confidence interval (CI) 0.72–0.90). The vaccine cohort also had an adjusted HR of 0.85 [95% CI 0.75–0.96] for heart disease. The corresponding incidence of pneumonia and influenza was 22.4 versus 17.2 per 100 person-years, but with an adjusted HR of 0.80 (95% CI 0.64–1.02). The vaccine cohort had lowered risks than the non-vaccine cohort for intensive care unit (ICU) admission (adjusted HR 0.20, 95% CI 0.12–0.33) and mortality (adjusted HR 0.50, 95% CI 0.41–0.60). The time-dependent Cox model revealed an overall adjusted HR for mortality of 0.30 (95% CI 0.26–0.35) after counting vaccination for multi-years.

Conclusions

ESRD patients with HD receiving the influenza vaccination could have reduced risks of pneumonia/influenza and other morbidities, ICU stay, hospitalization and death, particularly for the elderly.  相似文献   

13.

Introduction

Data on the burden and risk groups for influenza-associated mortality from Africa are limited. We aimed to estimate the incidence and risk-factors for in-hospital influenza-associated severe acute respiratory illness (SARI) deaths.

Methods

Hospitalised patients with SARI were enrolled prospectively in four provinces of South Africa from 2009–2013. Using polymerase chain reaction, respiratory samples were tested for ten respiratory viruses and blood for pneumococcal DNA. The incidence of influenza-associated SARI deaths was estimated at one urban hospital with a defined catchment population.

Results

We enrolled 1376 patients with influenza-associated SARI and 3% (41 of 1358 with available outcome data) died. In patients with available HIV-status, the case-fatality proportion (CFP) was higher in HIV-infected (5%, 22/419) than HIV-uninfected individuals (2%, 13/620; p = 0.006). CFPs varied by age group, and generally increased with increasing age amongst individuals >5 years (p<0.001). On multivariable analysis, factors associated with death were age-group 45–64 years (odds ratio (OR) 4.0, 95% confidence interval (CI) 1.01–16.3) and ≥65 years (OR 6.5, 95%CI 1.2–34.3) compared to 1–4 year age-group who had the lowest CFP, HIV-infection (OR 2.9, 95%CI 1.1–7.8), underlying medical conditions other than HIV (OR 2.9, 95%CI 1.2–7.3) and pneumococcal co-infection (OR 4.1, 95%CI 1.5–11.2). The estimated incidence of influenza-associated SARI deaths per 100,000 population was highest in children <1 year (20.1, 95%CI 12.1–31.3) and adults aged 45–64 years (10.4, 95%CI 8.4–12.9). Adjusting for age, the rate of death was 20-fold (95%CI 15.0–27.8) higher in HIV-infected individuals than HIV-uninfected individuals.

Conclusion

Influenza causes substantial mortality in urban South Africa, particularly in infants aged <1 year and HIV-infected individuals. More widespread access to antiretroviral treatment and influenza vaccination may reduce this burden.  相似文献   

14.
15.

Introduction

Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we conducted a study in the adults belonging to the risk groups to assess the A(H1N1)pdm09 MF59-adjuvanted influenza vaccine effectiveness.

Methods

VE against influenza and/or pneumonia was assessed in the cohort study (n>25000), and vaccine effectiveness against laboratory-confirmed A(H1N1)pdm09 influenza was assessed in a matched case-control study (16 pairs). Odds ratios (OR) and their 95% confidence intervals (95% CI) were calculated by using multivariate logistic regression; vaccine effectiveness was estimated as (1-odds ratio)*100%.

Results

Vaccine effectiveness against laboratory-confirmed A(H1N1)pdm09 influenza and influenza and/or pneumonia was 98% (84–100%) and 33% (2–54%) respectively. The vaccine did not prevent influenza and/or pneumonia in 18–59 years old subjects, and was 49% (16–69%) effective in 60 years and older subjects.

Conclusions

Even though we cannot entirely rule out that selection bias, residual confounding and/or cross-protection has played a role, the present results indicate that the MF59-adjuvanted A(H1N1)pdm09 influenza vaccine has been effective in preventing laboratory-confirmed A(H1N1)pdm09 influenza and influenza and/or pneumonia, the latter notably in 60 years and older subjects.  相似文献   

16.
17.
18.

Importance and Objective

Prior influenza infection is a risk factor for invasive meningococcal disease. Quantifying the fraction of meningococcal disease attributable to influenza could improve understanding of viral-bacterial interaction and indicate additional health benefits to influenza immunization.

Design, Setting and Participants

A time series analysis of the association of influenza and meningococcal disease using hospitalizations in 9 states from 1989–2009 included in the State Inpatient Databases from the Agency for Healthcare Research and Quality and the proportion of positive influenza tests by subtype reported to the Centers for Disease Control. The model accounts for the autocorrelation of meningococcal disease and influenza between weeks, temporal trends, co-circulating respiratory syncytial virus, and seasonality. The influenza-subtype-attributable fraction was estimated using the model coefficients. We analyzed the synchrony of seasonal peaks in hospitalizations for influenza, respiratory syncytial virus, and meningococcal disease.

Results and Conclusions

In 19 of 20 seasons, influenza peaked≤2 weeks before meningococcal disease, and peaks were highly correlated in time (ρ = 0.95; P <.001). H3N2 and H1N1 peaks were highly synchronized with meningococcal disease while pandemic H1N1, B, and respiratory syncytial virus were not. Over 20 years, 12.8% (95% CI, 9.1–15.0) of meningococcal disease can be attributable to influenza in the preceding weeks with H3N2 accounting for 5.2% (95% CI, 3.0–6.5), H1N1 4.3% (95% CI, 2.6–5.6), B 3.0% (95% CI, 0.8–4.9) and pH1N1 0.2% (95% CI, 0–0.4). During the height of influenza season, weekly attributable fractions reach 59%. While vaccination against meningococcal disease is the most important prevention strategy, influenza vaccination could provide further protection, particularly in young children where the meningococcal disease vaccine is not recommended or protective against the most common serogroup.  相似文献   

19.
Widgren K  Nielsen J  Mølbak K 《PloS one》2010,5(11):e13939

Background

To follow the impact of the 2009 influenza pandemic in Denmark, influenza surveillance was extended with a system monitoring potentially influenza-associated hospitalisations.

Methodology/Principal Findings

National administrative data from 2004–2010 from the automatic reporting of all hospital visits and admissions in Denmark (population 5.5 million) were used. In-patient hospitalisations linked to ICD-10 codes for potentially influenza-associated conditions (influenza, viral and bacterial pneumonia, respiratory distress, and febrile convulsion) were aggregated by week and age groups; <5 years, 5–24 years, 25–64 years and ≥65 years. Weekly numbers of influenza-associated hospitalisations were plotted to follow the course of the pandemic. We calculated the total numbers of influenza-associated hospitalisations in each influenza season (week 30 to week 15, the following year). Risk ratios of being admitted with an influenza-associated condition in this season (2009/2010) compared to the previous five seasons (2004/2005–2008/2009) were calculated using binary regression. During the pandemic season, influenza-associated hospitalisations peaked in week 47, 2009. The total number of influenza-associated hospitalisations was 38,273 compared to the median of previous seasons of 35,662 (p = 0.28). The risk ratio of influenza-associated hospitalisations during the pandemic season compared to previous seasons was 1.63 (95%CI 1.49–1.78) for 5–24 year-olds and ranged between 0.98 and 1.08 for the other three age groups.

Conclusions

The 2009 pandemic influenza did not lead to an overall increase in the number of influenza-associated hospitalisations in Denmark in the 2009/2010 season and could be managed within existing hospital capacity. However, there was a disproportionally large impact on the age group 5–24 years. The influenza-associated hospitalisations during the 2009/2010 pandemic influenza season bore the signature features of historical pandemics: A skewed age-pattern and early out of season transmission.  相似文献   

20.

Background

School-located influenza vaccination (SLIV) programs can substantially enhance the sub-optimal coverage achieved under existing delivery strategies. Randomized SLIV trials have shown these programs reduce laboratory-confirmed influenza among both vaccinated and unvaccinated children. This work explores the effectiveness of a SLIV program in reducing the community risk of influenza and influenza-like illness (ILI) associated emergency care visits.

Methods

For the 2011/12 and 2012/13 influenza seasons, we estimated age-group specific attack rates (AR) for ILI from routine surveillance and census data. Age-group specific SLIV program effectiveness was estimated as one minus the AR ratio for Alachua County versus two comparison regions: the 12 county region surrounding Alachua County, and all non-Alachua counties in Florida.

Results

Vaccination of ∼50% of 5–17 year-olds in Alachua reduced their risk of ILI-associated visits, compared to the rest of Florida, by 79% (95% confidence interval: 70, 85) in 2011/12 and 71% (63, 77) in 2012/13. The greatest indirect effectiveness was observed among 0–4 year-olds, reducing AR by 89% (84, 93) in 2011/12 and 84% (79, 88) in 2012/13. Among all non-school age residents, the estimated indirect effectiveness was 60% (54, 65) and 36% (31, 41) for 2011/12 and 2012/13. The overall effectiveness among all age-groups was 65% (61, 70) and 46% (42, 50) for 2011/12 and 2012/13.

Conclusion

Wider implementation of SLIV programs can significantly reduce the influenza-associated public health burden in communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号